
SPECIAL SECTION ON BLOCKCHAIN TECHNOLOGY: PRINCIPLES AND APPLICATIONS

Received July 24, 2020, accepted August 8, 2020, date of publication September 2, 2020, date of current version October 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021253

Blockchain-Based Federated Learning for
Intelligent Control in Heavy Haul Railway
GAOFENG HUA1, LI ZHU 1, JINSONG WU 2,3, (Senior Member, IEEE), CHUNZI SHEN1,
LINYAN ZHOU1, (Student Member, IEEE), AND QINGQING LIN4
1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
2School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 510000, China
3Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile
4Huawei Beijing Research Institute, Beijing 100095, China

Corresponding author: Jinsong Wu (wujs@ieee.org)

This work was supported in part by the National Natural Science Foundation of China under Grant 61973026, in part by the Beijing
Science and Technology Commission Funding under Grant Z191100010818001, in part by the Beijing Education Commission Funding
under Grant I20H100010 and Grant I19H100010, in part by the Beijing Natural Science Foundation under Grant L181004, in part by the
Fundamental Research Funds for the Central Universities under Grant 2018JBZ002, in part by the Hunan Provincial Nature Science
Foundation under Grant 2018JJ2535, in part by the Chile Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Regular under Grant 1181809, and in part by the Chile CONICYT
Fondo de Fomento al Desarrollo Científico y Tecnológico (FONDEF) under Grant ID16I10466.

ABSTRACT Due to the long train marshaling and complex line conditions, the operating modes in heavy
haul rail systems frequently change when trains travel. Improper traction or braking operation made by
drivers will increase the longitudinal impact force to trains and causes the train decoupling, severely affecting
the safe operations of trains. It is quite desirable to replace the manual control with intelligent control
in heavy haul rail systems. Traditional machine learning-based intelligent control methods suffer from
insufficient data. Due to lacking effective incentives and trust, data from different rail lines or operators
cannot be shared directly. In this paper, we propose an approach on blockchain-based federated learning
to implement asynchronous collaborative machine learning between distributed agents that own data. This
method performs distributedmachine learning without a trusted central server. The blockchain smart contract
is used to realize the management of the entire federated learning. Using the historical driving data collected
from real heavy haul rail systems, the learning agent in the federated learning method adopts a support
vector machine (SVM) based intelligent control model. To deal with the imbalanced traction and braking
data, we optimize the classic SVMmodel via assigning different penalty factors to the majority and minority
classes. The data set are mapped to a high dimension using kernel functions to make it linearly separable.
We construct a mixing kernel function composed of polynomial and radial basis function (RBF) kernel
functions, which uses a dynamic weight factor changing with train speeds to improve the model accuracy.
The simulation results demonstrate the efficiency and accuracy of our proposed intelligent control method.

INDEX TERMS Federated learning, blockchain, support vector machine, radial basis function, heavy haul
railway.

I. INTRODUCTION
The heavy haul railway has the advantages of large trans-
portation capacity, high efficiency, low energy consumption,
and low transportation cost, which has attracted attention
from all over the world and has been worldwide acknowl-
edged as the main development direction for railway bulk
cargo transportation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wu .

Due to the long train marshaling, and complex line con-
ditions, the operating mode in heavy haul rail systems
frequently changes when trains travel. An improper trac-
tion or braking operation made by drivers will increase the
longitudinal impact force to trains and causes the train decou-
pling, severely affecting the safe operation of trains. It is
quite desirable to replace the manual control with intelligent
control in heavy haul rail systems.

To realize the safe and efficient control of trains, schol-
ars from various countries have studied related theories and
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applications in different fields. Traditional Train control algo-
rithms mainly include proportional integral derivative (PID)
classical control theory, fuzzy control, and machine learn-
ing. The PID control algorithm controls the train operation
by calculating the various operating conditions. Zhuan used
an open-loop controller to determine the power distribution
between the front and rear locomotives and track the target
curve in conjunction with a closed-loop controller [1]. Grube
and Bayoumi implemented curve tracking to minimize cou-
pler forces caused by disturbances such as slope [2]. Neural
networks learn the rules of data hiding via designing neural
network models to achieve the purpose of prediction [3]. Bai
introduced a fuzzy neural network to implement intelligent
control for freight train docking based on historical data of
train docking stations [4]. Dewang Chen combined a linear
model, a generalized regression neural network, and a fuzzy
inference system to estimate the parking error of urban rail
transit trains, and then dynamically optimized and adjusted
the parking error [5]. Reinforcement learning, as a variant of
Markov’s decision-making process [6], has also has demon-
strated satisfactory train control characteristics. Li Zhu used
deep reinforcement learning to optimize the communication
performance jointly and train control strategy based on the
channel characteristics of the communications-based train
control (CBTC) based communication system and real-time
train position information [7]. Dewang Chen modeled train
control into a multi-stage decision-making process based on
the transponder positioning information, and set the recipro-
cal of the parking error as the reward value, and introduced
reinforcement learning to solve the maximum reward func-
tion [8]. Besides, the work [8] used the Markov decision
process (MDP) to model the driving behavior of urban rail
transit drivers, constructed a return function through multiple
indicators, and applied the Q-Learning algorithm to solve it
to achieve online train control [6].

One crucial problem in the above-mentioned existing
works is their assumptions about the dynamic train model.
The traction and braking systems of heavy-haul trains are
typical nonlinear time-varying systems that are difficult to
describe with accurate mathematical models such as PID con-
trol. Machine learning algorithms are widely used today, such
as in agriculture [9], bioinformatics [10], [11], and wireless
communications [12]. Themachine learning algorithmmodel
represented by a neural network has strong self-adaptability
and nonlinear processing ability but has the disadvantages of
slower convergence speed, optimal local solution, and easy
over-fitting. A straightforward approach to conduct machine
learning is first collecting and storing the data in one central
server, and then processing them all together [13], [14].

Furthermore, traditional methods on machine learning-
based intelligent control suffer from insufficient data. Consid-
ering the data privacy and security, data from different railway
lines or operators cannot be directly shared. Data barriers
between operators have severely hindered the development
of intelligent rail transits. There seem to be uncoordinated
contradictions between the exchange of data and the security

of data. It is to be solved how to connect the islands of
data fragmentations without revealing the privacy as well as
realize the sharing of data and the co-construction of models.

In 2016, Google first proposed the concept of federated
learning [15], [16]. Federated learning is to build machine
learning models based on data sets that are distributed across
multiple devices while preventing data leakage. Recent rel-
evant improvements have been focusing on overcoming the
statistical challenges [17], [18] and improving security [19],
[20] in federated learning. There are also research efforts
to make federated learning more personalizable [21], [17].
Federated learning can effectively solve the problem of insuf-
ficient data and protect the data privacy and security.

The combination of federated learning (FL) and
blockchain is a hot topic of recent research. Y. Lu proposed
a new architecture based on federated learning to relieve
transmission load and address privacy concerns of providers
in Internet of vehicles [22]. K. Toyoda proposed to introduce
repeated competition for FL so that any rational worker
follows the protocol and maximizes its profits [23]. Y. Lu
first designed a blockchain empowered secure data sharing
architecture for distributed multiple parties to protect secu-
rity and privacy of sharing data in wireless networks [24].
H. Kim proposed a blockchained federated learning architec-
ture where local learning model updates are exchanged and
verified, which enables on-device machine learning without
any centralized training data or coordination via utilizing
a consensus mechanism in blockchain [25]. Sana Awan
proposed a blockchain-based privacy-preserving federated
learning framework, which leverages the immutability and
decentralized trust properties of blockchain to provide the
provenance of model updates [26].

For the first time, we apply joint federated learning and
blockchain to the heavy haul rail systems to protect the data
privacy and security of operators. In this paper, we pro-
pose a federated learning framework based on blockchain,
which enables different operators to train intelligent driving
models without sharing data. Operators do not necessarily
share their private data, but only necessarily train their intel-
ligent driving models locally and share the training weights
through the blockchain. They would obtain the final intel-
ligent train driving model through our proposed federated
learning method. Blockchain-based federated learning can
protect the data privacy of operators and train intelligent
driving models more accurately than single operator train-
ing. We introduce a support vector machine (SVM) based
intelligent control model for the learning agent in the pro-
posed distributed federated learning method. The unbalanced
traction and braking data are handled via assigning different
punishment factors to the main category and a few categories.
The kernel function is introduced to map the data set to a
high dimension to make them linearly separable. The per-
formance difference between the polynomial kernel function
and the radial basis function (RBF) kernel function in dif-
ferent scenarios is compared. The dynamic update factor is
generated via combining the train running speed, and then the
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algorithm is optimized to improve the data recognition for the
mode.

The rest parts of this paper are summarized as follows.
In section II, we describe the federated learning framework
based on blockchain. In section III, we model of heavy haul
train traction and propose electric braking based on SVM.
Section IV gives the SVM algorithm optimization results, and
section V gives the conclusion.

II. BLOCKCHAIN-BASED FEDERATED MACHINE
LEARNING FRAMEWORK
In this section, we propose a federated learning framework
based on blockchain, which is decentralized and privacy-
preserving and enables each operator to train our intelligent
driving model without leaking their private data.

A. BLOCKCHAIN
Blockchain, proposed by Nakamoto in 2008 for Bitcoin [27],
is the cornerstone of the modern digital cryptocurrency sys-
tem. In the last few years, academia and industry have con-
ducted extensive research efforts on blockchain and found
that this advanced technology can be applied to applica-
tions in various fields (such as finance, healthcare, and asset
registration).

Blockchain is a chronologically ordered list of blocks,
where each block, identified by its unique cryptographic
hash, refers to the block came before it, resulting in a chain
of blocks. Once a block is created and appended to the
blockchain, the transaction information in that block cannot
be changed or reverted, which ensures the integrity of the
system.

We use blockchain to store, transfer and share machine
learning models. A very critical technology in the blockchain
is smart contracts. The term smart contract was first proposed
by Nick Szabo in 1995. In several articles he published,
he defined smart contracts as: ‘‘A smart contract is a set
of promises defined in digital form. Including agreements
on which contract participants can execute these commit-
ments.’’ [28]. But at the time there were no digital systems
and technologies that could support programmable contracts.
Work on smart contracts could only remain at the theoret-
ical stage, after the advent of blockchain Smart contracts
can be applied in practice. The blockchain is suitable for
programmable contracts, and its distributed, non-tamperable
and traceable characteristics are very consistent with smart
contracts, so smart contracts have quickly become one of
the characteristics of blockchain technology [29]. We use
blockchain smart contracts to implement a series of opera-
tions such as system initialization, information interaction,
training timing, and data storage.

The blockchain realizes the automatic execution of feder-
ated learning through smart contracts. The entire process can
be traced back, not tampered with, and decentralized. Smart
contracts based on blockchain technology can take advantage
of the cost-efficiency of smart contracts and avoid the inter-
ference of malicious behavior with the normal execution of

FIGURE 1. Federated learning framework based on blockchain.

contracts. The smart contract is written into the blockchain
in a digital form, and the characteristics of the blockchain
technology guarantee the storage, reading, and execution of
parameters. The entire learning process is transparent, trace-
able, and unchangeable.

B. THE FRAMEWORK OF FEDERATED LEARNING BASED
ON BLOCKCHAIN
We describe the federated learning framework based on
blockchain in Fig. 1.We assume that four operators have their
private data. They have the same data type, but their data sizes
are limited. Their common goal is to train a general intelligent
control model for heavy haul trains. We call these operators
learning participants. The entire federated learning process
includes the following processes:
• The smart contract will act as the executor of the
blockchain to automatically realize the iterative feder-
ated learning process. First, all participants participate in
the formulation of a smart contract. Then the smart con-
tract is spread through the P2P network and stored in the
blockchain. Finally, the smart contract in the blockchain
will automatically execute the learning process.

• Learning participants A, B, C, and D calculate their
model parameter w based on the current model, encap-
sulate and broadcast all nodes together, and the corre-
sponding model’s error rate.

• All learning participants compete to obtain permission
to add new blocks to the chain via solving mathe-
matical puzzles. After a learning participant obtains
the permission to produce blocks, it collects all the
model parameter w and update the model parameter
w in blockchain. Finally, the new block ‘Block t ’ are
generated into the blockchain. ‘Block t ’ contains the
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FIGURE 2. Flowchart for federated learning based on blockchain.

hash value, time, and transaction information of the
block.

• Optimizing parameters w is the most critical part of
federated learning. It is also a parameter shared in model
training. Federated learning implements model training
by continuously iterating to optimize this parameter. The
optimization parameters represent different meanings in
different learning processes. For details, please refer to
Chapter IV, Section 4. Since participants only share the
learning parameter w without sharing data during the
learning process, the data privacy of the participants can
be protected.

C. FEDERATED LEARNING BASED ON BLOCKCHAIN
The method of federated learning process is shown in Fig. 2,
as follows:

1) Initialization stage: Set training parameters(t = 1),
including the parameters to be tuned, initial point, step
size, search range, predetermined accuracy rate, and
predetermined training period.

2) At the initial stage(t = 1), the four participants A, B, C,
and D use the preset initial point, step size, and search
range to search for the optimal parameter w through the
grid optimization method.

3) Taking A as an example, assume that the model trained
by the parameters found by A has the highest accu-
racy. In order to prevent the error break from being
propagated during the initialization phase, we select
the parameter wA found by A as the central training

parameter w1 for the next cycle of training, and the par-
ticipant who obtains the permission to produce block
is responsible for collecting the current round of train-
ing parameters of all nodes and uploading it to the
blockchain to form Block1. Based on this, other nodes
perform the next training according to the preset step
size and search range.

4) In the next stage (t = 2), in order to improve the
accuracy of all nodes, A, B, C, D will obtain the central
training parameter w1 of the previous stage from the
blockchain, and center on w1 with a preset step size
And search range to search the optimal parameters
through grid optimization method. The node with the
lowest training accuracy rate in this round provides
the central training parameter w2. The participant who
obtains the permission to produce block collects the
training parameters of all nodes in this round, and
uploads it to the blockchain to form block2. For the next
iteration process.

5) Until the accuracy rates of the four nodesA, B, C, andD
all exceed the preset value, or the training time exceeds
the preset period, the training ends, and the training
result is returned.

In the federation learning process, only the optimized
parameters are shared without sharing the original data,
which protects the user’s privacy from the source. The com-
bination of federated learning and blockchain guarantees
security and non-tampering in the learning process, thus pro-
tecting user data privacy and security.
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FIGURE 3. Structure diagram of directed acyclic graph.

III. MODELING OF HEAVY HAUL TRAIN TRACTION AND
ELECTRIC BRAKING BASED ON SVM
This paper takes the SS4G heavy haul train as the research
object, a stepped traction locomotive including traction gears,
brake gears, and a coasting gear. Hence, the problem in the
intelligent control of traction and electric braking force for
heavy haul trains is transformed into a classification problem
of machine learning. The SVM algorithm is used to establish
a classification model to implement the intelligent control of
heavy haul train traction and electric braking.

A. CONVERSION FROM BINARY CLASSIFICATION MODEL
TO MULTI-CLASSIFICATION MODEL
The SVM algorithm is a typical binary classification algo-
rithm to construct a hyperplane to identify the data. For
heavy-haul trains, there are 17 gears for traction, electric
braking, and inertia, which requires a multi-classification
model to achieve the intelligent control of them.

The first layer of the model determines whether to coast.
The second layer of the model determines the output trac-
tion or electric braking. After the predicted data are judged by
the first-layer decision-maker to not output inertia, the output
traction or electric braking will be determined through this
layer model.

The above two layers have obvious features in determining
the driving strategy, and each layer only needs a classifier to
achieve better results. However, for the discrimination of spe-
cific gears for traction or electric braking, the features have
fewer differences, and drivers’ driving habits are different.
To simulate the driving strategies of excellent drivers as many
as possible, this paper uses the following directed acyclic
graph method for traction or the selection of specific gears
for electric braking for multi-class modeling.

The idea of directed acyclic graphs is to design an SVM
model for any two types of labels. Therefore, for a dataset
with k categories,k(k − 1)/2 classifiers need to be con-
structed. We assume a total of 4 categories {1,2,3,4} in the
data set, via constructing a directed acyclic graph as shown
in Fig. 3, the k(k − 1)/2 classifiers are combined to form
the final multi classifier. It can be seen from the structure

of the model that the model has (k − 1) layers, that is, for
the data to be predicted, only (k − 1) models are needed
to obtain the final result. The prediction response time of
this method is significantly better than that of all classifiers.
The method has better time performance. The disadvantage
of directed acyclic graphs is that a large number of models
need to be trained, and the training time is longer. This
disadvantage will not have a negative effect on the intelli-
gent driving of heavy-load railways. Therefore, the design
method of the directed acyclic graph has a good application
scenario.

The third layer will be constructed according to the struc-
ture of the directed acyclic graph described above. The data
labeled with traction and electric braking will be applied to
the training of the corresponding model. As shown in Fig. 4,
it is the overall structure of the intelligent controller. The
disadvantage of the directed acyclic graph is that the errors at
the upper layer will accumulate downward. In order to reduce
the degree of error accumulation, each binary classifier in the
directed acyclic graph is designed to realize the classification
of the two categories with the greatest difference. For exam-
ple, the first level of the directed acyclic graph of traction
gears is the 1st gear and the 10th gear decision. It can be
seen from Fig. 4 that the model ultimately needs to construct
62 binary classifiers.

B. SELECTION OF SVM KERNEL FUNCTIONS
For the case where the data set are nonlinear, SVM’s solution
is to introduce a kernel function. By mapping the data to a
linearly separable high-dimensional space, SVM is used to
perform linear classification in the high-dimensional space.
The design of the kernel function is an essential factor that
affects the performance of the algorithm. A detailed descrip-
tion of the application for the kernel function will be given in
this section.

Mapping data from a linearly indivisible low-dimensional
space to a linearly separable high-dimensional space requires
a nonlinear transformation of the feature x of the original
data. We assume that the transformed feature is z = ϕ(x),
the decision function of SVM in the new feature space is
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FIGURE 4. Structure diagram of heavy haul train traction and electric brake classifiers.

formed as:

g(x) = sgn{
n∑
i=1

yiα∗i [ϕ(xi) ∗ ϕ(x)]+ b
∗
}. (1)

The kernel function is introduced, which is given by

K (xi, xj) = [ϕ(xi) ∗ ϕ(xj)]. (2)

The nonlinear data set are implicitly mapped to a
high-dimensional space via replacing the inner product’s
expression with a suitable kernel function. The SVMmodel’s
decision function that finally introduces the kernel function is
obtained via substituting (2) into (1).

The construction and selection of the kernel function will
directly influence the effect of the training for the SVMmodel
in high-dimensional space. The kernel functions are given as
follows:

1) The polynomial kernel function is equivalent to:

K (xi, x) = [(xi) ∗ x)+ 1]d . (3)

2) Gauss radial basis kernel function (RBF kernel func-
tion) is formed as:

K (xi, x) = exp{−
||xi − x||2

σ 2 }. (4)

From the experience of the application using kernel func-
tions in SVM, it can be known that different kernel functions
have important impacts on the effects of SVMmodels, mainly
in the selections of penalty factors and the parameters of ker-
nel functions themselves. Two kernel functions are optimized
via parameter tuning. The final results are used to construct a
mixed kernel function to optimize the model.

C. IMPROVEMENT OF THE SVM MODEL BASED ON THE
MIXED KERNEL FUNCTION
As observed from the previous section, the two kernel func-
tions show the performance differences in two different appli-
cation scenarios. The greatest difference between the two
scenarios is the change of the train speed. Inmost of the cases,
the acceleration is small in the coasting mode and is large in
the traction or electric braking mode.

According to the analysis of the above results, it can be
known that the RBF kernel function has a good classification
effect on traction and electric braking, and the SVM model
introduced with a polynomial kernel function has higher
accuracy in predicting whether to run idle. Thus, the fol-
lowing optimization measures are proposed. The two are
combined via increasing the adaptive factor, which is given
by

K (xi, x)=β ∗ exp{−
||xi − x||2

σ 2 }+(1− β) ∗ [(xi) ∗ x)+ 1]d ,

(5)

where β ∈ [0,1] denotes the adaptive weighting factors for
two kernel functions. Tomake the full use of the speed change
information of the train, the speed of the train is integrated
into adaptive weighting factors, which is equivalent to

β = 1− exp(−|k|), (6)

where k denotes the change in the speed of train adjacent
control cycles, namely, the acceleration, which is formed as

k =
vi − vi−1
ti − ti−1

. (7)
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When |k| is large, that is, the train acceleration is large,
β is relatively high, and the RBF kernel function occupies a
larger proportion in the spatial map. Conversely, the smaller
|k| is, the smaller the train acceleration will be, and the
polynomial kernel function will have a larger proportion in
spatial mapping. Thus, through the adaptive adjustment of
β, the mixed kernel function achieves the original design
purpose. The hybrid kernel function will be introduced in the
third layer of the model.

D. PARAMETER TUNING FOR SVM MODEL
The parameters of the support vector machine model con-
sist of two parts. The first part is the inherent parameters
of the model, namely, the penalty factors C+ of the SVM;
the second part is the parameters carried in the kernel func-
tion.The second part varies with different kernel functions.
The key parameters of the polynomial kernel function and
RBF kernel function are described as follows:

The key parameter of the polynomial kernel function is
the highest degree term d . The larger d is, the higher the
dimensionality of the mapping will be. However, as d grows,
the operation complexity grows exponentially, which will
easily cause the training server to terminate the task early.
The key parameter of the RBF kernel function is the kernel
width σ . The parameter determines the complexity of the
sample data; that is, the complexity of the data set after the
samples are mapped.

In the process of federated learning, parameter tuning
is a very important step. The three-layer classifier will be
federated independently for three times to obtain tuning
parameters.

1) For the first-level lazy row classifier, this paper will use
a polynomial kernel function to optimize the param-
eters. In this step, the parameters to be tuned by the
SVM are the SVM penalty factorC+ and the maximum
degree d of the polynomial kernel function.

2) For the second layer of traction and electric brake
classifiers, this paper will use the RBF kernel function
to optimize parameters. In this step, the parameters that
SVM needs to tune are SVM penalty factor C+ and
RBF kernel function kernel width sigma.

3) For the third-level classifier, this article will use the
mixed kernel function mentioned in this chapter for
parameter tuning. The parameters to be adjusted for the
mixed kernel function include the kernel width sigma
of the RBF kernel function and the highest order d of
the polynomial kernel function.

We will use the second chapter of the federated learning
method to separately train the three classifiers to obtain the
most suitable SVMmodel. This article sets the predetermined
training period to 50, and the predetermined accuracy rate
is 95% through a preliminary exploration of the parameters.
When the accuracy of the four nodes A, B, C, and D reaches
95% or exceeds the predetermined training period, the train-
ing ends. For the first-level classifier, the initial point ofC+ is

FIGURE 5. Comparison of SVM model control results and driver driving
results.

500, the search step is 50, the initial order of the polynomial
kernel function is 1, and the step is 1. The initial point of the
second-level classifier C+ is 500, and the search step is 50,
the RBF kernel function width is initially 0, and the search
step is 0.5; the third layer classifier second layer classifier
C+ initial point is 500, the search step is 50, the polynomial
kernel function initial order is 1, and the step is 1. The RBF
kernel function width is initially 0, and the search step is 0.5.

IV. PERFORMANCE
This section introduces the performance evaluation of the
proposed approach through the simulation results. The first
subsection introduces the comparison of the training results
of A participant data and A, B, C, D federation after learning.
The second subsection introduces the SVM simulation results
of three different classifiers.

A. FEDERATED LEARNING RESULTS
To verify the accuracy of the intelligent control model and
federated learning, this paper selects the train running data
from Xiaojue Station of Shuohuang Railway to West Station
of Dingzhou to verify the model accuracy. The total length
of the section is 120 kilometers, and the maximum downhill
gradient in the section is less than −4%, and the terrain is
gentle. During the train operation, the driver mainly relies on
traction and electric braking force to adjust the train speed,
which is conducive to model verification. The model control
results and the actual driving results of the driver are shown
in Fig. 5. The red line represents the driver’s driving gear. The
green line represents the model control gear trained by A’s
data, and the blue line represents the model control gear with
federated learning. The overall prediction accuracy without
federated learning is 84.30%. The overall prediction accuracy
with federated learning is 94.21%.

B. RESULTS OF SVM MODEL
1) Coasting classifier:

The Optimization results of the coasting classifier is
shown in Fig. 6. The first layer uses a polynomial kernel
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FIGURE 6. Optimization results of the coasting classifier.

FIGURE 7. Optimization results of traction or braking classifier.

function. As can be seen from the figure, as the training
period increases, the training accuracy of the four nodes
A, B, C, and D is steadily increasing. When the training
period reaches 30, the accuracy rates of A, B, C, and D
all exceed 95%. At this point, the training is over.

2) Traction/electric brake classifier:
The Optimization results of traction or braking classi-
fier is shown in Fig. 7. The second layer uses the RBF
kernel function. As can be seen from the figure, as the
training period increases, the training accuracy of the
four nodes A, B, C, and D is steadily increasing. When
the training period reaches 27, the accuracy rates of A,
B, C, and D all exceed 95%. At this point, the training
is over.

C. RESULTS OF THE SVM MODEL BASED ON THE MIXED
KERNEL FUNCTION
The optimized results of decision in the highest and lowest
gear for traction or braking is shown in Fig. 8. The third
layer uses a mixed kernel function. As can be seen from the
figure, as the training period increases, the training accuracy
of the four nodes A, B, C, and D is steadily increasing.
When the training period reaches 32, the accuracy rates of

FIGURE 8. Optimized results of decision in the highest and lowest gear
for traction or braking.

all participants exceed 95%. At that time, the training is
over.

V. CONCLUSION
In this paper, we have proposed a blockchain-based feder-
ated learning framework to protect user data privacy and
security. This method performs distributed machine learn-
ing without a trusted central server. The blockchain smart
contract is used to realize the management of the entire
federated learning. Based on this, the SVM classification
model has been introduced to realize the intelligent control
of traction/electric braking of heavy haul trains. We have
introduced the directed acyclic graph, which helps the migra-
tion of two classification models to multiple classification
models. Then, by comparing the SVM model’s prediction
effect with the polynomial kernel function and the RBF kernel
function on the data set, we have analyzed the features of
the two in different operating scenarios. In coasting scenar-
ios, the polynomial kernel function performance is better.
In traction/electric brake scenarios, the RBF kernel function
performance is better. Then, a dynamic update factor has been
constructed in combination with the train’s speed, and the
two have been connected to form a hybrid kernel function
to optimize the algorithm. Distributed machine learning has
been performed through the federated learning framework of
heavy haul trains. An intelligent control model for heavy haul
trains has been obtained through a fusion algorithm. Finally,
the optimal intelligent control model has been used to predict
the interval operation data. The comparisons between feder-
ated learning results and other machine learning comparison
results have demonstrated that this federated learning method
can train better model by more data. The comparison with the
driver driving results has demonstrated the effectiveness of
the intelligent control model.
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