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ABSTRACT Attention supports our urge to forage on social cues. Under certain circumstances, we spend the
majority of time scrutinising people, markedly their eyes and faces, and spotting persons that are talking. To
account for such behaviour, this article develops a computational model for the deployment of gaze within
a multimodal landscape, namely a conversational scene. Gaze dynamics is derived in a principled way by
reformulating attention deployment as a stochastic foraging problem. Model simulation experiments on a
publicly available dataset of eye-tracked subjects are presented. Results show that the simulated scan paths
exhibit similar trends of eye movements of human observers watching and listening to conversational clips

in a free-viewing condition.

INDEX TERMS Audio-visual attention, gaze models, social interaction, multimodal perception.

I. INTRODUCTION

Consider a clip displaying social interactions, in particular a
conversational clip (audio and video): the chief concern of
this article is to model the deployment of attention through
gaze by a human subject who is viewing and listening to the
clip.

Why should this research problem be relevant beyond its
merits?

One straightforward reason lies in the classic data mining
hurdle. YouTube, Twitch, Facebook Live contain myriads of
such clips [1], [2]. Also, large-scale multimodal data convey-
ing social interactions from non-laboratory settings are being
increasingly employed to analyse behaviours, emotions, and
interactions in real-life situations [3]. It goes without saying,
the processing of large spatio-temporal data from multiple
media in different contexts is a mind-blowing engineering
challenge: spotting sharable highlights, capturing socially
relevant events, generate value-based summaries to facilitate
browsing and skimming. All such problems call for an ability
that is germane to the successful performance of any cogni-
tive task: the ability to predict and to select where the most
meaningful and task-relevant information is to be found in the
sensory input.
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A less evident, albeit earnest need takes root in the chal-
lenge of ‘“‘subject’s mining”’: the computational inference
of subject’s traits, or expertise, or even expectations from
attentive behaviour. Much can be gained indeed by analysing
the “mind’s eye” conduct of a subject who scrutinises and
forages on the behaviour of other subjects involved in social
interactions [4]-[7].

In a nutshell, the research problem addressed here is rel-
evant beyond its peculiar interest because it complies with a
quest for parsimony. Under a variety of circumstances, what
prima facie might come across as a conundrum of diverse
engineering problems, boils down to the modelling of one
and only skill: the effective deployment of attention that
organisms have evolved to promote survival and well-being.
Surprisingly, the dynamics of deployment has been hitherto
overlooked in computational approaches.

A. PROBLEMS AND CHALLENGES
Throughout our lives, we are bond to unfalteringly sample
the environment. Moment-by-moment we strive to answer the
question: Where to look next? Attention guides our gaze to the
appropriate location of the scene and holds it in that location
for the deserved amount of time given current processing
demands [8].

In doing so, like other animals with as diverse evo-
lutionary backgrounds, we exhibit a consistent pattern of
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FIGURE 1. Gaze deployment recorded from a human subject who is viewing and listening to a conversational clip. Gaze
position in time is rendered by overlapping the raw data recorded along an eye-tracking session on a representative
excerpt of video frames. The trajectory unfolding in time is characterised by area-concentrated phases that alternate with
large distance relocations between regions attracting attention.

eye movements. To illustrate at the finest “‘resolution scale”
the signature of gaze dynamics, Fig. 1 plots the raw data
recording of one subject’s gaze. The trajectory of gaze is
shown as unfolding in time on an excerpt of subsequent
frames: large relocations are followed by local clustering of
gaze points.

This pattern has been referred to as a “‘saccade and fixate”
strategy [9]. Saccades are the fast movements that redirect the
eye to a new part of the surroundings, and fixational move-
ments occur within intervals between saccades, in which
gaze is held almost stationary. In dynamic scenes, or ones
including observer’s movement, fixations are either replaced
by or augmented with the smooth pursuit eye movement to
keep on the fovea (the central part of the retina) the objects
of interest that are moving.

The given tasks or goals determine by and large such
pattern [8]. Yet and cogent for the work described here,
the pattern is not the unconcerned result of a disembodied
process. Nor are the given task and the stimuli properties the
only contraints to the perceiver. Subject’s gut and feelings
matter too: in our daily life we keenly move our gaze to gauge
and collect visual information that includes social informa-
tion, such as others’ emotions and intentions [7], [10].

The implicational converse of this state of affairs is that
the dynamic pattern springing from this lifelong sampling
endeavour provides information about plans, goals, interests,
and probable sources of rewards; even expectations about
future events [8], [11], personality and social traits [7].

In this perspective, conversational videos have the ecolog-
ical virtue of displaying real people embedded in a dynamic
situation while being relatively controlled stimuli. In the
conversational setting, Foulsham et al. [12] have shown that
observers spend the majority of time looking at the people
in the videos, markedly at their eyes and faces, and that gaze
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fixations are temporally coupled to the person who was talk-
ing at any one time. This is not surprising. Visually-mediated
social interactions are not exclusive to humans, and have
played a significant role very early in the primate lineage:
selective pressure is likely to have promoted convergent
evolution of social gazing abilities for social group-living
animals [10]. Modelling attention in such case entails tak-
ing into account the value of social cues. This, in turn,
raises the question of whether it be feasible to mine from
behavioural data the implicit value of multimodal cues that
drives observer’s motivation.

Even prior to such urgent quest, the audio-visual nature
of these stimuli brings forward the challenge of how gaze is
to be guided in the context of multimodal perception (audio
and visual). As discussed in Section II, limited work has been
devoted to eye guidance in a multimodal setting.

B. OUR APPROACH
The key intuition can be easily grasped at a glance by going
back to Fig. 1. The trajectory of gaze unfolding in time can
be best described, at the phenomenological level, as one kind
of biased random walk that takes place at different scales:
the fine scale of area-concentrated phases within valuable
“information patches” (exploitation), that alternates with the
coarse scale of large distance relocations between patches
(exploration), whatever the precise rules that control them.
Thus, the portrait of Fig. 1 boils down our chief research
problem to two crucial questions: What defines valuable a
patch? How is gaze guided within and between patches?
The answer is formalised in a model for eye guidance
that relies on a simple idea: we consider gaze trajectories
as traced by a composite forager, chasing up resources that
are patchily distributed (cfr. Fig. 1). Foraging is a general
term that includes where animals search for food and which
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sorts of food they eat [13]-[15]. A composite forager is one
capable of switching the scale of the foraging walk from
within-patch exploitation to large between-patch relocations
or vice versa [15]. In our case, the forager is a stochastic one,
and either regime - exploitation or exploration - is accom-
plished via a biased Brownian walk, precisely an Ornstein-
Uhlenbeck (OU) process, tuned at the appropriate scale. The
bias is provided by the audio-visual patches that moment-by-
moment appear relevant (rewarding) within the multimodal
landscape. The idea of exploiting the foraging framework
has gained currency in the attention literature (cfr. Table 1),
reckoned more than an informing metaphor [16].

TABLE 1. Relationship between multimodal attention and foraging.

Audio-visual attentive processing | Patchy landscape foraging

Perceiver Forager
Perceiver’s gaze shift Forager’s relocation
Audio-visual object/event Patch

Patch choice
Patch handling
Patch leave or giving-up

Audio-visual object/event selection
Deploying attention to object/event
Disengaging from object/event

Technically, as depicted in Fig. 2, model input is repre-
sented by the audio-visual stream together with eye-tracking
data. We exploit the publicly available dataset presented
in [17], collecting data of eye-tracked subjects attending to
conversational clips.

social context and multimodal stimuli
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FIGURE 2. Gaze deployment as foraging in a multimodal landscape.
Model input is represented by multimodal stimuli that convey social
content; the output is represented by a composite (local/global) foraging
walk. Value-based patches are sampled from priority maps and integrate
different sources of selection bias in a socially valuable context. The
audio-visual scene social content drives perceiver’s (internal) value that,
in turn, guides the sampling of relevant patches. The perceiver's gaze
continuously switches between local patch exploitation and
between-patch global relocation. Gaze dynamics is that of a spatial
Ornstein-Uhlenbeck process, which is performed at two different scales,
local and global.

At the pre-attentive stage, inference is performed to obtain
dynamic value-driven priority maps resulting from the com-
petition of visual and audio-visual events occurring in the
scene. Their dynamics integrates the observer’s current selec-
tion goals, selection history, and the physical salience of the
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items competing for attention. The free-viewing task given
to subjects allows for dynamically inferring the history of
their “internal” selection goals as captured by the resulting
attentive gaze behaviour. From priority maps a number of
attractors are sampled in the form of value-based patches suit-
able to bias the forager’s walk. The attentive stage involves
trading between local patch exploitation and landscape explo-
ration through relocations across patches. This is achieved
by switching the OU process at different scales. The trading
rules stem from stochastic approaches to optimal foraging
theory [14].

C. MAIN CONTRIBUTIONS
The novel contributions of this article lie in the following.

1) The proposed model addresses the active sensing of
multimodal stimuli (audio and visual). Surprisingly
enough and to the best of our knowledge, there is not
much tradition in the computational modelling of this
problem.

2) Attention deployment is reformulated as a stochastic
foraging problem. Albeit unconventional, this choice
allows a parsimonious approach to cope with both the
what and how problems that ground active sensing,
the how problem being hitherto neglected.

3) Gaze dynamics succintly relies upon one and only
OU stochastic process that is apt to switch between
different scales of diffusion. This solution accounts for
the variability problem of the perceivers in a simpler
way than some attempts based on more cumbersome
mathematical tools (e.g., Lévy flights). A side conse-
quence is to allow a concrete step towards the unified
modelling of different kinds of gaze shifts, a recent
trend in eye movement research.

4) The foraging framework is exploited for a seamless
but principled integration of attentional control mecha-
nisms that are modulated by value and rewards. In par-
ticular it is shown how implicit social reward as elicited
by multimodal conversational clips can be inferred and
exploited in the loop. Value and reward are seldom
considered in the computational models of attention.

5) Different from the current propensity towards end-
to-end approaches, the model-based behavior of gaze
deployment provides an explainable account. This is
important if the approach is to be used in a subject’s
mining context (for example, inferring socially-aware
psychological traits of the perceiver or atypical devel-
opment in the appraisal of social cues).

These results grow out from the efforts spent to over-
come some of the limitations of current approaches to model
attention. Such limitations are overviewed to some detail
in the following Section II. The overview motivates the
rationales behind model’s architecture, which is presented
in Section III. Its formalisation is developed in Sections IV
and V. Section VI-A presents simulation results and their
analysis. Conclusions are summarised in Section VII.
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Il. BACKGROUND, RELATED WORK AND LIMITATIONS
We proceed now to set up a minimal formalism needed to
outline the necessary background to the work presented here
and to compare with the state-of-the-art.

Early studies on gaze behaviour and attention [18], [19]
made clear that in this matter three factors are to be taken
into account: the task or goal G, the stimuli S, and the per-
ceiver 0. Overt attention deployment as instantiated through
the unfolding of gaze shifts involves two main processes:
i) perception, by which O processes sensory information
and makes inferences to set up a representation YV cap-
turing salient aspects of the world; ii) action A, by which
O chooses how to sample the world to obtain useful sensory
information.

The perceptual process can be formalized in terms of
an ideal perceiver model which makes task-relevant infer-
ences. The perceiver O uses the sensory input S (visual or
audio-visual, for example) together with a knowledge of the
properties of the task G and the world, as well as features
of the sensors at hand. The process of selecting an action
uses both the observer’s inferences and knowledge of the
goal G to determine the next movement, i.e. where to ori-
ent the eyes. Action execution leads to new sensory input
S’. This closes the active sensing loop of perception and
action.

In brief, consider time instants ¢t < t’, where t'—t = 8t is
an arbitrary time step. Assume that at time ¢ the perceiver’s
gaze centers the focus of attention (FoA) at location rg(z),
(subscript F explicitly links location to the FoA). Then,
the goal-driven action/perception cycle performed by O boils
down to the iteration of the following steps. Under goal G and
current sensory input S(z):

Step 1: Infer the current perception of the world

S(t) — W(t) when gazing at rg(t);

Step 2: Sample the appropriate motor action/decision A(t)
depending on W(t);

Step 3: Sample the gaze shift rp(r) — rg(¢’), depending
on A(t), W(t).

In a nutshell, the eye guidance loop answers the very
question: Where to look next? The “where” part (Step 1) con-
cerns the selection of what to gaze at - features, objects,
actions - and their location within the scene; the “next” part
(Steps 2 and 3) involves how we gaze at what we have chosen
to gaze. The latter crucially brings in the unfolding dynamics
of gaze deployment.

The gist of the discussion that follows lies in that, by and
large [20]-[23], the computational modelling of visual atten-
tion has hitherto been concerned with Step 1 (what): deriv-
ing a representation V. As a matter of fact, it is surmised
that the perceptual representation W is per se predictive of
human fixations. Steps 2 and 3 (how) are seldom taken into
account.

A sober scrutiny of the literature shows that this attitude
instantiates in a number of hindrances occurring in all steps
and concerning the main factors G, O, S.
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1) PROBLEMS WITH W: LEVELS OF REPRESENTATION
Consider the mapping S — W (Step 1). The guidance of
gaze deployment is likely to be influenced by a hierarchy of
representational levels. Plausible ones to account for are [24]:
1) salience, 2) objects, 3) values, and 4) plans.

Up to this date, as stigmatised in many studies [20]-[23],
[25], [26], the majority of computational models have epit-
omized W, the perceptual representation of the world, in
the form of a spatial saliency map, which is mostly derived
bottom-up (early salience) on the way paved by Itti ez al. [27].

The weakness of the bottom-up approach has been largely
weighed up in the visual attention realm [20], [24], [26].
To overcome this pitfall, early saliency can be top-down
tuned to improve fixation prediction when dealing with
objects [28], faces [29], text regions [29], [30] or contex-
tual cues, e.g., the scene gist [31]. Indeed, the success of
deep networks exploiting convolutional filters that have been
learned on other tasks, for instance object recognition, pro-
vides practical evidence of the usefulness of high-level image
features for prediction purposes [32], [33]. Despite of this
heuristic addition of high-level processing capabilities, these
are still referred to as saliency models with some lack of
clarity [21]-[23], [32], [34].

2) HOW TO DEFINE G: THE MANY FACETS OF GOALS

As a matter of fact, in the real world gaze is not gener-
ically deployed to objects but allocated to task-relevant
objects [24], [25], [35]. The recent theoretical perspectives
on active/attentive sensing [36] promote the idea that the ulti-
mate objective of the active sensing loop (Steps 1-3) should
be to maximise via exploration the long term total rewards
and to gain additional knowledge about the environment.
Cogently, this endeavour recalls that of animals foraging for
food. Animals are likely to choose actions that not only take
them closer to known food sources but also yield information
about potential new sources [36], [37].

Yet, defining what is a goal is far from evident. The
dichotomy between top-down and bottom-up control assumes
the former as being determined by the current “endogenous”
goals of the observer and the latter as being constrained
by the physical, “exogenous” characteristics of the stimuli
(e.g.,flashes of light, loud noises, independent of the inter-
nal state of the observer). The construct of “endogenous”
attentional control is subtle since it conflates control signals
that are external”, ““internal” and selection history (either
learned or evolutionary inherited), which can prioritise items
previously attended in a given context. To discuss thoroughly
this point would carry us deep into the study of the complex
interaction between cognition and emotion [38]. A few words
must here suffice.

If the ultimate objective of the attentive perceiver is total
reward maximisation, one is urged to distinguish between
“external” rewards (incentive motivation, e.g, monetary
reward) and reward related to “internal” value. Most impor-
tant for the work presented here, the latter has different

161633



IEEE Access

G. Boccignone et al.: On Gaze Deployment to Audio-Visual Cues of Social Interactions

psychological facets [39] including affect (implicit “liking”
and conscious pleasure) and motivation (implicit incentive
salience, “wanting”’). Indeed, the selection of socially rel-
evant stimuli by attention has important implications for
the survival and wellbeing of an organism, and attentional
priority reflects the overall value and the history of such
selection [40]. Indeed, the crude top-down vs. bottom-up
taxonomy of attentional control should be adopted with the
uttermost caution (cfr., [20], [41]).

3) THE NEGLECTED PERCEIVER: BIASES, VARIABILITY,
IDIOSYNCRASY

To date, the vast majority of models have largely ignored
the perceiver. Still, when considering the how com-
ponent (Steps 2 and 3), the “O factor” is cogently
brought in.

On the one hand, regardless of the perceptual input,
scan paths exhibit both systematic tendencies and notable
inter- and intra-subject variability. Systematic tendencies
or “biases” in oculomotor behaviour can be thought of
as regularities that are common across all instances of, and
manipulations to, behavioural tasks [42], [43]. One remark-
able example is the amplitude distribution of saccades and
microsaccades that typically exhibit a positively skewed,
long-tailed shape [20], [42]-[44].

As to variability, when looking at natural images,
movies [44], or even dynamic virtual reality scenes [45]
under a free-viewing or a general-purpose task, there is a
small probability that two observers will fixate exactly the
same location at exactly the same time. Such variations in
individual scan paths (as regards chosen fixations, spatial
scanning order, and fixation duration) still hold when the
scene contains semantically rich “objects” and can become
idiosyncratic [20].

Recent studies examined the variability of eye movements
between observers distinguishing which characteristics are
stable and reliable, and therefore should be treated as a trait
of the observer rather than ‘““noise” [46], [47]. Guy et al. [7]
have shown that the amount of time subjects fixate on oth-
ers’ faces (face-preference) varies between individuals in a
reliable manner. Biases and variability have been considered
a nuisance rather than an opportunity. Nevertheless, beside
theoretical relevance for modelling human behavior, the ran-
domness of the process can be an advantage in computer
vision and learning tasks [48].

There are few notable exceptions to this current state
of affairs, [49], [50], [51], [52]. Variability and bias have
been explicitly addressed from first principles in the theoret-
ical context of Lévy flights [53], [54]. Interestingly enough,
this direction too leads to treating visual exploration strate-
gies in terms of foraging strategies [16], [30], [55]-[57].
In certain circumstances, uncertainty may promote almost
“blind” visual exploration strategies [43], [58], much like
the behaviour of a foraging animal exploring the environment
under incomplete information [14].
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4) DEFINING S: THE MULTI-SENSORY CHALLENGE

Humans are multi-sensory perceivers. We are capable of
attentional behaviour on multimodal stimuli, for example
those mixing visual and audio stimuli, S = {I, A}, where
I is a frame sequence and A an audio signal. Whilst atten-
tional mechanisms have been extensively explored for vision
systems, there is not much tradition as regards models of
attention in the context of sound systems [59].

Mutual influence between speech and visual perception,
markedly, face perception, is a long debated and well known
issue. The link between perceiving speech and perceiving
faces has been demonstrated in both behavioural and phys-
iological experiments, e.g., [60]-[64]. The McGurk effect
[60] is one celebrated example of audio-visual speech per-
ception, where visual inputs can even override the veridical
inputs of the auditory system. Another example is the way
people routinely use information provided by the speaker’s
lip movements to help understand speech in a noisy envi-
ronment [61], [62]. Watching the lips move in silent video
clips activates areas in the auditory cortex that are activated
when people are perceiving speech [63]; conversely, when
listeners pay attention to a voice that they associate with a spe-
cific person [64], this activates areas not only for perceiving
speech but also for perceiving faces (face fusiform area, FFA).
Van der Burg [65] provided evidence that audio-visual syn-
chrony guides attention in an exogenous manner in adults.
However, it remains unclear how multimodal scenes are
represented in the brain [66] and there is no compre-
hensive framework to explain our abilities in multimodal
attention.

As to computational models, much like visual attention,
the dichotomy between top-down and bottom-up control has
been assumed in the auditory attention field of inquiry. Since
the seminal work by Kayser et al. [67], efforts have been spent
to model stimulus-driven attention by computing a visual
saliency map of the spectrogram of an auditory stimulus
(see [59] for a comprehensive review). In this perspective, the
combination of both visual and auditory saliencies supporting
a multimodal saliency map that grounds multimodal attention
becomes a viable route [68], [69].

Seminal work on multimodal saliency has been done
by Coutrot and Guyader [70]-[72], where static and
dynamic low-level visual features were combined with
semi-automatically segmented object-based cues (such as
faces and annotation of body parts). For the audio track of
video frames a speaker diarization technique was proposed
based on voice activity detection, audio speaker clustering,
and motion detection. This information was then combined
with visual information to obtain a saliency map. Limitations
of that work has been addressed in [73] by providing a frame-
work, which is exploited here to implement the pre-attentive
stage of our model (cfr. Section IV and Appendix A). A recent
work by Tavakoli et al. [74] directly learn the end-to-end
mapping for the multi-modal saliency prediction by using a
deep neural network instead of relying on a sampling scheme
and multiple feature maps.
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lll. GAZE DEPLOYMENT: OVERVIEW OF THE BASIC
MODEL ARCHITECTURE

By taking stock of the limitations highlighted in the discus-
sion above, we next lay down the proposed model of gaze
deployment.

The general problem may be stated as follows. The
dynamic multimodal landscape W(t), namely the world as
perceived by subject O, is a “patchy” environment. Patches
are clumps of audio-visual information to which gaze is
deployed. The perceiver scrutinises “‘items’” within a patch
and, at any time 7, makes action decisions .A(¢) as to: 1) which
patches are to be spotted; 2) when to leave the patch currently
visited for focussing on a new patch. In this endeavour,
the unfolding of gaze deployment, rz(f) — rp(t), alternates
between scanning the patch, for probing and exploiting the
chunks of information locally available, and longer, explo-
rative relocations between patches.

To frame such problem we make a number of assumptions.

Al  The unfolding of gaze deployment in time is best
described as a stochastic process, namely a biased
random walk of a forager over the changing land-
scape (cfr. Fig. 1).

The landscape V() generated by O from the audio-visual
stream S(f) = {I(¢), A(¢)} is inherently stochastic and the
observer has partial information, since patches may change
unpredictably in time. Further, as discussed in Section II,
we need to take into account O’s variability and biases. Inter-
estingly enough, the reformulation of attention in terms of
foraging theory goes beyond the informing metaphor. There
is substantive evidence that what was once foraging for tangi-
ble resources in a physical space became, over evolutionary
time, foraging in cognitive space for information related to
those resources [75]. Such adaptations play a fundamental
role in goal-directed deployment of visual attention [16].

A2  The gaze walk can be accounted for by one and
only model of oculomotor behavior, namely an
Ornstein-Uhlenbeck process; the process acts at dif-
ferent scales, from landscape exploration to local
patch exploitation.

Indeed, recent work has been challenging the view that explo-
ration and fixation are dichotomous. Current literature sug-
gests instead that visual fixation is functionally equivalent to
visual exploration on a spatially focused scale [76]. In brief,
they are two extremes of a functional continuum. Recent
experiments confirmed scale invariance in the temporal struc-
ture of the larger shifts in gaze position (saccades), which has
also been observed in fixational eye movements while the eye
is gauging a localized region in the visual field [77].

A3 In a multimodal landscape conveying social
content, the forager’s random walk for explo-
ration/exploitation is modulated by the value v,
which is internally (self-)assigned by O to socially
rewarding items. Value dynamics can be inferred
from O’s oculomotor behaviour.
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Here, no “external” task is assigned to the perceiver; thus,
value v is modulated by the “internal” drive towards spot-
ting socially relevant objects/events. In a landscape featuring
social content, the most prominent visual objects are likely
to be faces and audio objects as represented by speakers’
voices [12]. These, eventually, will maximally contribute to
the relevant patches within W(¢) that will bias the random
walk of the perceiver’s gaze.

Under such circumstances, gaze deployment is obtained
as follows. Along a pre-attentive stage, audio-visual features
are derived to assess the likelihood of the spatio-temporal
occurence of such events. This provides the basis for setting
up time-varying priority maps L, (¢ = 1,---, N;) and for
gauging their moment-to-moment value v, in the context
of the scene. From priority maps, a number of value-based
patches 771(,4) @p=1---,N I(f)) are generated.

The attentive stage is distilled in the evolution of the
gaze state represented by point rz(f) = (xp (1), yr(1))! in a
continuous 2-dimensional space, at any time ¢ > 0, which
sets the focus of attention (FoA). As such, gaze dynamics
rp(t) — rp(t’) defines a trajectory, which is the realisa-
tion Rp(t) = rp(t), of a continuous-time stochastic process
{REr (1) t > 0}. From now on, for sake of simplicity
and with some abuse of notation, we shall use rg(-) for
denoting both the process/random variable and its realisation;
the same holds for other random variables, unless otherwise
specified.

The process is conceived as an OU process operating
at two different scales. These parametrise local and global
biased random walks so that area-concentrated phases within
patches (exploitation) alternate with large distance relocation
phases between patches (exploration).

The switch between exploitation and exploration, is pro-
vided by a foraging decision resulting from comparing the
expected reward gained within currently exploited patch
against the average reward that could be gained moving
to other patches available within the landscape. If explo-
ration is undertaken, then the choice of a new patch
must be made. State switching and patch choice are the
behavioural decisions .A(¢) available to the forager at
time ¢.

An ancillary assumption of the model presented here
relates to the patch exploitation mechanism. In stochastic
foraging theory, the time spent within a patch depends on the
potential value of a patch. The latter is based on the expected
rate, the forager’s current expectations on the number of items
in the patch and how easy they should be to find, [78]-[80].
In the case of internal goals, it is difficult to exactly define
what is an item. For example, consider a patch embedding a
speaker’s face. Items could either be main facial shape fea-
tures (eyes, nose, etc.), or action units of facial expressions,
or joint lip movements and spoken words, etc. Even if we
could count the items, we would not know how many items
are processed when gaze is deployed at point r(¢) in the course
of local patch exploration; multiple items might be processed
in parallel [81].
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On this basis, in the same vein of the foraging litera-
ture and its applications in perception [16], [55], [81], our
model abstracts from the actual mechanisms of specific gaze
behaviour within a region of interest under a given task, but
isolates some very relevant phenomenological aspects akin
to be shaped in statistical terms. This suits our needs, our
concern here being with the general view rather than with the
details.

Patches and items within the patch, whatever they may
represent, are encountered according to a Poisson process.
Together with the associated exponential waiting times, they
play an important role to relate points of gaze and global/local
scene characteristics [82], [83]. Patches are modelled as inde-
pendent Poisson process generators. Number of items are
sampled from a Poisson distribution, which allows to derive a
simple law for estimating the instantaneous information gain
of the perceiver within the patch and to compare the latter
with the average gain achievable over the landscape. This pro-
vides a sound basis for deciding when to relocate to another
patch and how to choose the next patch to be exploited,
namely the actions .A() moment-by-moment available to the
perceiver.

The control algorithm for gaze deployment is summarised
in the GazeDeploy procedure outlined in Algorithm 1.
Its steps are detailed in the following sections and a Python
simulation of the procedure is freely available on GitHub.!
Figure 3 provides a useful insight of the overall behaviour
of the procedure. Given an input conversational clip,
summarised as an excerpt of four subsequent frames (top
to bottom, left column), the GazeDeploy procedure outputs
a continuous gaze trajectory as generated by one artificial
observer (second column), whilst the third column shows
the focus of attention (FoA) set at the corresponding time.
In the top, second and bottom rows the simulated observer
scrutinises the current speaker, as espected, whilst in the
third and fourth raws, a brief glance is deployed either to
the woman listening on the left of the scene and to the onset
of the hand gesture of the forthcoming speaker. It is worth
remarking that one such trajectory is likely to stochastically
deviate, to some extent, from those of other observers, either
real or artificial. This variability can be appreciated from the
fourth and the last columns. They present the time-varying
fixation maps computed from a paired number of either arti-
ficial observers and actual human observers. Note that when
the conversational scene becomes more complex (typically
due to people arguing, gesturing, turn-taking, etc.), the maps
are characterised by higher spatio-temporal dispersion, a sig-
nature of the attention variability between observers. Such
uncertainty is captured by both the artificial and actual maps.
In such circumstances, indeed, the inter-observer variability
grows, and individual observers are likely to be driven by their
own expectation and other idiosyncratic factors.

1 Python code for simulations available at

https://github.com/phuselab/GazeDeploy
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Algorithm 1 Gaze Control in a Multimodal Landscape
1: Input: Visual stream {I}, audio stream {A}, goals G
(internal or external), the duration 7' to be simulated,
the video frame rate FR, the random walk sampling
rate fs.
Output: Prediction of gaze

0: procedure GazeDeploy

116t =7, Su=41

2: Initialisation of first'gaze location r(#1) on patch p(#1) = j,

with behavioural state s(¢1) = 0 { Exploitation mode}
3:forn=2to aT_t

4:  {Preattentive feedforward stage}

5:  Compute the current state of the perceptual landscape,
in terms of audio-visual priority maps {L} and
distributions {L,(t,)} (Egs. 1,2, 3,4)

{ Value inference}

Infer value dynamics {v¢(t,)} given all available

information Z(#; : #,) up to time #,, (Eq. 5)

8: {Landscape evaluation}

9:  Compute audio-visual patches {P,(#,)} as
potential value-sensitive attractors

10: Compute the expected average gain Q(z,) from
all patches in the landscape (Eq. 28)

11: {Attentive stage}

12: if s(z,) =1

13: {Exploitation: patch handling}

14: Set the parameters [L;,Sl), B},s'), \IIE,S’) for OU

sampling according to state s(t,;,) and current

o

patch indexed by p(t,)
15: while within patch
16: {Exploitation: local gaze shifting}
17: forj =0to %
18: Sample the OU gaze relocation

rp(ty—1+(x0u) > rp(ty—1+G + 1 x u))
19: end for

20: {Behavioural state sampling}

21: Compute the instantaneous expected gain g, (fw,)
for current patch (Eq. 26)

22: Compare current patch gain against the expected
average gain Q from the environment (Eq. 29)

23: Sample the behavioural state s(z,,) at time

t, = ty—1 + 6t (Eq. 20)
24 end while

25: else
26: { Exploration: patch-choice}
27: Sample next most valuable attractor p(t,—1 + §¢)

28:  Set the parameters 5", BS", W5 for OU
sampling according to state s(#,) and attractor p(t;)

29: { Exploration: relocation gaze shifting}
30: forj=0to ;—;
31: Sample the OU gaze relocation

Cr(tnt + G X 81) = Tr(taet + (G + 1 x 8u))
32: end for

33: end if

34: end for

35: end procedure
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FIGURE 3. The behaviour of the GazeDeploy procedure captured through the excerpt of four subsequent frames of a conversational clip. The left-most
column summarises the input sequence (top to bottom). The second column displays the output of the procedure, namely the continuous gaze trajectory
(graphically overlapped on the input frame) as generated by one artificial observer up to that frame. The third column highlights the focus of

attention (FoA) set on the scene. To weigh such individual trajectory in the context of other observers’ behaviour, the fourth and right-most columns
represent the time-varying fixation maps (a.k.a, heatmaps, attentional maps) computed from a paired number of either artificial observers and actual

human observers, respectively.

IV. THE PREATTENTIVE STAGE: PERCEIVING THE
AUDIO-VISUAL LANDSCAPE AND ITS VALUE

At the heart of the time-varying, pre-attentive perceptual
representation WV(¢) lies the concept of priority map. Intu-
itively, a priority map L combines top-down (relevance under
given goals G) and bottom-up (salience) mechanisms for eye
guidance [84]-[87]. More generally, it can be conceived as a
dynamic map of the perceptual landscape constructed from
a combination of properties of the external stimuli, intrinsic
expectations, and contextual knowledge [28], [31]; it can also
be designed to act as a form of short term memory to keep
track of which potential targets have been attended. As such,
the representation entailed by a priority map differs from
that provided at a lower level by feature maps X (or classic
salience).

Priority maps are used in our model to sample the
audio-visual patches of interest that define the perceiver’s
landscape. Each patch bears a value inherited from its pri-
ority map. Here, rather than shaping value in the form
of a map (in a sense, a further instance of a prior-
ity map, see [88], [89]), we consider it as a process
that moment to moment weighs the relevance of the the
different priority maps conditionally on the observer’s
goal.

VOLUME 8, 2020

A. COMPUTING PRIORITY MAPS

Formally, a priority map L is the matrix of binary random
variables /(r) denoting if location r is to be considered rel-
evant (/(r) = 1) or not (I(r) = 0), with respect to possible
visual or audio-visual “objects” occurring within the scene.
Further, L(#) depends on both current perceptual inferences
on feature maps X(¢) at time ¢ and priority L(t+ — &¢) at
time ¢ — 4¢.

It can be assumed that many such spatially mapped struc-
tures contribute to competition, working in parallel across
the perceptual field [84]-[89]. To derive the set of priority
maps {Lg }Qli 1» N¢ being the total number of priority maps,
and the related probability distributions P(Ly), the first infer-
ential step concerns the mapping from the multimodal input
S(t) = {I(r), A(®)} to a set of feature maps {X;}. In par-
ticular, we are considering the feature maps Xy (supporting
the low-level saliency map), Xq, (visual object-based map),
and Xo,, (audio-visual topographic maps of speaker/non-
speakers). Feature maps represent the occurence at a spatial
location of the scene of features of interest, namely, generic
visual features Fy, object-dependent visual features Fo,,, and
audio (speech) features Fg,. The computation of feature
maps and related distributions relies on previous work [73],
which is briefly summarised in Appendix A for the sake of
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completeness. Denote for compactness,

Sy(t) = P(Xy(t) | Fp),
Svo(t) = PXo, () | Fo,),
Sav () = PXo,, (1) | Xo,(®), Xoy, (1), Fo,, Fo,),

the distributions related to the feature maps.
Consider subsequent time instants ¢ < ¢/, where t' —t = 8t
with §¢ being an arbitrary time step. Define

Lyi(t") = P(Ly(¢") | Ly (2), Xy),
Lyo(t") = P(Ly(t") | Ly (1), Xo,),
Lav(t") = PLay(")|Lay (1), X0, )

the distributions related to the priority maps. Then, the latter
can be estimated as:

Lyi(t') = aySit") + (1 — ay) Ly (@), (D
Lyo(t") = aySyo(t') + (1 — av)Lyo(1), 2
Lav(t) = aaySav (") + (1 — aay)Lav (1). 3)

where oy and a4y weight the contribution of currently esti-
mated feature maps with respect to previous priority maps,
and the Ly(¢') are eventually normalised in the [0, 1] inter-
val. In this study, we set oy = oay = 0.8. This was
experimentally determined via ROC analysis with respect to
evaluation metrics (cfr. [73]); such value grants higher weight
to current information in order to account for changes in the
audio-visual stream.

Priority map dynamics requires a prior that can be designed
to account for spatial tendencies in the perceptual process. For
instance, human eye-tracking studies have shown that gaze
fixations in free viewing of dynamic natural scenes are biased
toward the center of the scene (“‘center bias”, [43], [50]),
which can be modelled by assuming a Gaussian distribution
located on the viewing center pc,

Lc=NL; pe, Zo). “

B. INFERRING THE VALUE OF PREATTENTIVE
INFORMATION

Attentional value is set by the “internal” goal (drive) G
towards spotting socially relevant objects/events occurring in
the scene. As such, it is a hidden state of the perceiver. The
problem we are facing now is to set up an inferential proce-
dure so that, given all available information from the onset of
the process up to time ¢, say Z(1 : ¢), the latent value v(¢) can
be estimated,

V(1) | Z(1 : 1) ~ PZ(1 : 1)). 5)

Information Z(¢) should encompass both perceivers’
behaviour and stimulus content. Consider that, on the one
hand, we know that the actual moment-to-moment deploy-
ment of attention over the landscape is the outcome of a value
assignment procedure. We assume that the result of attention
allocation is summarised through the time-varying heatmap
‘H(¢), which can be easily computed from eye-tracked gaze
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positions (fixations) of the perceivers [34]. On the other
hand, the information available from the stimulus is, at this
point, pre-attentively captured via densities L,(¢). Recall that
a priority map density £,(¢) can be conceived as a dynamic
predictor of potential gaze allocation in space. We surmise
that each map contributes to such prediction conditionally on
the value it bears for the observer at moment ¢.

Formally, define v(¢) = (v1(?) - - - vy, ()T the time-varying
random vector of values that are internally assigned to priority
map densities L£,(¢). Under such circumstances, the mapping
H(t) = h({Le(1)}, v(2)) can be simply cast in terms of the
linear regression equation

H(t) =) veLt) + o), 6)
£

which specifies the observers’ heatmap () as the lin-
ear combination of predictors (regressors) derived from the
stimulus, namely the priority densities L;(¢), perturbed by
noise w(t). Here, H(¢) is a 2D matrix having dimensions
equal to the dimensions of the £,(¢) matrices. Eq. 6 specifies
a time-varying linear regression, since v¢(f) are unknown
time-varying coefficients. A straightforward dynamics for the
latter is to let vy(#) vary over time according to a random
walk, where the value displacement dv¢(¢) simply amounts
to a Brownian displacement dW, (), i.e. dvo(t) = dW,(¢).
Then, the dynamic regression model can be conveniently
written in terms of the following vector state-space model:

h(7) = P()v(?) + w(1),
v(t) = v(t — 6t) + €(t),

o) ~NO,R®) (1)
€ ~N©0,Q1) (8

where: h(t) = vec(H(t)) is the observation vector of dimen-
sion |H| x 1, obtained by vectorising matrix H; P(z) =
[vec(L1()) | -+ | vec(Ly,(1))] is the matrix whose columns
are the vectorised predictors.

The Gaussian disturbances, namely, the process noise €(¢)
(with Q = cov(v)) and the observation noise @(t) (with R =
cov(h)) are both serially independent and also independent of
each other.

Online inference of value (Eq. 5) can eventually be per-
formed by solving the filtering problem P(v(¢) | h(l : f))
under Markov assumption, where h is a function of the pri-
ority map distributions £, via the observation/regression in
Eq. 7. This way, current goal and selection history effects are
both taken into account [41].

C. SAMPLING VALUE-SENSITIVE PATCHES

Priority maps and related values are then used for patch sam-
pling. Patches formalise the concept of multimodal attention
attractors and inherit the value from the generating priority
maps.

Given a priority map L, the spatial support of the N ;,l)
possible patches is computed. Denote M;,e) = {mﬁ,l) (N)}reL,
the map of binary RVs indicating the presence or absence of a
patch p. Assume independent patches, within and across pri-
ority maps L. The map of patches generated by Ly is defined
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®
as M = U,]:,L M, where M N M§f) =f{,p # kand
the overall patch support map is M = Ugi 1 MO,

To derive patches from priority maps, we need to esti-
mate their support MOy = (mO(r, D}reL,» such that
mO, 1) = 1if Lo(t) > Ty, and mO(r, 1) = 0 otherwise.
The threshold Ty, is adaptively set so as to achieve 90% sig-
nificance level in deciding whether the given priority values
are in the extreme tails of the pdf £,. The procedure is based
on the assumption that an informative patch is a relatively rare
region and thus located in the tails of the distribution.

Once the overall support of all patches M is available,
we estimate the parameters defining each patch, namely
Py = ([,l,p, X, vp) representing its location, shape and value
respectively. The value is simply inherited from the generat-
ing priority map v, = v¢. Location and shape parameters are
derived so to provide an elliptical representation of the patch
support (patch centre and axes).

V. ATTENTIVE STAGE: THE STOCHASTIC WALK DRIVEN
BY THE AUDIO-VISUAL PATCHES

At this point, the input for the attentive stage is available
in the form of Np value-sensitive foraging patches W(t) =
{P,,(t)}jj;] ,with Py (1) = (i, (1), (1), vp(t)), that define the
multimodal landscape for the forager’s walk.

A. DYNAMICS OF THE WALK

Consider the simple case where a single patch of the viewed
scene centered at location g (center of mass) serves as an
attentional attractor, e.g. the face patch in Fig.4a. The gaze
approximately fluctuates (fixational movement) for a time
interval around p.

(b)

FIGURE 4. (a) A face patch serving as attractor of attention, where the
gaze deployment in time can be described as a biased 2-D random walk
(b) Two face patches representing multiple centers of attraction, with an
example of fixation and relocation among patches.

We can idealise the motion of gaze as that of a particle.
In Newtonian dynamics the attraction of a particle of position
r(t) pulled towards the location u can be described by means
of a potential function, a quadratic form H(r,t) = %([L —
r(t))" B(n — r(¢)) that controls the particle’s direction and
velocity r(¢); in particular, B is the 2 x 2 matrix that constrains
the strength of the attraction. In the case that friction is high,
particle’s velocity is not directly involved and the equation of
motion can be written [90], [91]

drp(t) = —VH(rp, t)dt, )
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with V = (3/0x, 3/dy)" the gradient operator applied to the
potential and defining the force field F = VH.

When motion is subject to random forces, Eq. 9 generalises
to the stochastic differential equation (SDE)

drp(t) = Blp —rp(0)]ldt + D(xp(1))dW(r),  (10)

where B[y — rp(1)] = —VH(xrp, t) is the drift term, D is a
2 x 2 matrix representing the diffusion parameter. The noise
term W(z) is a 2-D Brownian process that leads to variability
around deterministic motion. Simply put, in the stochastic
case the particle (gaze) is wandering but being pulled towards
the location g.

Eqg. 10 can be easily recognised as a Langevin-type equa-
tion. Precisely, the gaze trajectory rg(¢), t > 0 is an instance
of the 2-D mean-reverting Ornstein-Uhlenbeck (OU) process,
where typically B = (by,b,)7, DD = 62T and W =
(W, Wy)T are independent Brownian processes. Clearly,
when B = 0, the drift term is 0 and the OU process boils
down to the Brownian walk. Eq. 10 can be esplicitly written
in the two dimensions as

dep(t) = byl —xpldt +0dWe(), (1)
dyr(t) = byluy — yr(Oldr +odWy(@).  (12)

Consider the 1-D process on the x coordinate. It is known that
for + > 0, with initial value xr(0) = xp, the explicit solution
of Eq. 11 writes (see e.g. [92], [93]):

t
xp(t) = xoe_b‘t—i—ux(l — e_b‘t)—i—oxz/ e_b*’(t_s)dWx(s),
0
(13)

and analogously for the y(f) process. The solution can be
equivalently written as the conditional sampling

Xp() | x(0) ~ Ny +e 72 (g — i), yul(1 — e7251)), - (14)

with y, = %, so that the expected value is E[xp(#)] =
Wy + e P (xg - W) and the variance ia var(xp(t)) = yx(1 —
e~2 bx?) The same holds for the yr(r) process.

The explicit evolution of xf in time between 0 and ¢ can be
obtained by numerically advancing the particle position with
an update equation. This is derived by replacing ¢ in the exact
solution (Eq. 13) with ¢/ = ¢ + §t, 8¢ time units later, and
applying the initial condition xo = xg(¢):

(') = xp @0 + (1 — e ™)

+ /vl = e72bx30)z(r). (15)

In the same way, Eq. 14 writes as the conditional distribution

Xp(t') | xp(6) ~ Ny + e (x(1) — py),
ye(1 — e 20531y (16)

Interestingly enough, Eqgs. 15 and 16 can be read as solving
Eq. 11 via Monte Carlo simulation, where a sequence of such
updates with the realization of the updated position x(z") at
the end of each time step is used as the initial position x(¢) at
the beginning of the next.
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Eventually, Eq. 16 and the corresponding one for the y(z)
coordinate can be generalised in compact form as

rr(t) | tr(t) ~ N+ e B (ep(t) — p), W), (17)

which represents the general solution to Eq. 10, with ¥ =
T —e BT B BandT = %B_l are 2 x 2 matrices and
e M is the matrix exponential.

Equation 17 describes gaze dynamics towards one point of
attraction. In our case, the visual landscape is a time-varying
landscape with multiple attractors, the centres of patches P,.
This problem has been partially considered in animal ecology.
Breed et al. [94] have proposed a multi-state extension of
Eq. 17, considering multiple centers of attraction. These cen-
ters have unique OU parameters u;, B;, ¥;. However, relo-
cation paths between attractors are not explicitly modelled,
which in our case would correspond to the important case of
medium/long saccades. Also, along time multimodal patches
can vary in number, shape and value.

Harris and Blackwell [95] proposed a flexible class of
continuous-time models for animal movement, allowing
movement behaviour to depend on location in terms of a
discrete set of regions and also on an underlying behavioural
state. The diffusion processes that the individual follows
while in a particular combination of state and region are,
by assumption, OU processes. Thus, for each combina-
tion, the parameters of the OU process are specified as,
[LES), BSS), \IIES), for states s = 1,...,K, and regions i =
1, ..., L. The switching process is a continuous- time finite
state Markov chain. Its properties are therefore defined
by its generator [95], the matrix of instantaneous rates of
transition between states observed at short time intervals
of length 6¢. Again, such approach is unfeasible, in our
case, where the number of attractors - and, consequently,
the number of states- is not known a priori and varies in
time.

In our case, we are more truly dealing with two behavioural
states that are independent of location: local intensive for-
aging and extensive exploration. Denote {S(z) : ¢t > 0}
a process defined on a binary set s; € {0, 1} accounting
for such behaviour switching process. Its value represents
which state of the hidden behaviour is active: foraging, when
s; = 1, or exploration when s; = 0 at time ¢. The regions
of attraction are represented by the ensemble of patches
W) = (PO}

In this setting the parameters ;L;,S’), B}f’ ), \Il[(f’) of the
OU process are related to a chosen patch p identified through
its center location parameter ;L,(,‘Y’). Meanwhile, the state s;
sampled at time f drives the choice of the appropriate
parameters B},S'), \III()S’).

The specification of parameters constrains the OU process
to bias the random walk locally, that is in proximity of the
patch located at u},l); alternatively, [LI(70) denotes a patch dif-
ferent from current location, which can be reached through
displacements at a larger scale defined by B;,O), \Ill(,o). This way
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gaze dynamics is given by the multi-state OU equation
drp(t) = B [l — vp()ldt + DS (ep(0))d WS (1),
(18)
which is solved by

(s1)
K | RO~ N (e 0 w0 — ). ). (19)

with \Il,(f’) = F,(,S’) _ B l"[(f’)e_B;w 3 To sum up, gaze
dynamics is obtained through the following steps:

1. Sample the behavioural state, based on the current
experience of the forager (up to time ¢, and summarised by
parameters £ (1))

s(t) ~ P(§(1)) (20)
2. Sample the patch index
p(t) ~ P(x(1)) (2D

with 7 (¢) the set of parameters depending on the landscape
state, and choose patch 73,5().

3. Set OU parameters )", BS"), W™ and sample the gaze
shift rp(t) — rp(¢’) via the OU process specified by Eq. 19,

which is explicitly written as
_ (st
xp(t) | xp(t) ~ N + e (ep(r) — ul), wi0),

_pGst)
VEW) | yE(t) ~ NS 4 e 05 () — )y, o,
22)

with w[()fj{) _ ngst)(l — 2 bgf.ﬁ,)&) and w[(’f;) _ y;st)(l _
o2 b;sj,)ét).

Regarding the OU parameters the drift terms b)(f’p) and bgs},)
are set proportional to the width of the patch p if s, = 1,
or proportional to the distance to the arriving patch (d,),
otherwise. The diffusion terms 1", 15" is set proportional
to the average distance between patches if s; = 0; equal to 1
otherwise.

Steps 1 and 2 instantiate the choice of the forager’s action
A(t) = {s(t), p(t)} at time ¢ and involve explicit calculation of

Egs. 20 and 21. These are discussed in the following Section.

B. SWITCHING BEHAVIOUR: SHOULD | STAY

OR SHOULD I GO?

Assume that the FoA is located at rg(¢), within the current
patch p, and, for simplicity, that gaze is involved in local
patch exploitation. The problem that the perceiver moment to
moment has to solve boils down to answering the question:
Should I stay or should I go?

In its essence, this is a foraging problem. Indeed, answer-
ing such question has long been a fundamental objective
in ecology in the endeavour of understanding how animals
effectively search for and exploit food patches [96], and,
in particular, how a patch cycle is handled. Consider the
environment consisting of a set of discrete patches: a cycle
starts when the animal leaves a patch to search for a new one;
once a patch has been found, the animal gains energy at a rate
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FIGURE 5. The prediction by MVT is that a poor patch should be
abandoned earlier than a rich patch. The time axis starts with a travel
time with no energy gain after which the forager finds a patch. The
shapes of the red and black gain curves, arising from resource
exploitation, represent the cumulative rewards of a “rich” and a “poor”
patch, respectively. For each curve, the osculation point of the tangent
defines the optimal patch residence time.

that decreases as the food becomes depleted; eventually the
animal leaves the patch and a new cycle starts.

A series of optimal foraging theories have been developed
in line with this objective (see Stephens [13], for a review).
By assuming that animal activities are optimized to maximize
the rate of net energy gain, optimal foraging theories provide
testable hypotheses as well as bases for interpreting complex
animal behaviour.

Charnov’s marginal value theorem (MVT) is central to
these theories [97]. The MVT proposes that foragers should
exploit patches in such a way as to maximize a net rate of
energy gain and predicts the optimal patch residence time. Let
G denote the net energy gain on a cycle, and let 7 denote the
time taken to complete a cycle. Simply put, the MVT states
that foragers should move from one patch to another when the
marginal rate of food intake (thus, of energy gain, 0G/dT)
drops to the long-term, average rate E of food gain across
many patches in the environment.

In this simple model, energy gain is a proxy for fitness and
it assumes that the foragers have knowledge about the envi-
ronment: namely, the quality of other patches and traveling
time between patches. Thus, MVT predicts that patch quality
should affect patch leaving. Accordingly, a poor patch, yield-
ing a lower energy gain, should be abandoned earlier. Clearly,
a forager that stays in a patch too long pays an opportunity
cost because it wastes time exploiting a depleted patch when
fresher patches remain unexploited.

In a stochastic environment, such as that we are dealing
with, where rewards are not deterministic and do not arrive
in a smooth flow, an optimal forager should reason about the
foraging task probabilistically, based on the potential value of
the patch with respect to the environment [79]. The optimal
leaving time is when the expected rate, not the observed rate,
drops below the average for the environment.

In stochastic foraging models, typically G and T are ran-
dom variables whose distribution depends on the behavioural
strategy adopted by the foraging animal. In particular, G is
a function of the time varying state U(t) experienced by
the forager up to time ¢, G(U(¢)); for instance, as detailed

VOLUME 8, 2020

later, the value U(t) = u, might indicate the number k of
items/preys “‘captured” by the forager. The mean net rate of
energetic gain, or mean reward rate, achieved by the animal
is defined as ratio of expectations E [G] /E [T].

In a stochastic perspective, it is convenient to consider the
instantaneous reward rate [79]

E[GU +480) | UQ@) =ul — Gw)
ot

that is the expected reward over the next interval of time
8t; such definition provides the stochastic counterpart of the
continuous energy intake rate dG /9T exploited by the MVT.

The general rule adopted by the forager, while scrutinising
a patch, is to leave the patch when

gu, 1) = O(1t), (24)

that is when the instantaneous reward rate drops below a
“quality” threshold Q, which, in general, depends on the
richness of the environment, the distance between patches and
possibly other factors (in actual foraging, predation risk, etc.).

There is a number of ways to make concrete the rule given
in Eq. 24. A method for calculating g(u, t) has been given in
Bayesian foraging approaches, e.g. [98], [99].

A straightforward method is the following. Assume that
one patch contains a discrete number of items, say m. Let n
be the items “‘consumed’ in the time #. Then, the experiential
state U is represented by the pair (1, t), G(U(t)) = G(n, t)
and g(u, t) = g(n, t). At time tw, spent within the patch, k =
m — n are the items remaining. When foragers search for food
items at random, the time required to find one item is assumed
to follow the exponential distribution

. (23

,1) = lim
g, 1) = lim,

P(T € [t,t + 8t]) = re Mdt = Ake ¥ dt, (25)

where the rate A = Ak depends on A, the searching efficiency
of the forager. The probability of capturing at least one item,
conditionally on the k remaining, is P(8t | k) = 1 — e =4,
It has been calculated [98], [99] that, if the initial distribu-
tion of the m, items in patch p (prior, with k = m,,) follows a

efp[) 77lp .
m[i" , then simply
p:

Poisson law, Pois(pop) =

gp(tw,) = ppe M. (26)

It can be seen from Eq. 26 and Eq. 25 that the foraging
efficiency parameter A controls the rate at which the for-
ager switches from one item to another and consequently
the instantaneous intake rate. Yet, it is known that indi-
viduals concentrate their foraging effort in areas with high
reward [100], increasing the handling time of each item,
thus increasing the expected time to next item within the
patch. In our case, this effect is accounted for by setting

= %, recalling that v,(¢) € [0, 1] is the value associated
to the patch p at time ¢, while ¢ is a positive constant defining
the baseline foraging efficiency.

Also, we set p as a function of the patch quality, namely,

Pp(t) = V(1) Pyle ™, 27)
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where |P,|, is the area of the patch, v, is the patch value, and
their product is weighted by e “% representing the visibility
of the patch, d), being the distance to patch p from the current
point of gaze, and « being a positive constant. In foraging
terms, the weighting factor accounts for the cost of relocating
between patches in foraging.

The expected average gain from the environment for all
patches g except the current one can be obtained by con-
sidering the potential intake rate at ry = 0, i.e., via Eq. 26

84(0) = p4, q #p:
1

00 =7

> (). (28)

qF#p

Rather than straightforwardly use the deterministic rule
given in Eq. 24, we allow the forager to perform a probabilis-
tic decision; namely the behavioural state decision s(¢) € 0, 1
is sampled following a Bernoulli law, Bern(s(t) | £(¢)). The
parameter £, denoting the prior probability of staying within
the patch is obtained using a logistic rule accounting for a
stochastic comparison on the difference g,(tw,) — Q, thus

1
£ = Plstay | 80, Q) = gy (29

s(t) ~ Bern(&(t)). (30)

By random sampling the behavioural state s(¢), most of the
time we are likely to get a state “‘sample” that is somewhere
close to the prior £(7). However, sometimes we will randomly
sample a decision in the tails of the distribution, which offers
an opportunity to the forager to tradeoff between the deter-
minism/trend set by rule given Eq. 24, and the dynamically
varying landscape.

Eventually, if s(#) = 0 is sampled, the choice of a patch is
the next step to be accomplished.

C. CHOOSING THE NEXT PATCH

Given the Np patches, denote 7, the probability of choosing,
indexed by patch p = 1, .-, Np, with Zp 7, = 1. Then,
the sample space of multiple choices can be considered to
be the set of 1-of-K encoded random vectors ¢ of dimension
K = Np having the property that exactly one element ¢, has
the value 1 and the others have the value 0. The particular
element having the value 1 indicates which patch has been
chosen. In other terms, ¢, follows a categorical (or generalised
Bernoulli) distribution, ¢ ~ Cat(x, Np) = [,", 7" Proba-
bilities # = (71 - - - my,) can be related to the above described
patch model as follows.

The Np patches can be considered at time ¢ as sources
of independent Poisson processes My(t) ~ Pois(pp(t))
with mean value function E[M,(1)] = p,(t). Then,
in virtue of the superposition theorem [101], the process
M) = Zgi | M, (1) is a Poisson process with expected value

N,
EIM0] = 3,7, pplt) = p(@).

Under such conditions, the coloring theorem
holds [102], and the vector (Mi(t)/S, ...,MNP/S), where

161642

S=M@®)+...+ My, follows a multinomial distribution

with parameters 7, = /;"T(f)).

When considering a single draw, the multinomial distri-
bution is nothing but the categorical distribution; thus, patch
choice can be performed by sampling, at any time ¢ the choice
vector

c~ Cat(my, - -

N,
_11[e®]”
’”NP)_E][p(r)} O

and by selecting patch P, based on index p such that ¢, = 1.
Eq. 31 together with Egs. 29, 30 completely specify
Egs. 21 and 20, respectively.

VI. SIMULATIONS AND RESULTS

A. METHODOLOGICAL FOREWORD

The rationale behind experiments is to figure out whether
simulated behaviours are characterised by statistical proper-
ties that are significantly close to those featured by human
subjects who have been eye-tracked while watching conver-
sational videos. In simple terms, any model can be considered
adequate if model-generated scan paths could have been gen-
erated by human observers (which we regard as samples of
the Real model) while attending to the same audio-visual
stimuli.

Consider for example Fig. 6. It summarises the essential
spatio-temporal features computed from scan paths that have
been sampled via the GazeDeploy procedure (Algorithm 1)
on one clip; these are compared to those of human observers
on the same clip. Notably, such results are by and large
representative of those obtained on the whole dataset.

The simulation has generated scan paths that prima facie
mimick human scan paths in terms of spatio-temporal statis-
tics. The actual saccade amplitude distribution exhibits a
multi modal shape, which is well replicated by the saccades
distribution obtained from model simulation (Figure 6b). The
model correctly favors small gaze shifts over large ones,
that are occasionally undertaken, as highlighted by the right-
skewed, long-tailed shape [103]. For what concerns the fixa-
tion duration (Fig. 6e), again, distributions from both real and
simulated data exhibit a right-skewed and heavy-tailed shape.
This is important, since in our model duration is closely
related to the modelling of patch giving up time. Apparently,
a high similarity can be noticed between saccades direction
distributions of real (Fig. 6¢) and simulated data (Fig. 6f).

Clearly, beyond the adequate behaviour of the model dis-
cernible from such qualitative results, the latter need to be
quantitatively substantiated. Are such similarities significant
from a statistical standpoint? Is the audio-visual information
effectively exploited? Could a different gaze control algo-
rithm provide comparable or even better results?

There are two critical aspects in answering such question.

The first relates to method comparison. Unfortunately a
handful of models have been proposed and are experimen-
tally ready for use (i.e., with released code) for predict-
ing gaze shift dynamics. They are referred to as saccadic

VOLUME 8, 2020



G. Boccignone et al.: On Gaze Deployment to Audio-Visual Cues of Social Interactions

IEEE Access

(a)

90°
Saccades Amplitude Distributions.
Real

Generated
}5\“} 5

1000 270°

(@

Duration Distributions
Generated
Real

1000 1500 2000 2500 270°

(e) ®

FIGURE 6. (a) Frame of video 010 with overlaid heatmap of real fixations. (b) Real (red) and Generated (blue) saccades amplitude distribution.
(c) Real saccades direction distribution. (d) Frame of video 010 with overlaid heatmap of generated fixations. (e) Real (red) and Generated (blue)

fixations duration distribution. (f) Generated saccades direction distribution.

models [104] and mostly conceived for processing static
image input [27], [54], [104]-[107]. Two methods are actu-
ally available for handling time-varying stimuli, which we
used in our experiment [56], [108].

The second aspect relates to the evaluation metrics. Unlike
to classic work on saliency estimation, where standard
metrics are available and widely adopted, here assessment
must necessarily involve scan path evaluation. There is a
lack of consensus about the most appropriate evaluation
metrics [109], [110]. In recent years, a number of measures
have been proposed, able to deal with the many hurdles of
scan path similarity (but for an in-depth review and dis-
cussion see [110]). In this work we adopt two well known
and state of the art methods: the ScanMatch [111] and the
MultiMatch [112], [113] metrics. ScanMatch is apt to pro-
vide an overall performance summary, whilst MultiMatch
specifically addresses the many dimensions of gaze dynam-
ics. The evaluation of metric results is subtle, thus we sup-
port it by addressing appropriate statistical analyses, a point
that is often neglected in computational modelling of visual
attention.

In this perspective, we switch to a larger dataset - with
respect to preliminary experiments reported in [73]-, in terms
of conversational episodes, number of participants in the
scene, and number of eye-tracked subjects.

B. STIMULI AND EYE-TRACKING DATA

The adopted dataset [17] consists of 65 one-shot conversation
scenes from YouTube and Youku, involving 1 to 27 different
faces for each scene. The duration of the videos is cut down to
be around 20 seconds, with a resolution of 1280 x 720 pixels
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at a frame rate of 25 fps. The dataset includes eye-tracking
recordings from 39 different participants (26 males and
13 females, ageing from 20 to 49), who were not aware
of the purpose of the experiment. The eye fixations posi-
tion and duration of the 39 subjects were recorded by a
Tobii X2-60 eye tracker at 60 Hz.

Ten subjects were randomly sampled out of the 39 and
their scan paths used to determine the free parameters of the
model described in Section V-B, namely the baseline foraging
efficiency ¢, the logistic growth rate 8 and the steepness of
the exponential determining the visibility of patches k. A grid
search maximising metric scores according to the procedure
described in the following Section VI-C yielded as optimal
values: ¢ = 3.5, 8 =20 and x = 18.

The remaining 29 subjects were used for evaluation.

C. EVALUATION PROTOCOL
We compare the scan paths simulated from a number of
model-based, ‘‘artificial”” observers to those recorded from
human observers. By considering different models, or vari-
ants of the same model, we simulate different groups of
observers. We address two experiments. The first (Sec. VI-D)
evaluates the behaviour of the GazeDeploy procedure (thus,
exploiting the gaze control strategy described in Algorithm 1)
by inhibiting modules accounting for different levels of preat-
tentive information. This provides a family of models, that are
ablated variants of what we name the Full model.

The second experiment (Sec. VI-E) compares the Full
model with other gaze control strategies.

In both experiments, the evaluation protocol is the follow-
ing. For each video:
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1) Compute MultiMatch and ScanMatch scores for each
possible pair of the 29 real observers (Real vs. Real).
2) For each model:

a) Generate gaze trajectories from artificial observers.

b) Parse/classify trajectories into scan paths (sac-
cades and fixations with the relative duration) via
the NSLR-HMM algorithm [114].

¢) Compute MultiMatch and ScanMatch scores for
each possible pair of real and 29 artificial scan
paths (Real vs. Model).

3) Return the average ScanMatch and MultiMatch scores
forReal vs.Real and Real vs.Model comparisons.

As to point 2b), note that (cfr. Fig. 3) the gaze position
sequence sampled by GazeDeploy (and its variants) can be
assimilated to gaze raw data (continuous gaze trajectories)
generated by eye-trackers. Thus, in order to follow a clas-
sic eye tracking analysis pipeline, the first step is to apply
an event detection algorithm to both simulated and actual
gaze trajectories so to derive the corresponding scan paths
(a sequence of fixations). We rely on the NSLR-HMM algo-
rithm described in [114].

For what concerns the metrics, ScanMatch divides a scan
path spatially and temporally into several bins and then
codes it to form a sequence of letters. Two scan paths are
thus encoded as two strings to be compared by maximising
the similarity score. This metric indicates the joint spatial,
temporal and sequential similarity between two scan paths,
higher ScanMatch score denoting a better matching. Com-
plementary, MultiMatch (MM) metrics computes five distinct
measures that capture the different scan path features: shape,
direction, length, position, and duration. Higher score of each
metric means better matching.

In what follows we treat each MultiMatch dimension as a
stand-alone score. Thus, the analysis uses six different scores:
the five obtained from the MultiMatch (MM) dimensions of
shape (MMgpqp.), direction (MMp;;,), length (MM.,), posi-
tion (MMp,s) and duration (MMp,,), plus the ScanMatch
score SM.

D. INFORMATION LEVEL EFFECTS: THE MODEL UNDER
THE KNIFE

A basic assumption of the proposed model (A3, Section III),
states that in a scene displaying conversations and social
interactions, attention is predominantly allocated to faces,
with higher relevance given to speakers.

If such premise holds, we expect that the ‘“ablation”
of model components accounting for face information
and specifically for speaker information would lead the
model-generated scan paths to significantly deviate, in a sta-
tistical sense, from human scan paths.

On the other hand, given that the availability of such
information is necessary for a human-like gaze deployment,
is it sufficient? To put the question straight: when attending
a conversational clip, do we actually need bottom-up infor-
mation/saliency for reliably generating gaze shifts, or is it
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redundant? This is a deceptively simple point that has been
overlooked, since by and large visual attention models give
for granted a central role for low-level salience.

In order to shed light on such questions we simulate gaze
data from the following models:

1) BU or Bottom-up: we prevent the model from the
computation of the audio-visual priority maps, thus
only considering low-level features in the preattentive
stage;

2) BU+ForNo Speaker: faces are considered, together
with BU features, but no distinction is made between
speakers and non-speakers;

3) F or Face model: only faces are considered, as in the
No Speaker model, but without BU features;

4) F+S model: a face and speaker model, without BU
features;

5) BU+F+S or Full: the model described in this article
where audio-visual patches account for low-level infor-
mation (BU), faces (F) and speakers (S).

In addition, a baseline Random model is adopted, too. This
simply generates random gaze shifts by sampling (x, y) fixa-
tion coordinates and relative duration from the uniform distri-
bution. Note that in such setting, only the Full and the F+S
models are explicitly accounting for audio information.

For each model we adopt the protocol described in
Section VI-C. Figure 7, depicts at a glance the empirical
distributions of the scores obtained in the ablation experi-
ments. A preliminary inspection shows that the Full and
F+S models give rise to distributions that are close to those
yielded by real subjects for all dimensions, with the exception
of the direction score MMp;;.

1) STATISTICAL ANALYSES

The similarity scores obtained from the six models intro-
duced above are used to assess whether or not a model
generates scan paths that significantly differ from those of
human observers and to gauge the size of such difference
(effect size). In the analyses that follow, scores obtained from
Real vs. Real comparison represent the gold standard; the
significance level of all statistical tests is @ = 0.05.

For each score, the normality of model distribu-
tions (groups) was assessed via the Shapiro-Wilk test for
normality with Bonferroni correction. All models exhibit
normal distributions for scores SM, MM;,, and MMp,;;
when MMgpape, MMpir and MMp,s scores were considered,
the null hypothesis of normality was rejected for at least one
of the models.

Then, for normally distributed scores the statistics adopted
to summarise each model were the empirical mean and stan-
dard deviation. The effect size for each model was measured
via Cohen’s d [115], based on differences between model
and Real means. Otherwise, we considered the median for
capturing the central tendency and the absolute deviation
from the median as the dispersion measure. In that case
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FIGURE 7. Score distributions for models considered in the ablation experiment.

TABLE 2. Information level effects: central tendencies for each score and model computed as mean (M) or median (MED) with associated dispersion
metrics (standard deviation, SD or median absolute deviation, MAD. Effect sizes are computed as the Cohen’s d or the Cliff's § between the given model

and real subjects.

[ [ M SD d Magnitude || [ [ MED MAD [ Magnitude ||
F+S 0.487 0.082 -0.127 negligible F+S 0974  0.006 -0.300 small
Full 0.481 0.067 -0.045 negligible Face 0971  0.007  -0.140 negligible
Face 0.430 0.088  0.650 medium Full 0.969 0.007 0.170 small
No Speaker 0.423 0.067 0.889 large No Speaker 0.965  0.006 0.391 medium
Bottom-Up 0352 0.071 1.955 large Bottom-Up 0.959  0.009 0.790 large
Random 0.146  0.012  8.140 large Random 0.880  0.010 1.000 large
[ Real [[ 0478 0.056 0 / | [ Real [[ 0.970  0.005 0 / |

(a) ScanMatch Score

(b) MultiMatch Shape

[ [ MED MAD o Magnitude || I [ M SD d Magnitude ||
F+S 0.722  0.022  0.283 small F+S 0964 0.010 0.116 negligible

Face 0.718 0.030 0.351 medium Full 0.960 0.011 0.462 small
Random 0.711 0.016 0.651 large Face 0.961 0.010 0.486 small
Full 0.707  0.024 0.574 large No_Speaker || 0.957 0.009 1.034 large
No Speaker 0.708 0.030 0.628 large Bottom-Up 0.945 0.010 2.186 large
Bottom-Up 0.680  0.024  0.862 large Random 0.816  0.026 7.726 large

[ Real [[ 0734 0.029 0 / | I Real [[ 0.965 0.007 0 / i

(c) MultiMatch Direction (d) MultiMatch Length

[ [ MED MAD [ Magnitude || [ [ M SD d Magnitude ||
F+S 0.878  0.048  0.093 negligible Full 0.480 0.024 0384 small
Full 0.869  0.044  0.205 small F+S 0.450  0.035 1.328 large
Face 0.841  0.040 0.459 medium Face 0.418 0.038  2.269 large
No Speaker 0.844 0.035 0.516 large No Speaker || 0.416  0.037 2.355 large
Bottom-Up 0.830 0.034 0.748 large Bottom-Up 0370 0.037  3.866 large
Random 0.745 0.012  1.000 large Random 0.262  0.021  10.603 large

[ Real [[ 0.885 0.038 0 / | [ Real [[ 0489 0.022 0 / i

(e) MultiMatch Position

the effect size for each model was computed via Cliff’s
delta [116].

The overall results are reported in Table 2. We follow
Cohen’s convention [115] considering effect magnitudes
small’ (d ~ 0.2), 'medium’ (d ~ 0.5), ’large’ (d ~ 0.8)
and negligible (d < 0.2). As to Cliff’s delta, we follow Hess
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(f) MultiMatch Duration

and Kromrey [117], by distinguishing ’small’ (§ ~ 0.147),
‘medium’ (§ ~ 0.33) and ’large’ (§ ~ 0.474) effect size; the
effect is negligible for 6 < 0.147.

We then performed homogeneity of variance tests. For
each score, when normality held, the Bartlett’s test was
employed to test homoscedasticity; otherwise, Levene’s test
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FIGURE 8. Information level effects: critical Difference (CD) diagrams of the post-hoc Nemenyi test (¢ = 0.05) for the ScanMatch score and each
MultiMatch score obtained by using different information levels obtained by ablation of components feeding the GazeDeploy strategy. Diagrams can
be read as follows: the difference between two models is significant if the gap between their ranks is larger than CD; there is a line between two
models if the rank gap between them is smaller than CD. Graphically, models that are not significantly different from one another are connected by a
black CD line. Friedman's test statistic (f) and p-value (p) are reported in brackets.

was adopted. Either Bartlett’s or Levene’s tests rejected the
null hypothesis of homogeneity of variances (p < 0.01, for
all scores).

The assessment of statistically significant differences
between models was performed as follows. Since neither
normality, nor equality of variances could be ensured, we
resorted to the well known Friedman Test (FT, [118], a non-
parametric variant of ANOVA), with Nemenyi [119] post-hoc
analysis of pairwise differences (similar to the Tukey test for
ANOVA). We tested the null hypothesis for each score that the
medians were equal between the 6 groups plus the Random
one.

For all scores, the FT rejected the null hypothesis
(» < 0.001, always, cfr. Fig. 8). Thus, for each score
at least one statistically significant difference between two
models exists. The Nemenyi’s post-hoc analysis was then
performed. The test compares each pair of groups in terms of
their difference in average ranks; if such difference exceeds
the critical difference CD, at the confidence level «, then
the two group are statistically different. Figure 8 reports
the FT outcomes (test statistics ¢ and p-value p) and, most
important, visualises post-hoc analysis results. The latter are
rendered in a compact, information-dense format by means of
the Critical Difference (CD) Diagram as proposed in [120].
CD Diagrams show the average rank of each model (higher
ranks meaning higher average scores); models whose dif-
ference in ranks does not exceed the CD, (@« = 0.05) are
joined by thick lines and cannot be considered significantly
different.

By first considering the ScanMatch metric, a clear ranking
is established. We can assume that there are no significant
differences within the following two groups: F+S, Real
and Full; Face and No_Speaker. All other differences
are significant. Taking into account the magnitude of the
effect, the difference between the Full model and Real
is negligible with a smaller magnitude than that of F+S.
The effect size grows to large for Face and No_Speaker.
The Bott om-Up model performs badly, albeit being signif-
icantly different from the Random model, which clearly has
the largest effect size.
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Together with the fact that when the BU component is
ablated from higher level models, the similarity performance
does not decrease, these results suggest that BU conspicuity
has a modest relevance, at least for the kind of conversational
clips we deal with.

Overall, it can be noted that the test does not support
any statistically significant difference between the scores of
Real subjects and the ones from the Full model. This is
true for the ScanMatch metric and for all the MultiMatch
metric dimensions except for the Direction score. A sim-
ilar behaviour is exhibited by the F+S model, the only
remarkable difference being that of the MultiMatch Dura-
tion metric. In this case, as opposed to the Full model a
significant difference with fixation duration of real subjects
is found. Significant differences arise when comparing real
scan paths with those generated from ablated models like
the Bottom-Up, No Speaker and Face and the huge
dissimilarity with the randomly generated eye movements
(Random model).

Taken together with the size effects reported in Table 2,
these results bear some consequences. First of all, they show
how the proposed (Full) model is able to mimic the human
behaviour of gaze deployment to audio-visual dynamic stim-
uli of social interactions. This is witnessed by differences
with the scores achieved by real subjects that are negligible in
their size and not statistically significant for almost all scores.
The only exception is the MultiMatch Direction dimension,
for which no clear association with the gold standard is found.
This is not surprising. Indeed the saccades direction is the
only feature that is not explicitly tackled in any aspect of the
proposed model, but only subsumed as a consequence of the
value based patch selection mechanism (Eq. 31).

Second, it is interesting to note how preventing models
from accounting for bottom-up information, does not results
in a significant loss of performance, according to most of the
adopted metrics, when comparing with the same models that
account for it. Indeed, if fixation duration seems to benefit
from the computation of low level cues, for other scores
like the ScanMatch and the MultiMatch Position, the abla-
tion of bottom-up information generated outcomes that are
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indistinguishable from a statistical standpoint. In light of
this result, it is clear how the role of bottom-up information
when dealing with videos of social interaction, should be
reappraised, since marginally contributing to the process of
attention allocation.

Overall, the only model that performs comparably with
humans is the Full model; indeed it is able to achieve
indistinguishable results w.r.t. humans on 5 out of the
6 adopted metrics. The fact that the models obtained after
the ablation of high level information (speaker/no-speaker,
face location) produce significantly lower scores, highlights
the causal effect of the presence of (talking) faces, or more
generally top down cues, on attention allocation. This fact has
been previously demonstrated in the psychological field [12],
but here it is made operational by means of a computational
model.

E. GAZE CONTROL EFFECTS

The esperiment reported in this section aimed at comparing
the GazeDeploy control strategy to those of models previ-
ously proposed in the literature that are 1) capable of handling
time-varying scenes and for which 2) a model implementation
is available. In particular we used the Ecological sampling
model (from now on Eco_Sampling)2 proposed in [56],
and the recent G-Eymo1l model? [108].

In anutshell, Eco_Samplingis astochastic model of eye
guidance, much like GazeDeploy. The gaze shift dynamics
is implemented in terms of a stochastic differential equation
driven by «-stable noise, and grounds its motivation in the
Lévy flight approaches to foraging displacements [15], [121].
Different from GazeDeploy it does not rely on a specific
account for patch handling and giving-up time. The preat-
tentive representation is formalised in terms of proto-objects,
roughly corresponding to patches. The overall control strat-
egy is based on a complexity measure of the perceived
time-varying scene. Complexity is computed from interest
points that are stochastically sampled from the proto-object
representation. Here, we feed the model with the same per-
ception of the world as inferred in the preattentive stage of the
proposed Full model, so as to focus on the performance of
the different gaze control strategies, rather than representation
issues.

The G-Eymo1 model generates gaze trajectories via differ-
ential equations of motion derived through variational laws
somehow related to mechanics. The focus of attention is
subject to a gravitational field. The distributed virtual mass
that drives eye movements is associated with the presence
of details and motion in the video. The inhibition of return
(IOR, [122]) mechanism is employed to avoid the model
being stuck in the same portions of the visual landscape.
Such virtual masses are proportional to the amount of details
and motion of the scene, defined as the magnitude of the

2Matlab implementation available at https://github.com/phuselab/
EcoSampling

3Python implementation available at https://github.com/dariozanca/
G-Eymol
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gradient and the magnitude of the optical flow, respectively.
Authors suggest that top-down information can considered
by defining object-based gravitational attractors. The orig-
inal implementation relies on the Haar cascade face detec-
tion [123], that allows faces as additional masses. This is the
G-Eymol version we adopt here. Further, in order to belay
a fair comparison, we set up a variant (G-Eymol_sp) that
takes into account the difference between speakers and non-
speakers. This is achieved by feeding the G-Eymol model
with speaker and non-speaker masses whose magnitude is
proportional to their value as defined in Eq. 8. The G-Eymo1
equation of motion are deterministic. However, the stochas-
ticity requested to sample different scan paths mimicking
different observers can be achieved by perturbing the initial
conditions of the equations. Eventually, we also consider the
Random model.

As in the previous experiment, for each model we adopted
the protocol described in Section VI-C. Figure 9, depicts at
a glance the empirical distributions of the scores obtained
by the 5 control models. Visual inspection of distributions
derived from the ScanMatch score suggests a higher simi-
larity of scan paths simulated from the Full model with
respect to the original G-Eymol; Eco_Sampling and,
surprisingly, G-Eymol_ sp achieve inferior performance.

As to MultiMatch, the behaviour of the Full model gives
rise to distributions that on the average are closer than other
models to those yielded by real subjects, the MM direction
score again being an exception, as in the previous experiment.
But here, remarkably, the Full model seems to outperform
the others with respect to the Duration dimension, a result that
was to be expected, because this dimension benefits from the
Bayesian stochastic foraging approach.

1) STATISTICAL ANALYSES

The statistical analysis of effects entailed by different gaze
control strategies, closely followed the one carried out in
Section VI-D1.

Scores SM, MMp;,, MMp,s and MMp,,, according to the
Shapiro-Wilk test failed to reject the hypothesis of normality,
as opposed to scores MMgpqpe and MM ;. The overall results
for central tendencies, dispersions and effect size are reported
in Table 3. For all scores, either Bartlett’s or Levene’s tests
rejected the hypothesis of homoscedasticity of distributions.
Thus, the FT with Nemenyi post-hoc analysis was performed.
The final results are reported in Figure 10.The quantitative
results overall support what surmised so far by visually
inspecting the score distributions.

Based on the post-hoc Nemenyi test, and considering the
ScanMatch metric, we assume that there are no significant
differences within the following three groups: Full, Real;
Eco_Sampling and G-Eymol_sp; G-Eymol_sp and
Random. All other differences are significant. The effect size
of such differences with respect to the gold standard of human
observers can be appreciated in Table 3.

The many facets of such overall model performance rank-
ing can be best weighed by considering the individual
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FIGURE 9. Score distributions for models considered in the gaze control experiment.

TABLE 3. Gaze control effects (notation follows Table 2).

[ [ M SD d Magnitude || [ [ MED MAD & Magnitude ||
Full 0.477  0.065 -0.044 negligible Eco_Sampling || 0985 0.003 -0.939 large
G-Eymol 0.393  0.098  1.031 large Full 0.968  0.007  0.171 small
Eco_Sampling 0.288 0.078 2.779 large G-Eymol_sp 0.957  0.008 0.820 large
G-Eymol_sp 0212  0.093  3.441 large G-Eymol 0960 0.008 0.714 large
Random 0.146  0.012  8.393 large Random 0.881  0.010 1.000 large

[ Real [[ 0475  0.054 0 / | [ Real [[ 0.969 0.006 0 / |

(a) ScanMatch Score (b) MultiMatch Shape

[ [ M SD d Magnitude || [ [ MED MAD & Magnitude ||
Random 0.711  0.015 1.345 large Eco_Sampling || 0.985 0.004 -0.913 large
Full 0.710  0.027 1.131 large Full 0960 0.011  0.220 small
Eco_Sampling || 0.663 0.036 2.424 large G-Eymol_sp 0.944  0.013 0.803 large
G-Eymol 0.626  0.064 2.343 large G-Eymol 0.944 0.012  0.810 large
G-Eymol_sp 0.610 0.053  3.065 large Random 0.820 0.024 1.000 large

[ Real [[ 0741 0.027 0 / i [ Real [[ 0964  0.009 0 / |

(c) MultiMatch Direction (d) MultiMatch Length

[ [ M SD d Magnitude || [ [ M SD d Magnitude ||
Eco_Sampling || 0.890 0.028  -0.285 small Full 0480 0.024  0.389 small
Full 0.868 0.039 0.364 small G-Eymol_sp 0.278 0.122 2411 large
G-Eymol 0.816 0.066  1.273 large Random 0.261  0.021 10.562 large
G-Eymol_sp 0.787  0.059 1.991 large G-Eymol 0.213  0.107 3.556 large
Random 0.744 0.014  5.549 large Eco_Sampling || 0.221 0.044  7.677 large

[ Real [[ 0.881 0.032 0 / | [ Real [[ 0489 0.022 0 / i

(e) MultiMatch Position

dimensions provided by MultiMatch scores. Remarkable is
the divergence with respect to duration: no significant differ-
ences are detected within the Fulland Real group, with a
small effect magnitude; all other models fall in one group,
together with the Random model, albeit distinguished by
different effect sizes (in this case, for instance G-Eymol_sp
performs better than the original G-Eymol).

The worst performance of all models is detectable on
the direction dimension. In this case there are no signifi-
cant differences within the following two groups: Full and
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(f) MultiMatch Duration

Random (but with smaller effect size for the first model);
Eco_Sampling, G-Eymol and G-Eymol_sp. By taking
into account the effect size, models in the second group
perform worse than random choice. In simple terms, arandom
choice of direction seems to provide a better opportunity than
any inappropriate strategy.

As to the position dimension there are no significant
differences within the following groups: Eco_Sampling
and Real;Full and Real; G-Eymol and G-Eymol_sp;
G-Eymol_sp and Random. The smallest effect size in
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FIGURE 10. Gaze control effects: CD Diagrams of the post-hoc Nemenyi test (¢ = 0.05) for MultiMatch (MM) and ScanMatch scores (cfr. Fig 8), obtained
by using different gaze control strategies (see text for explanation). Friedman'’s test statistic (f) and p-value (p) are reported in brackets.

difference from human subjects are provided by the Full
and Eco_Sampling models, the latter being the smallest.
This could be due to the fact that, all being equal, the sampling
mechanism of interest points from proto-objects/patches can
provide a fine-grained, shape-sensitive choice of the possible
gaze shift “landing”, as opposed to the use of the center of
mass attraction in GazeDeploy. Similarly, the high ranking
of Eco_Sampling is likely to stem from the core business
of the approach, namely the sophisticated modelling of gaze
shift amplitudes via Lévy flights; yet, GazeDeploy suffers
from a smaller effect size. Results achieved for the shape
score deserve similar considerations.

VIl. CONCLUSION

In our daily life we orient our attention and move our gaze
to gauge and collect information that includes social cues.
Conversational videos have the ecological virtue of display-
ing many such cues embedded in a dynamic, albeit controlled
situation. Hence, their analysis brings in fundamental ques-
tions on the attentive behaviour of a subject who scrutinises
and forages on other subjects involved in social interactions:
What defines a patch of audio-visual information valuable to
spot? How is gaze guided within and between patches?

Surprisingly the study of this problem is still in its
infancy in the field of computational modelling of visual
attention [32], [124], [125]. This state of affairs is in
striking contrast with the exponentially spreading body of
audio-visual data that convey social content and the need
of analysing the perceiver’s behaviour under such circum-
stances. Unwisely, a large amount of research effort in the last
two decades has by and large focused on salience estimation
from natural scenes, mostly neglecting the dynamics of actual
attention deployment, as instantiated by gaze shifts. The
shortcomings of this effort become dauntingly palpable when
dealing with scenes endowed with rich semantics, where gaze
sampling is affected by goals, rewards, personal social traits
and even expectations about future events.

Here we deliberately made a fresh step forward in such
direction. Gaze dynamics has been derived in a principled
way by reformulating attention deployment as a stochastic
foraging problem: the perceiver allocates gaze to audio-visual
patches much like a forager visits patches in the environment
to obtain nourishment. Our model is that of a stochastic for-
ager performing an Ornstein-Uhlenbeck walk by switching
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to the appropriate scale for engaging in either within-patch
exploitation and large between-patch relocations. The forag-
ing dynamics is thus driven by the audio-visual patches that
at any time appear relevant as to social value (rewarding).
Patches are sampled from spatially-based probabilistic prior-
ity maps. These, in turn, are derived by adapting to our frame-
work recent results gained by deep network techniques [126],
[127], so to account for the visual and auditory objects across
different analysis scales. Moment to moment, patch value
dynamics is inferred on a video clip, with dynamics parame-
ters being derived on the basis of eye-tracked gaze allocation
of a number of actual observers. Patch choice, handling and
leave are framed within an optimal Bayesian foraging setting.

Model simulation experiments on a publicly available
dataset of eye-tracked subjects and in-depth statistical anal-
yses of results so far achieved have been performed. These
show an overall statistically significant similarity between
scan paths of human observers and those generated by the
GazeDeploy procedure, which uses the full stack of informa-
tion levels.

The current model has limitations that pave the way
for future research. For instance, statistical analyses have
highlighted specific problems in gaze direction modelling.
This is a difficult hurdle to face. Some contextual rules
(e.g., the prevalence of horizontal scanning) that have been
advocated in the computer vision field [128] and in the
psychological literature [42], might fail in more ecological
conditions, out of the lab and in dynamic environments.
On the other hand, the ecology of animal movements is still
struggling on the point [15] in spite of an important body
of research laid down over years. One solution could be that
of a data-driven strategy [45], [50], albeit raising in turn the
problem of generalisability.

The model simulates fixation duration from first princi-
ples (Charnov’s theorem) and achieves significant perfor-
mance. Notwithstanding, it would be interesting to amend
the lack of an explicit account for actual patch exploitation
and within-patch item handling. One such example is facial
expression processing of people engaged in the conversa-
tions. Expression perception is one fundamental mean for
our understanding of and engagement in social interactions.
This aspect is intimately related to the notion of value pro-
posed in our work, which represents as a matter of fact a
doorway to intertwine attention, cognition and emotion [38].
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Indeed, several studies have reported the influence of emotion
on overt attention and emphasised the distinction between
internally and externally located emotional cues; meanwhile,
other studies have shown the reversed causal effect: attention
can also affect emotional responses [124], [129].

Despite of such limitations, the results of this study allow
to draw at least two general conclusions.

The first lies in that when we engage with the computa-
tional modelling of attention in multimodal scenarios with
rich semantics, we should not overstate the role of clas-
sic salience. Concentrating all research efforts by mostly
focussing on subtle improvements of such techniques (whose
statistical significance is at best questionable), under the
wishful assumption that these will be predictive of actual gaze
allocation, might not be the optimal strategy.

The second and artful lesson to learn, is that general
models of gaze deployment are appealing, indeed elegant
and explainable. Nevertheless, they should be general as to
the foundational principles and rationales, albeit not generic.
Caution suggests that the many dimensions of gaze dynamics
are to be specifically accounted for, if the similarity to human
gaze behaviour is the ultimate goal.

APPENDIX A

DERIVING FEATURE MAPS

The input stimuli S are represented by the time-varying visual
and audio streams, S(z) = {I(¢), A(®)},t = 1,---, T, where
I is the frame sequence and A the audio signal.

In order to derive a priority map, we need to specify which
features F are to be taken into account, given the context or
goal G, and the feature maps X, that is the topographically
organised maps that encode the joint occurrence of a specific
feature at a spatial location [28]. In a probabilistic setting,
a feature map Xy is a matrix of binary RVs x(r) denoting
whether feature f is present or not present at location L =
r [28]. It can be equivalently represented as a unique map
encoding the presence of different object dependent features
Fr 0. or a set of object-specific feature maps, i.e. X = {Xy}
(e.g., in the visual realm, a face map, a body map, etc.)

2) VISUAL FEATURES

From input I, two kinds of visual features are derived: generic
visual features Fy - such as edge, texture, colour, motion
features-, and object-dependent features, Fq,, . The latter are
selected by taking into account the classes of objects that
are likely to be relevant under the goal G. Internal goals are
biased towards social cues, thus the prominent visual objects
are faces, Oy = {face}. Both kinds of visual features, Fy and
Fo,, can be estimated in a feed-forward way.

Features Fy and Fg, need to be spatially organised in
feature maps. In the visual attention context, the distribution
P(X) can be considered the probabilistic counterpart of the
classic salience map [28]. Thus, X 1 represents the support
of a low-level saliency map, whilst Xy o, is the support
of an high-level, object-based saliency map. At this stage,
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the inferential step entails estimating the posteriors P(Xy | Fy)
and P(Xg, | Fo, ), whatever the technique adopted.

In order to derive the physical stimulus feature map Xj,
we rely on the spatio-temporal saliency method proposed
in [130] based on local regression kernel center/surround
features. It avoids specific optical flow processing for motion
detection and has the advantage of being insensitive to
possible camera motion. By assuming uniform prior on all
locations, the evidence from a location r of the frame is com-
puted via the likelihood P(I(¢) | x¢(r,t) = 1,F, rp(t)) =

ZL exp (%), where p(-) € [—1, 1] is the matrix

cosine similarity (see [130], for details) between center
and surround feature matrices Fy . and Fy; computed at
location r of frame I(¢).

The visual object-based feature map Xq, entails a
face detection step. The method proposed by Hu and
Ramanan [131] has shown, in our preliminary experiments,
to bear the highest performance. It relies on a feed-forward
deep network architecture for scale invariant detection. Start-
ing with an input frame I(¢), a coarse image pyramid (includ-
ing interpolation) is created. Then, the scaled input is fed
into a Convolutional Neural Network (CNN) to predict tem-
plate responses at every resolution. Non-maximum suppres-
sion (NMS) is applied at the original resolution to get the final
detection results. Their confidence value is used to assign the
probability P(Xo, | Fo,,Ly = r) of spotting face features
Fo, at Ly = r, according to a gaussian distribution located
on the face center modulated by detection confidence and face
size.

3) AUDIO AND AUDIO-VISUAL FEATURES
From input A, in our setting the objects of interest Q4 are
represented by speakers’ voices [12], and features Fy o, suit-
able to represent speech cues. In this work, we are not con-
sidering other audio sources (e.g, music). We are interested in
inferring the audio-visual topographic maps of speaker/non-
speakers, Xo,,, given the available faces in the scene and
speech features via the posterior distribution P(Xg,, |
Xo,,Xoy, Fo,,Fo,), where Xg,, = x(r) denotes whether
a speaker/non-speaker is present or not present at location r.
Technically, the features Fo, used to encode the speech
stream are the Mel-frequency cepstral coefficients (MFCC).
The audio feature map Xgq,(f) can be conceived as a
spectro-temporal structure computed from a suitable time
window of the audio stream, representing MFCC values for
each time step and each Mel frequency band. It is impor-
tant to note, that the problem of deriving the speaker/non-
speaker map X¢,, when multiple faces are present, is closely
related to the AV synchronisation problem [126]; namely,
that of inferring the correspondence between the video
and the speech streams, captured by the joint probability
PXo,,Xo0,, Xoy,Fo,, Fo,,Lav). The speaker’s face is
the one with the highest correlation between the audio and
the video feature streams, whilst a non-speaker should have
a correlation close to zero. It has been shown that the
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synchronisation method presented in [126] can be extended
to locate the speaker vs. non-speakers and to provide a suit-
able confidence value. The method relies on a two-stream
CNN architecture (SynchNet) that enables a joint embedding
between the sound and the face images. In particular we
use the Multi-View version [126], [127]), which allows the
speaker identification on profile faces and does not require
explicit lip detection. To such end, 13 Mel frequency bands
are used at each time step, where features Fo, (¢) are com-
puted at sampling rate for a 0.2-secs time-window of the
input signal A(z). The same time-window is used for the video
stream input.
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