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ABSTRACT Moving target detection is of vital importance to maritime security and maritime resource
protection. However, the detection of slow or weak targets is difficult based on traditional methods. A new
detectionmethod is proposed by using the different motion variations of radar moving target and sea clutter in
the range-Doppler spectrum sequence. The first step in implementing this method is the separation of moving
target and sea clutter by the low-rank representation, in which the target and clutter aremodeled as foreground
and background components. Subsequently, a sea clutter discriminator is constructed within the sea clutter
bandwidth to further remove the sea clutter (false alarms) that exists in the foreground. The proposed method
can reduce the sea clutter power while maintaining the target power and improve the detection rate of moving
targets, especially slow or weak targets. Data collected with airborne maritime surveillance radar in maritime
moving target indication (MMTI) mode are used to validate the performance of the proposed method. The
experimental results demonstrate that the improvement in the signal-to-clutter ratio (SCR) obtained with
the proposed method is better than that obtained with space-time adaptive processing (STAP, including
1DT-STAP, 3DT-STAP and sparse-STAP) and principal component pursuit (PCP) methods; additionally,
the figure of merit (FOM) of the proposed method is higher than that of the constant false alarm rate (CFAR)
and PCP method. Furthermore, the tracks of ships are obtained by applying a location constraint to the
foreground sequence.

INDEX TERMS Clutter suppression, low-rank representation, range-Doppler sequence, sea clutter discrim-
inator, target detection and tracking.

I. INTRODUCTION
Airborne maritime surveillance radar can achieve the long-
range, wide-range and multi-angle detection of moving
targets based on the periodic azimuth scanning of radar anten-
nas [1], which can expand the scope of maritime surveillance
without increasing the cruise time and frequency, and has
become an important means of maritime target detection [2].

At present, airborne maritime surveillance radar has
been widely used in both the military and civil fields
[3], [4]. Military operations mainly include anti-ship and
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anti-submarine over-the-horizon target indications, as well
as moving target detection for coastal areas and reef sur-
faces. The civil use mainly includes maritime search and
rescue, anti-smuggling, illegal immigration control, fishery
management and marine resource protection [5]. Since the
1960s, many airborne maritime surveillance radar systems
have been developed, such as the American AN/APY-10,
AN/ZPY-3 and SeaVue radar, the French OceanMaster radar,
Israel’s EL/M-2022A/H/U radar, and the European Seaspray
series AESA radar [6]–[9]. These radar systems all support
maritime moving target indication (MMTI) mode, which can
be applied for a wide range of maritime target detection and
tracking tasks [10]–[12].

160774
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9195-7606
https://orcid.org/0000-0002-7905-2262


C. Cao et al.: Clutter Suppression and Target Tracking by the Low-Rank Representation for Airborne Maritime Surveillance Radar

With the development of airborne maritime surveillance
systems, a series of methods have been proposed for maritime
moving target detection by utilizing the energy difference
between radar target and sea clutter. Among which, sea
clutter [13] is an echo that is backscattered from the ocean
surface after being irradiated by radar signals, which seri-
ously influence the maritime target detection for its high
power. Its existence seriously interferes with the detection
and tracking performance of radar targets on the sea surface
These methods mainly involve the combination of tradi-
tional moving target detection (MTD) and adaptive detection
technology, among which, space-time adaptive processing
(STAP) [14] and constant false alarm rate (CFAR) detec-
tion are classic methods of clutter suppression and target
detection, respectively, and many results have achieved the
detection of large-size and high-strength targets [15]–[18].
For example, Yu et al. [19] proposed an adaptive dual-
threshold sparse Fourier transform (ADT-SFT) algorithm,
and experiments demonstrated that the ADT-SFT algorithm
is more suitable for the clutter background and can obtain
a better detection performance than SFT and robust SFT.
Magraner et al. [20] presented a new technique based on cell-
averaging CFAR detection, and it achieved good detection
results. Wang et al. [21] proposed a novel subspace STAP
algorithm by combining the conventional method and aug-
mented subspace, and the numerical results demonstrated that
the proposed algorithm has a superior performance in a finite-
training-sample situation. Although much work has been
done, the detection of slow or weak targets is still difficult.
On the one hand, slow or weak targets are often submerged
in the sea clutter bandwidth due to the serious Doppler
broadening of sea clutter with the movement of aircraft and
ship targets, resulting in serious performance degradation for
the corresponding methods [22], [23]. On the other hand,
the slow target echo is located in the main sea clutter region of
the Doppler domain; hence, moving target indication (MTI)-
based sea clutter suppression reduces not only the energy
of sea clutter, but also the energy of the target echo [24],
resulting in a low detection rate for targets, especially weak
or slow targets. Furthermore, the traditional methods rely on
accurate statistical models of clutter and target echo. With
the improvement of radar resolution, sea clutter becomes
increasingly complex (non-stationary in time, heterogeneous
in space, and non-Gaussian in the probability distribution),
and the frequency of sea peaks increases; hence, it is difficult
to accurately model these processes, resulting in a high false
alarm.

To solve the problems of traditional methods, some new
methods have been proposed by researchers, such as methods
based on sea surface fractal characteristics, time-frequency
analysis and neural networks. The methods based on sea
surface fractal features are simple and high efficiency.
Li et al. [25] combined empirical mode decomposition and
the multifractal characteristics of sea clutter signals to detect
targets, and the results show that the proposed method is
better than the generalized Hurst exponent. Du [26] proposed

a novel method for detecting radar targets based on the fractal
characteristics of sea-surface scattering, in which the frac-
tional Brownianmotionmodel is used. The experiments show
that the method is reliable and can improve the accuracy of
detection. However, the fractal characteristics of a sea clutter
time series only exist in a certain time interval, which varies
with the change of radar parameters, sea state and polariza-
tion. When the observation time is short, the performance of
the detector will seriously decline [27]. For the method based
on time-frequency analysis, information can be extracted
from the time domain and frequency domain at the same time
by appropriate time-frequency transform. To improve the
detection rate of sea-surface targets, Shi and Shui [28] utilized
the time-frequency difference of targets and sea clutter to
improve the detection rate in integration time of the order
of seconds. Shui et al. [29] proposed a new range-spread
target detection scheme exploiting the image features of cross
time-frequency distribution of a pair of adjacent received
signals. The proposed algorithm is verified by using raw radar
data and outperforms the conventional detection methods.
However, the contradiction between the temporal resolution
and frequency resolution results in many challenges in terms
of long-range target detection [30], [31]. By using big data
to train neural network detectors, the method based on neu-
ral networks can extract multiple potential features, thus
overcoming the problem of excessive human intervention.
Wang et al. [32] constructed a convolutional neural network
(CNN) detector for radar target detection, and the CNNdetec-
tor has a better performance than the CFAR detector when the
SNR of the target is large. Liu et al. [33] proposed a novel
deep convolutional neural network (CNN)-based method for
the MTI (CNN-MTI), and the simulation results demon-
strated the validity and the robustness of the CNN-MTI in
a non-homogeneous and low SCR environment. However,
the design of the detector depends on both the samples of
target and clutter, and the number of sea clutter samples
is generally far greater than that of target samples; hence,
the imbalance between target and clutter samples decreases
the detector capacity [34].

Overall, although the existing methods mentioned above
have achieved good detection results in some specific envi-
ronments, they are unable to self-adapt to changes in the
environment. With the effects of the radar resolution, wind,
wave and current, as well as the incidence angle, the existing
methods have poor robustness, making it difficult to detect
slow or weak targets. Therefore, newmethods for suppressing
sea clutter and detecting moving targets must be urgently
developed.

In recent years, methods based on the low-rank and
sparse matrix separation is developed. The low-rank and
sparse matrix separation has been successfully applied in
many fields, such as image noise reduction [35], keyword
extraction [36], image alignment [37], clutter suppression of
wall-through radars [38] and target detection [4]. Specially,
Yan et al [4] presented a novel approach for extracting
moving targets by using the multi-channel radar data based
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on the method of principal component pursuit (PCP) [39],
the multi-channel radar system has good spatial consistency,
but the system complexity is high and the cost is expensive.
In this paper, based on the method of DECOLOR (DEtecting
ContiguousOutliers in the LOw-rankRepresentation) in [40],
a method of sea clutter suppression and moving target track-
ing with the low-rank representation is proposed by using the
different motion behavior of the target and clutter in range-
Doppler spectrum sequence. The proposed method is appli-
cable to common airborne wide area surveillance radar and
can reduce the sea clutter power while maintaining the target
power, then subsequently improve the detection performance
of moving targets, especially for slow or weak targets.

The structure of this paper is as follows. Section II
describes the proposed method in detail. Section III presents
the application of the proposed method to airborne maritime
surveillance radar, including an introduction of experimental
data, the performance of sea clutter suppression and target
detection, and the result of the target tracking. Section IV is
the conclusion.

II. METHOD
This section discusses the details of the proposed method
for clutter suppression and target detection. By utilizing the
different motion characteristics of target and clutter in a
range-Doppler spectrum sequence, including the range and
velocity (radial Doppler velocity and the variation in the
velocity), the separation between the radar target and sea clut-
ter can be represented as a problem of detecting contiguous

outliers in the low-rank representation. In this case, the radar
target can be modeled as the foreground and sea clutter
as the background, hence, the stationary sea clutter is sup-
pressed. Considering that part of the background energy (sea
clutter) is leaked into the foreground (target), a sea clutter
discriminator is constructed to remove the sea clutter from
the foreground by defining the foreground and background
frequencies. Therefore, the locations and tracks of targets are
obtained. The framework of this method is shown in Fig. 1,
including sea clutter suppression, target detection and target
tracking with the low-rank representation.

A. LOW-RANK REPRESENTATION IN RADAR
Considering the low-rank and sparse characteristics of sea
clutter and targets in the range-Doppler spectrum sequence,
sea clutter and targets can be separated by utilizing their
different motion behaviors. Consequently, radar target is
modeled as the foreground and sea clutter is modeled as the
background in the range-Doppler sequence.

1) RANGE-DOPPLER SPECTRUM SEQUENCE GENERATION
The 3D geometry of the airborne maritime surveillance radar
is shown in Fig. 2. The plane velocity is V and its altitude
is H . The X -axis is parallel to the direction of V , and the
Y -axis is perpendicular to the X -axis. Assuming that a point P
is located on the ground, the azimuth angle is θ (the fuselage
is positive to the right, and negative to the left), the pitch-
ing angle is ϕ, and the initial slant distance is R1. As the
plane flies, the antenna continuously scanned periodically to
achieve a wide surveillance range.

FIGURE 1. The framework of the proposed method.
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FIGURE 2. Geometry of the airborne maritime surveillance radar. (a) 3D geometry of radar. (b) Periodic scanning of radar antenna.

The transmitted signal is assumed to be a linear frequency-
modulated (LFM) signal

E(τ ) = rect(
τ

Tp
) exp[j2π(fcτ +

η

2
τ 2)] (1)

where rect (·) is the unit rectangular function, τ denotes
the fast time, Tp denotes the pulse width, fc is the carrier
frequency, and η is the chirp rate. The returned signal is

S ′(τ, t) = σ · rect(τ −
2R(t)
c

/
Tp)

· exp{j2π[fc(τ −
2R(t)
c

)+
η

2
(τ −

2R(t)
c

)2]} (2)

where t denotes the slow time, σ is the function of the
backward scattering coefficient, and c is the velocity of light.
According to the 3D geometry of radar detection,

the instantaneous slant range between the scattering center
and the radar can be written as

R(t) ≈ R1 − Vt cos θ cosϕ (3)

The Doppler centroid frequency is given as

fd =
2V cos θ cosϕ

λ
(4)

where λ is the wavelength. Assuming that θ0 is the center
azimuth angle of the radar beam, and1θ is the 3 dB azimuth
beam width. The Doppler bandwidth can be calculated as

1fd =

∣∣∣∣fd (θ0 − 1θ2 )−fd (θ0+
1θ

2
)

∣∣∣∣ = 2V sin θ0 cosϕ
λ

1θ

(5)

After range compression and range cell migration correc-
tion (RCMC) [41], [42], the received signal becomes

S ′′(τ, t) = σ · rect(
t
Ta

) sin c[B1(τ−
2R1
c

)] exp(−j4π
R(t)
λ

)

(6)

where Ta = N0tr is the coherent processing interval (CPI),
tr is the pulse repetition interval (PRI), and N0 is the number
of pulses in one CPI. The symbol B1 represents the band-
width of the transmitted signal. By using the Fourier trans-
form (FFT) for the slow time t, the range-Doppler spectrum
is obtained as

x(τ, f ) = FFT (S ′′(τ, t)) (7)

where f is the Doppler frequency.
As shown in Fig. 3, the same area on the sea surface will be

scanned by the radar antenna in multiple periods. Combined
with radar beam pointing, velocity, latitude and longitude of
airplane and slant range, the latitude and longitude of the
four corners of each range-Doppler image can be calculated.
The scanning velocity of antenna is fast on the wide sea
surface area; hence the overlap between adjacent scan periods
is very high, we try to keep the latitude and longitude of the
four corners of each image in the range-Doppler sequence
same, which can ensure the consistency of different images.
Although not strictly accurate, the high overlap and the
continuous Doppler spectrum characteristic ensure the low-
rank property of the background. Furthermore, sea clutter
changes slowly on wide sea surface area. Therefore, the error
has very little effect on the subsequent detection, which is
also demonstrated by the results in section III B. There-
fore, for a certain area on the sea surface, the corresponding
range-Doppler spectrum can be extracted as the spectrum
sequence

X (r, d, n) = [x1(τ, f ), x2(τ, f ) . . . xN(τ, f )] (8)

where r, d and n represent the range bin, the Doppler bin
and the sequence number, respectively. If the number of
range bins is R0, the number of Doppler bins is D0, and
the sequence number is N , so we have X ∈ <Q×N and
Q = R0 × D0.
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FIGURE 3. The generation of range-Doppler spectrum sequence from raw radar echo.

2) LOW-RANK REPRESENTATION OF SEA CLUTTER
In a short period, the sea clutter in the same region changes
on a small scale and has low-rank characteristics, while the
number of moving targets is sparse on a large sea area. In this
section, sea clutter and targets are modeled based on the char-
acteristics of low-rank and sparse, respectively. The objective
function is constructed to obtain the clutter background and
target foreground by optimizing the solution.

Assuming that X = [x1, x2, . . . , xN] ∈ <Q×N represents a
range-Doppler spectrum sequence with N frames, xn ∈ <Q

denotes the nth frame, and the qth pixel of frame n is denoted
as qn. B = [B1,B2, . . . ,BN] ∈ <Q×N represents the corre-
sponding background, and S = [S1, S2, . . . , SN] ∈ {0, 1}Q×N

is a binary matrix denoting the foreground support.

Sqn =

{
0, if qn is background
1, if qn is foreground

(9)

PS(X) represents the orthogonal projection of a matrix X onto
the linear space of matrices supported by S,

pS(X )(q, n) =

{
0, Sqn = 0
Xqn, Sqn = 1

(10)

and pS⊥ (X ) is its complementary projection. Then, we have
pS(X )+ pS⊥ (X ) = X
In the range-Doppler spectrum sequence, we model radar

targets as the foreground and sea clutter as the background.
Background is relatively fixed among the produced spectrum
sequence, which means that they are highly correlated among
different frames, forming a low-rank matrix B. The constraint
on B can be expressed as

rank(B) ≤ K (11)

where K is a constant that is predefined, and reflects the
complexity of the background model.

Simultaneously, the foreground areas are defined as radar
targets that move differently from the background, and the
targets act as outliers in the low-rank representation. The
binary states of entries in the foreground support S can be
modeled by a Markov random field [43]. Consider a graph
G = (ν, ε), where ν is the set of vertices denoting all Q× N
pixels in the sequence and ε is the set of edges connecting
spatially or temporally neighboring pixels. Let h be the size

of the edge set and y = Q × N be the size of the vertex set.
The node-edge incidence matrix ofG is a h×ymatrix, and the
(i, j)th entry of the incidence matrix A is defined as follows:

A(i, j)

=

{
1 , if vj equals one of the endpoints of εi
0 , if vj does not equal one of the endpoints of εi

(12)

Assuming that we have no additional prior knowledge about
the locations of objects, the energy of S is given by the Ising
model [43] as

β
∑
qn∈ν

Sqn + γ
∑

(qn,pm)∈ε

∣∣Sqn − Spm∣∣ (13)

where β > 0 represents the potential of Sqn being 0 or 1,
and γ > 0 controls the strength of dependence between Sqn
and Spm. Finally, we consider the signal model that describes
the formation of X . On the one hand, in the foreground,
Sqn = 1, Xqn equals to the foreground intensity, and Xqn
is not constrained. On the other hand, in the background,
Sqn = 0 andXqn = Bqn+µqn, whereµqn denotes independent
and identically distributed Gaussian noise. Thus, Bqn should
provide the best fit of Xqn in the least squares sense in this
case.

By combining the above background, foreground and sig-
nal models, the objective function for estimating B and S is
given by

min
B,Sqn∈{0,1}

1
2

∑
qn:Sqn=0

(Xqn − Bqn)2

+β
∑
qn∈ν

Sqn + γ
∑

(qn,pm)∈ε

∣∣Sqn − Spm∣∣
s.t. rank(B) < K (14)

To make (14) tractable, the rank operator associated with B
is relaxed with the kernel norm [44]. By rewriting (14) in the
dual form and with matrix operators, we obtain the following
problem:

min
B,Sqn∈{0,1}

1
2

∥∥pS⊥ (X − B)∥∥ 2
F + α ‖B‖∗ + β ‖S‖1

+ γ ‖A · vec(S)‖1 (15)
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where | · |F is the Frobenius norm, | · |∗· is the nuclear norm,
and | · |1· is the `1 norm. A is the node-edge incidence matrix
of G, and vec represents the vectorization of matrix S. The
parameter α > 0 is related to the low-rank background K .
The parameters α, β, and γ represent the weights of the
low-rank background, sparse foreground, and smooth fore-
ground. To minimize the function, these parameters should
be adjusted properly.

3) ALGORITHM
The objective function defined in (15) is nonconvex and it
includes both continuous and discrete variables. We adopt an
alternating algorithm that separates the energy minimization
over B and S into two steps. To estimate the support Ŝ,
the minimization in (15) over B turns out to be the matrix
completion problem [45]:

min
B

1
2

∥∥pŜ⊥ (X − B)∥∥ 2
F + α ‖B‖∗ (16)

The optimal B can be computed efficiently by the
SOFT-IMPUTE algorithm [45], which makes use of the fol-
lowing lemma [46]:
Lemma 1: Given a matrix Z , the solution to the optimiza-

tion problem

min
I

1
2
‖Z − I‖ 2F + ω ‖I‖∗ (17)

is given by Î = 2ω(Z ), where 2ω is the singular value
threshold

2ω(Z ) = U
∑

ω
V T (18)

where
∑
ω = diag[(d1 − ω)+, . . . , (dr − ω)+], U

∑
V T is

the SVD of Z ,
∑
= diag[d1, . . . , dr], and ξ+ = max(ξ, 0).

With Lemma 1, the optimal solution can be obtained by
iteratively using

B̂← 2α(pŜ⊥(X )+ pŜ (B̂)) (19)

with arbitrarily initialized B.
To minimize the energy in (15) over S given the low-rank

matrix and the energy can be described as

1
2

∥∥∥pS⊥ (X − B̂)∥∥∥ 2
F + β ‖S‖1 + γ ‖A · vec(S)‖1

=

∑
i,j

(β −
1
2
(Xij − B̂ij)2)Sij + γ ‖A · vec(S)‖1

+
1
2

∑
ij
(Xij − B̂ij)2 (20)

The above mentioned energy is in the standard form of the
first-order MRFs with binary labels, which can be solved
exactly using graph cuts [47], [48].

For details about the estimation, we refer to [40] about the
selection of the parameters α, β, and γ . Specifically, α is
initialized to be the second largest singular value of X and is
reduced by a factor η1 = 1/

√
2 until rank(B) > K . A similar

procedure is followed for β, starting at a relatively large value

and then decreasing by a factor of η2 = 1
/
2 after each

iteration until β reaches 4.5σ̂ 2, where σ̂ 2 is the estimated
noise level calculated from the variance of X − B. Overall,
only two parameters, K and γ , need to be selected. The
optimization algorithm is empirically configured by setting
K =

⌊√
N
⌋
and γ = 5β, where bc means the lower integer

part.
All the steps involved in solving the optimal model with

adaptive parameter tuning are summarized in Algorithm 1.

Algorithm 1 Separating Targets and Sea Clutter by the
Low-Rank Method
1. Input : X = [x1, x2, . . . , xN]
2. Initialize : B̂← X , Ŝ ← 0, α, β.
3. Output : B̂, Ŝ
4. Repeat
5. B̂← 2α(pŜ⊥ (X )+ pŜ(B̂));
6. until convergence
7. if rank(B̂) ≤ K then
8. α← η1α;

9. go to step3;
10. end if
11. estimate σ̂ ;
12. β̂ ← max(η2β, 4.5σ̂ 2);
13. Ŝ ← argminS

∑
ij
(β− 1

2 (Iij−B̂ij)
2)Sij+γ ‖A vec(S)‖1

14. until convergence

B. CLUTTER REMOVAL FOR TARGET DETECTION
The low-rank representation mentioned in section A is used
to separate the target (foreground) from the sea clutter (back-
ground), which can suppress the sea clutter of radar to
improve the signal-to-clutter ratio (SCR). However, consider-
ing the influence of wind, wave and current, the sea surface is
time-varying within a certain range, causing part of the back-
ground to be separated into the foreground. In this case, clut-
ter and slow targets are difficult to distinguish because they
are all around zero Doppler values. In this section, a sea clut-
ter discriminator is constructed by defining the background
frequency to further remove the clutter in the foreground,
so as to suppress false alarm and improve detection rate.

1) CLUTTER REMOVAL VIA THE CLUTTER DISCRIMINATOR
Assuming that the foreground frequency and background
frequency are defined as the sum of the foreground and
background frame sequences, respectively, which are denoted
as FS and FB

FS (r, d) =
N∑
i=1

Si(r, d)Xi(r, d) (21)

FB(r, d) =
N∑
i=1

Bi(r, d) (22)

where r = 1 . . .R0 and d = 1 . . .D0 represent the range bin
and Doppler bin, respectively. For pixels in the foreground
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frequency, the larger the value, the more likely it is to be
a target. Similarly to the background frequency, the larger
value means a greater probability that the pixel is sea clutter.
Therefore, within the Doppler bandwidth of sea clutter, for
any pixel point g ∈ FB, if g ≥ fT, g represents sea clutter;
otherwise, g does not represent sea clutter, where fT is the
predefined threshold

g =

{
1, g ≥ fT
0, g < fT ,

g ∈ FB (23)

By traversing all the pixels of the background frequency
according to (23), the sea clutter discriminator of the
range-Doppler spectrum sequence can be obtained asMd. The
key to obtain the discriminator is the value of fT, if the value
of fT is too large, the amount of clutter considered by the sea
clutter discriminator will be too small, which can lead to false
alarms; conversely, if the value of fT is too small, the amount
of clutter considered by the sea clutter discriminator will be
too large, which can lead to missed detections. Therefore, the
value of fT directly affects the detection performance, and
the specific parameter selection process will be discussed in
section III C.

The sea clutter discriminator is used to eliminate the sea
clutter in the foreground frequency, and the result is expressed
as Fopt

Fopt = FS (r, d)− FS (r, d) ·Md (24)

∀l ∈ Fopt , if (Fopt)r,d > 0, the pixel l represents a target;
otherwise, l does not represent a target. Hence, the moving
targets in each frame are shown as

Yi = SiFopt, i = 1 . . .N (25)

where Yi is the ith foreground after clutter elimination.

2) RELOCATION AND VELOCITY INVERSION OF TARGET
Since a moving target has a radial velocity, the moving target
will have an ‘‘extra’’ frequency shift to deviate from its real
position in the range-Doppler spectrum; hence, the detected
moving target needs to be repositioned. In this section, based
on dual channel radar, targets are repositioned with the
phase-comparison method [49]. By using the center azimuth
of radar beam θ0 and the beam width 1θ , the azimuth of the
moving target is expressed as θ0 + 1θ ′(−1θ

/
2 ≤ 1θ ′ ≤

1θ
/
2). Assuming that the target signals received by the

sum channel and difference channel of radar are e1 and e2,
respectively, the coherent phase difference is e12 = e1 · e∗2.
Thus, 1θ ′ is

1θ ′ =
λ arg[e12]

2πd0 sin θ0 cosϕ
(26)

where d0 is the length of radar baseline. The true azimuth of
the target is obtained as θ0+1θ ′. Combined with the aircraft
inertial navigation information and the position information
of the target in the range-Doppler spectrum, the target is
accurately located in the actual scene.

The radial velocity vr of the target is retrieved by using the
Doppler frequency fd of the target

vr =
λfd
2

(27)

After the velocity of the target is obtained, the target is
tracked based on the position, velocity and time information.

III. APPLICATION TO AIRBORNE MARITIME
SURVEILLANCE RADAR
The method developed based on the low rank representation
is applied to the measured airborne radar data, and the feasi-
bility of this method is verified at different azimuth angles.
First, the acquisition of experimental data is introduced.
Then, the sea clutter characteristics of airborne radar data are
analyzed, and the necessity of separating sea clutter from a
target is illustrated. Finally, the sea clutter discriminator is
used to further remove the clutter in the foreground, and the
positions and tracks of targets are obtained.

A. EXPERIMENTAL DATA
Experimental data were collected from the sea area near
Guangdong, and the latitude and longitude range of the exper-
imental area is shown in the red box in Fig. 4.

FIGURE 4. The location of the experimental area. The range of the
latitude and longitude is shown in the red box.

The 3D geometry of the airborne maritime surveillance
radar is shown in Fig. 2. The radar antenna provided con-
tinuous periodic scanning during the flight, and the inertial
navigation system was used to record the flight attitude, thus
achieving sector scanningwithin the range of [−120◦−120◦].
The settings of the radar parameters are shown in Table 1. The
pitch angle of the radar beam center was 84.7◦, which reflects
a small grazing angle observation.

Furthermore, synchronized automatic identification sys-
tem (AIS) data were obtained in the experiment to provide
a reference for the analysis of the ship detection perfor-
mance. As shown in Fig. 5, a total of 1716 ships were
obtained through AIS data analysis, among which, fishing
boats accounted for approximately half of all boats, followed
by cargos ships and tankers; more than half of the ships were
less than 50 m and 10 m in length and width, respectively.
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TABLE 1. The parameters of the airborne maritime surveillance radar.

B. LOW-RANK APPROACH APPLIED TO SEA CLUTTER
SUPPRESSION
For clutter suppression, the necessity of separating sea clutter
and targets is analyzed. Then, the performance of the pro-
posed method in sea clutter suppression is compared with
that of space-time adaptive processing (STAP) and principal
component pursuit (PCP), and the results indicate that the sea
clutter suppression performance of low-rank representation is
optimal. Moreover, the selection of parameters is analyzed.

1) SEA CLUTTER ANALYSIS
Suppose that a plane flies in a certain direction, considering
that the flight distance of the plane between adjacent periods
is far less than the slant distance; therefore, for the same loca-
tion, the variation in the radar azimuth angle of adjacent peri-
ods is very small. In this case, the sequences can be formed
by the range-Doppler spectra at the same radar azimuth. Xθ is
defined as the range-Doppler spectrum sequence correspond-
ing to the radar azimuth angle θ . The sampling number of
the Doppler frequency corresponds to 128, and that value is
adopted in this paper.

The data shown in Fig. 6(a) is the N/2 frame of a range-
Doppler spectrum sequence with N = 40 and θ = 4.2◦

that was collected from 10:30 to 10:35 on November 24,
2018. Sea clutter is mainly located in the vicinity of the zero
Doppler frequency, which is related to the slow changes in
sea clutter, forming a small Doppler frequency shift. The red
boxes in Fig. 6(a) contain three targets with r1 = 293, r2 =
2493 and r3 = 3913. Target 3 is outside the sea clutter
bandwidth, while target 1 and target 2 are located near the
zero Doppler spectrum, which is difficult to separate from
sea clutter. Fig. 6 (b) compares the power of the targets and
sea clutter. The solid lines represent the power of targets, the
dashed lines represent the average power of sea clutter around
the target, and sea clutter 1-3 corresponds to the targets 1-3,
respectively. The peak power of target 1 is 2.2dB higher than
the average power of sea clutter, and the differences in the
powers of targets 2 and 3 are 2.21dB and 9.16dB, respectively.
This result indicates that the power of target 3 is significantly
greater than that of the surrounding sea clutter, and can be
detected easily, while targets 1 and 2 are submerged in the sea

FIGURE 5. Type, length and width information of ships extracted from AIS
data. (a) Statistical distribution of the ship type. (b) Statistical distribution
of the ship length. (c) Statistical distribution of the ship width.

clutter, which makes them difficult for traditional methods to
detect.

2) PERFORMANCE OF SEA CLUTTER SUPPRESSION
Based on the range-Doppler spectrum sequence generated
at the corresponding azimuth angle, the effectiveness of the
low-rank representation method for separating targets and sea
clutter is demonstrated. Taking θ = 1.85◦ as an example,
the range-Doppler spectrum sequence is expressed as Xθ .
Fig. 7 shows the result of the N /2 frame with N = 32;
(a)-(c) are the input range-Doppler data, background (sea
clutter) and foreground (target), respectively. In comparison
with the input range-Doppler data, the shape of the sea clutter
spectrum in the background is obvious, and the non-clutter
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FIGURE 6. Sea clutter analysis of airborne maritime surveillance radar
with θ = 4.2◦, N/2 frame, and N = 40. (a) The power of the N/2 frame of
the range-Doppler spectrum. (b) The power comparison of targets and
sea clutter.

area is very clean; moving targets are all separated into the
foreground. Note that some sea clutter exists around the zero
Doppler frequency in the foreground, which is due to the

dynamic changes of the sea surface, as previously mentioned.
This clutter will be further removed in section C .
Experiments were performed using real radar data to val-

idate the superiority of the proposed method in clutter sup-
pression. The low-rankmethodwas comparedwith STAP and
PCP. STAP [24], [50] is a classical clutter suppressionmethod
that combines spatial and temporal dimensions for filtering.
Similar to the proposed method, targets and sea clutter are
separated by sparse and low-rank matrix decomposition in
PCP [4], [39]. The proposed method models the foreground
using Markov Random Field, and the accuracy of detecting
contiguous outliers is better than PCP (without consider-
ing Markov property). PCP uses the convex relaxation by
replacing rank (B) with |B|∗ and |S|0 with |S|1, while the
proposed method only relaxes the rank penalty and keeps
the l0-penalty on S to preserve the robustness to outliers.
Therefore, the proposed method is more applicable than PCP
to target detection for airborne radar in scanning mode.

The results of the STAP (1DT-STAP, 3DT-STAP and
sparse-STAP), PCP and low-rank methods are shown in
Fig. 8, (a) represents the raw range-Doppler data in dB (the
N /2 frame with N = 32); (b)-(d) represent the results of
1DT-STAP, 3DT-STAP and sparse-STAP, respectively;
(e) illustrates the result of the PCP method; (f) represents the
result of the low-rank representation method. These methods
all suppressed sea clutter to some degree and improved
the SCR, making them useful for the detection of ship
targets. Among these methods, the sea clutter suppression
performance based on the low-rank representation method
is obviously better than that of other methods. Two targets
(range cells 284 and 3912) are marked with red boxes.
Fig. 9(a)-(b) shows the performance of the five methods
for range cells 284 and 3912; notably, the power of clutter
decreases in all five methods. However, for the STAP and
PCP methods, the power of both sea clutter and ship targets
decreases, resulting in the power loss of targets. The sea clut-
ter suppression method based on the low-rank representation
developed in this paper can reduce the sea clutter power while
maintaining the target power, thus significantly improving the
contrast between ship targets and sea clutter, and enhancing
the detection ability of ship targets.

FIGURE 7. Background and foreground extraction based on the low-rank representation. (a) Raw spectrum XN/2 in dB. (b) Low-rank background BN/2.
(c) Foreground SN/2.

160782 VOLUME 8, 2020



C. Cao et al.: Clutter Suppression and Target Tracking by the Low-Rank Representation for Airborne Maritime Surveillance Radar

FIGURE 8. Clutter suppression results of the five methods, the N/2 frame, N = 32. (a) Raw range-Doppler data in dB. (b) 1DT-STAP. (c) 3DT-STAP.
(d) Sparse-STAP. (e) PCP. (f) Proposed low-rank representation method.

FIGURE 9. Performance of clutter suppression with range cells 284 and 3912 in Figure 8. (a) Performance of clutter suppression with range
cell 284. (b) Performance of clutter suppression with range cell 3912.

To quantitatively evaluate the performance of the 1DT-
STAP, 3DT-STAP, sparse-STAP, PCP and proposed low-
rank representation methods, targets and the surrounding sea
clutter samples are selected to calculate the sample mean
values and SCR. The SCR values for 5 random targets are
listed in Table 2. All five methods improved the SCR, making
it easier to distinguish ship targets from sea clutter. In detail,
the low-rank matrix representation method displays the best

performance, and the corresponding SCR is 4 times more
than that before clutter suppression. The performance of
the other methods decreased in the following order: sparse-
STAP, 3DT-STAP, PCP and 1DT-STAP. The sparse-STAP
method is mostly used for sea clutter suppression with
multichannel radar data. In this paper, the radar data are
based on only two channels, which may limit its perfor-
mance. Compared with 1DT-STAP, 3DT-STAP achieves the
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TABLE 2. The SCRs of five targets based on five clutter suppression
methods.

suppression of sea clutter in the two-dimensional plane of
time and space.

For the same kind of separation method PCP and the
proposed low-rank method, the Euclidean distance and
Chebyshev distance are introduced to represent the degree
of separation between target and sea clutter. The Euclidean
distance [51] is defined as

ED =

∣∣Mship −Msea
∣∣√

σ 2
ship + σ

2
sea

(28)

whereMship andMsea correspond to the statistical average of
the samples of ships and the sea surface, and σ 2

ship and σ 2
sea

denote the variance of the samples of ships and sea surface,
respectively. This equation implies that the larger the distance
is, the better the performance in distinguishing ships from the
surrounding sea.

The Chebyshev distance [52] is defined as

CD = max(xship − xsea) (29)

where xship and xsea correspond to the sample value of ships
and the sea surface, respectively. The larger the distance,
the better performance in separating targets and sea clutter.
The results of PCP and the proposed low-rank method are
shown in Table 3, the Euclidean distance and Chebyshev
distance between five targets and sea clutter are listed, and the
Euclidean distance and Chebyshev distance of the proposed
low-rank method are all more than two times of PCP method,
which implies that the proposed low-rank method is better
in sea clutter suppression than PCP method and is of great
benefit to ship detection.

TABLE 3. The distance of five targets based on PCP and the proposed
low-rank methods.

3) PARAMETER SELECTION
The influence of length N and interval L of the range-Doppler
sequence on the SCNR is discussed in this section. As shown
in Fig. 10(a), the sequence length ranges from 3 to 30 with
interval 3. The SCNR is almost constant with the increasing
sequence length. Apart from target 3 in Fig. 10(b), the result
of the sequence interval L is consistent with variations in the
length N , and the value of target 3 with interval 32 may be
related to the selection of samples. In general, the influence
of the sequence length and sequence interval on the SCNR is
negligible, indicating the robustness of the proposed method.

FIGURE 10. Effect of the parameter selection (N and L) on SCNR.
(a) Sequence length N ; (b) Sequence interval L.

C. APPLICATION TO TARGET DETECTION
Because some sea clutter is separated into the foreground,
the sea clutter discriminator is constructed by defining the
foreground frequency and background frequency to further
remove the sea clutter, and improve the detection rate of
ship targets. The background frequency and foreground fre-
quency defined in section II are listed in Fig. 11(a)-(b) with
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FIGURE 11. Ship detection results based on the low-rank representation
method with θ = 1.85◦. (a) Background frequency. (b) Foreground
frequency. (c) Sea clutter discriminator. (d) Result of clutter removal.

θ = 1.85◦. The sea clutter is located near the zero Doppler
frequency and has a clear profile shown in (a); the ship targets
in (b) are clear, and the suspected tracks along the range are
formed.

However, sea clutter in the foreground is still serious and
ought to be removed for slow target detection. The sea clut-
ter discriminator in Fig. 11(c) is obtained by selecting the
appropriate threshold to segment the background frequency
(a) within the sea clutter bandwidth, and the experience
threshold is set to 1.5M , where M is the mean of the back-
ground frequency. Yellow pixels represent sea clutter with
values of 1, and blue pixels represent non-clutter points with
values of 0. According to (24), the result of sea clutter removal
is obtained as (d) by using (b) and (c). Notably, the sea
clutter around the zero Doppler frequency is significantly
reduced, that is to say, false alarms are avoided without reduc-
ing the target power, which facilitates the detection of slow
ship targets and provides a foundation for the generation of
tracks.

Comparisons of the low-rank, PCP and CFAR detectors
were made to verify the superiority of the low-rank method
for ship detection. For PCP method, the values of targets
are greater than 0, while the values of sea clutter are less
than 0 with large amount of experiments. Hence, 0 can be
used to separate targets and sea clutter. Among thesemethods,
a threshold of 0 is adopted to detect targets after clutter sup-
pression in the PCP method, and the CFAR method is based
on sparse-STAP with a false alarm rate of 0.001. Considering
the false alarm rate and detection rate, the FOM is used for
detection performance analysis [53]:

FOM =
Ntt

Nfa + Ngt
(30)

where Ntt and Nfa are the numbers of detected ships and false
alarms, respectively. Ngt is the number of ships that matched
with AIS. The larger the FOM is, the better the detection
performance. Five range-Doppler sequences extracted from
five experiments are utilized to evaluate the ship detection
performance of different methods, and the corresponding
azimuth angles are expressed as θ1-θ5, where θ1 = 1.85◦,
θ2 = −118.57◦, θ3 = 4.20◦, θ4 = −57.42◦ and θ5 = 89.33◦.
Combined with AIS, the numbers of ships corresponding
to θ1-θ5 are 227, 95, 284, 191 and 202, respectively. The
results of the CFAR, PCP and low-rank methods are listed
in Table 4. The FOMs of the CFAR, PCP and low-rank meth-
ods are 0.8, 0.85 and 0.97, respectively, according to (30).
The results demonstrate that the low-rank method performs
best, followed by PCP, and the CFAR method performs
worst.

TABLE 4. Detection results of the CFAR, PCP and low-rank methods.
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TABLE 5. Detailed information for the matched ships.

The impact of threshold selection on ship target detection
in sea clutter discriminator generation is analyzed below.
By using the five range-Doppler sequences extracted from
five experiments, Fig. 12 (a)-(b) show the changes in the
false alarm rate (Pfa) and detection rate (Pd) as the thresh-
old increases, and the threshold ranges from 0.75M to 3M .
The curves 1-5 correspond to the azimuth θ1-θ5. Overall,
the detection rate and false alarm rate increase as the threshold
increases, and the trend is the same. If the threshold is greater
than 1.5M , the false alarm rate increases rapidly, while the
detection rate tends to 1. To reduce the false alarm rate
while maintaining an appropriate detection rate, the optimal
threshold in this paper is set to be 1.5M , where M is themean
of the background frequency.

D. APPLICATION FOR TARGET TRACKING
On the basis of clutter suppression and ship detection,
the location and velocity of ships can be obtained after the
processes of relocation and velocity inversion, respectively.
Subsequently the tracks of ships are obtained via location and
time updates. Matching with the AIS information according
to the time and location, the tracks of targets are shown
in Fig. 13, in which red represents the ships detected by
the low-rank method and green represents the ships obtained
from the AIS. The time difference and location difference
are set to 0 s and 1 km, respectively. The x-coordinate of
Fig. 13 is longitude, and the y-coordinate is latitude. The six
tracks demonstrate the effectiveness of the low-rank method
in ship detection and tracking. The detailed information for
ships in Fig. 13 is listed in Table 5.

Fig. 14 shows the relationship between the inversion veloc-
ity and the AIS velocity of ships. The abscissa represents the
inversion velocity of the target, and the ordinate represents
the AIS velocity of the target. The velocity of the ships is
mainly distributed near the 45◦ line, which reflects strong
consistency between the inversion velocity and AIS velocity,
indicating that the inversion accuracy of the target velocity

FIGURE 12. The impact of threshold selection on the false alarm rate and
detection rate, where M is the mean of the background frequency. (a) The
variation in the false alarm rate with various thresholds. (b) The variation
in the detection rate with various thresholds.

is high. The mean error of velocity inversion is 0.12 m/s and
the mean relative error is 4.7%.

160786 VOLUME 8, 2020



C. Cao et al.: Clutter Suppression and Target Tracking by the Low-Rank Representation for Airborne Maritime Surveillance Radar

FIGURE 13. Tracks of ships obtained from the detection results and AIS information.

FIGURE 14. The relation between inversion velocity and AIS velocity of
ships.

IV. CONCLUSION
The focus of this paper is on clutter suppression and target
tracking for maritime surveillance radar. A new method is
proposed to separate radar targets from the surrounding sea
clutter in a low-rank representation. Experiments demon-
strated that the low-rank method is obviously superior to
1DT-STAP, 3DT-STAP, sparse-STAP and PCP in clutter sup-
pression without reducing the power of targets. Specifically,
the low-rank matrix method displayed the best performance,
and the corresponding SCR was 4 times better than that
before clutter suppression. The performance of the other
methods decreased in the following order: sparse-STAP, 3DT-
STAP, PCP and 1DT-STAP. To further remove the sea clutter
caused by sea surface motion in the foreground, a sea clutter

discriminator is constructed within the sea clutter bandwidth.
The recommended threshold for clutter discriminator genera-
tionwas set to be 1.5M based on experimental analysis, where
M is the mean of the background frequency. Comparisons of
CFAR, PCP and the low-rank methods were made, and the
FOM values of CFAR, PCP and the low-rank method were
0.81, 0.89 and 0.98, respectively. The results indicate that the
low-rank method performs the best, followed by PCP, and the
CFAR method performs the worst. Furthermore, six tracks of
ships were obtained with location and time constraints. The
consistency between the inversion velocity and AIS velocity
was evaluated, and the mean error of velocity inversion was
0.12 m/s, with a mean relative error of 4.7%. The proposed
method provides a new idea for radar target detection and
tracking at sea.
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