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ABSTRACT Compared with the state-of-the-art architectures, using the 3D point cloud as the input of the
2D convolutional neural network without preprocessing will restrict the feature expression of the network.
To address this issue, we propose a high-precision classification network using bearing angle (BA) images,
depth images, and RGB images. Due to the development of unmanned vehicles, determining how to
recognize objects from the information collected by sensors is important. Our approach takes data from
LiDAR and a camera and projects a 3D point cloud into 2D BA images and depth images. The RGB
image captured by the camera is used to select the region of interest (ROI) corresponding to the point
cloud. However, only adding input information is not enough to improve the classification ability of general
convolutional neural networks. In our approach, we use a Dense-Residual Fusion Network (DRF-Net),
which consists of Dense-Residual Blocks (DRBs). The Dense-Residual Fusion Network can achieve 97.92%
accuracy with three input formats on a KITTI raw dataset.

INDEX TERMS Object classification, 3D point cloud, convolution neural network.

I. INTRODUCTION
Object classification is widely used in various fields, such as
biomedicine, production processes, home safety, elderly care,
etc. In recent years, with the development and the prospect
of advanced driving assistance systems, determining how
to effectively make use of the information obtained by the
sensors has become an important issue. Dalal and Triggs [1]
propose histograms of oriented gradients (HOG) with the
linear based SVM for human detection in 2D images. Cal-
culating the gradient (including the size and orientation) of
each pixel and dividing the image into cells, the gradients
in each cell are connected in a series to obtain the block-
wiseHOGcharacteristic descriptor. To acquireHOG-like fea-
tures, RCNN [2] first applies CNN on object detection in 2D
images. Features are easier to obtain, and the performance is
improved.

The 2D images are usually taken by cameras, which
are easily affected by other lighting sources. LiDAR emits
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a laser beam to a target and obtains the 3D point cloud
through its reflection. For 3D point cloud object classifi-
cation, VoxNet [3] divides a point cloud into voxels and
transforms them into available features. The MVCNN [4]
achieves state-of-the-art performance by rendering images
from different angles of the point cloud and combining the
features through view pooling. However, these data represen-
tations result in a huge number of calculations. PointNet [5]
directly uses the raw data from the point cloud to perform
both classification and segmentation tasks. PointNet++ [6],
which is the advanced version of PointNet [5], uses a hierar-
chical neural network to extract local features concatenated
with high level features. PointGCN [7] transforms a 3D point
cloud into graphs. Using graph signal processing techniques
like graph convolution and multi-resolution pooling leads to
a better classification performance. Since the graph informa-
tion of the point cloud plays an important role in the clas-
sification accuracy, DGCNN [8] adopts a dynamic strategy
that considers both local and global features to update the
graph before each edge convolution to reach state-of-the-art
performance.
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PointHop [9] adopts k-nearest neighbors to group points in
the point cloud. The points in the same group are divided into
eight octants around the group center. Attributes are calcu-
lated from each octant to obtain local descriptors, of which
the features are further reduced by Saab transform [10].
Furthermore, PointHop updates parameters in a feedforward
fashion rather than backpropagation. By so doing, PointHop
can achieve comparable classification performance while
requiring much lower training complexity.

Although targets can be well classified by 3D point clouds,
the amount of data in the point cloud is huge and takes a
substantial amount of time to calculate. Douillard et al. [11]
propose segmenting ground points and retaining non-ground
points, which not only benefit the subsequent segmentation
but also reduce the amount of data in a scene. Recent studies
have shown that removing the ground points makes it easier
to segment the region of interest (ROI), and projecting the
ROI point clouds into 2D image makes it easier to identify
the ROIs and reduces computation costs.

Combining RGB images with point clouds as input has
become a trend in classification tasks and has exhibited
promising performance. Recent studies demonstrate that
combining additional information, such as bird’s eye views
or depth images, with RGB images can further improve
accuracy. Börcs et al. [12] project the ROI point cloud into
depth images which shows the outline. Lin et al. [13] further
project ROIs into Bearing Angle (BA) images to show more
details which contain the corners and the edges of ROIs.
However, the textures of the obtained BA images are some-
times confusing and become counterproductive. Considering
these factors, we integrate BA, Depth and RGB images by the
preprocessing procedures to boost performance.

During preprocessing, the ground points are removed from
the point cloud and the nonground points are then grouped
and projected into the BA image and the depth image. The
RGB image corresponding to the clustering result can be gen-
erated by KITTI’s transformation matrix. With these various
representations of ROIs as inputs, we propose a dense residual
fusion network for classification.

In summary, the contributions of this article are:
1) In addition to the BA image, we add the depth pro-

jection and the RGB image corresponding to the point
cloud. Through the combination of the RGB image and
the information of the depth image and the bearing
angle images, the input information of the neural net-
work is full of diversity.

2) We present the Dense Residual Fusion Network (DRF-
Net). The architecture uses the dense residual block,
which is more conducive to transfer the information
and gradients than the residual module. In addition,
we also explore the neural network fusion structure,
and obtain the proportion of dense residual modules
required before and after feature fusion through exper-
iments, so that the feature map can not only be fully
extracted before fusion but also can be fully integrated
after fusion.

The remaining of this article is composed as follows: The
related works are introduced in Section II. Our approach
including preprocessing procedure and the proposed net-
work architecture is detailed in Section III. The experiment
results and the error analysis are discussed in Section IV.
Finally, the conclusion and future work will be provided in
Section V.

II. RELATED WORK
Convolution neural networks (CNNs) have been shown to
have superior performance in terms of object detection tasks.
LeCun et al. [14] propose LeNet with 5 layers and is
regarded as the pioneer of CNN. Krizhevsky et al. pro-
pose AlexNet [15] which applies ReLU, dropout, and max-
pooling. Using ReLU as the activation function solves the
vanishing gradient problem, makes the training more effi-
cient and improves the classification accuracy. The dropout
mechanism prevents the training from overfitting. Applying
the pooling mechanism not only downsamples the feature
map but also extracts higher level features. To achieve bet-
ter performance, the structure of the CNN grows deeper
and deeper. K. Simonyan and A. Zisserman propose
VGG-Net [16], which has 11-19 convolution layers.

As a network becomes deeper, the degradation problem
follows. In addition, it is hard to ensure that the features
transmitted to the next layer represent better than those of
the previous layers during the forward pass. He et al. [17]
propose the Deep Residual Network (ResNet) which applies
skip connections to achieve identity mapping. The goal of
residual learning is to learn the difference between the out-
put and the input information. Thanks to the success of
the residual learning, ResNet won 1st place in the ILSVRC
2015 classification task with more than 100 layers. Based
on the concept of skip connections, Huang et al. [18] pro-
pose dense connected network (DenseNet) which uses dense
connections to allow feature reuse. Comparing the ways of
information combination, ResNet uses element-wise addi-
tion, while DenseNet applies concatenation in the direction of
the channel dimension. By so doing, DenseNet can increase
the variation of input to enhance the representation capability
and thus can achieve a lower error rate on the ImageNet
dataset than ResNet. In this work, we propose the dense
residual block (DRB) to integrate the advantages of feature
refinement by the ResNet and feature reuse by DenseNet.

To perform tasks on object detection, R-CNN [2] first
introduces region proposals within the image to detect mul-
tiple objects. Instead of classifying each region of interest
(ROI), fast R-CNN [19] proposes ROI pooling, which shares
the feature maps with each ROI. Faster R-CNN [20] replaces
selective search [21] with the region proposal network (RPN),
which aims to locate the ROIs using a CNN and thus is more
efficient. YOLO [22] achieve real-time object detection with
a one-stage detector that conducts object position detection
and object classification in one step. Lin et al. [23] pro-
pose the feature pyramid network (FPN) to detect objects of
different sizes. The fully convolutional network (FCN) [24]
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FIGURE 1. Propose classification flow.

can extract features from input images of different sizes and
perform semantic segmentation.

The CNN-based methods have also been widely applied
to autonomous driving with LiDAR. The MV3D [25] takes
a bird’s eye view, front view, and RGB images as inputs to
extract feature maps which are then gathered together by a
fusion network. Börcs et al. [12] proposed a method to detect
vehicles and pedestrians by using depth images. Lin et al. [13]
project the clustered point cloud into bearing angle images
(BA images) for classification. As such, DRF-Net further
takes the advantages of the above methods to make the point
cloud classification more accurate.

III. APPROACH
We use a part of the KITTI raw dataset [26] as training
and testing data that adopts Velodyne HDL-64E to collect
point cloud information. The KITTI dataset contains various
urban and suburban scenes that are very suitable for our
research. Velodyne HDL-64E is a multi-beam LiDAR with
64 layers, and each layer contains 2,084 points, so there are
133376 points in a scene and 64 points in each scanline.
The preprocessing pipeline shown in Fig. 1 consists of four
steps: (a) remove ground points via a ground point detection
algorithm; (b) produce ROIs (region of interests) from the
point cloud; (c) select segmented ROIs corresponding to the
RGB image, and (d) project the point cloud into bearing
angle images and depth images. The BA, Depth and RGB

images obtained by the preprocessing are classified by the
dense residual fusion network. We will detail each step and
the network architecture in the following subsections.

A. ADJUSTED THRESHOLD FOR GROUND POINT
DETECTION
In a point set, the ground point accounts for 30 to 50% of
the point cloud. Due to the efficiency of the ground point
findings, we follow the method described in [13] as our
ground point detection method. We calculate the height of
the scanning point to locate the first ground point on each
scanline. As shown in Fig. 3,Pi is the scanning point.With the
heightH of the sensor, the distance li between the LiDAR and
the scanning point, the angle θi between li and the horizontal
plane, we can obtain the height Hp of the scanning point as

Hp = |li sin θi + H |. (1)

If Hp is smaller than the threshold height Hth which is
set to 15 cm, the point Pi can be regarded as a ground
point. According to the specification of Velodyne LiDAR
HDL-64E, the angle θi lies within the range of

−24.8◦ ≤ θi ≤ 2◦. (2)

The ground point detection method considers the height
of the scanning point Pi to determine the first ground point.
After detecting the initial ground point, the next ground point
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FIGURE 2. Proprojected images from non-ground points. (a) BA image, (b) Depth image, (c) RGB image.

FIGURE 3. Geometric relation between a LiDAR and the detected point Pi .

on the scanline is determined by the slope between the former
and the next point.

Suppose a ground point is labeled P1 (x1, y1, z1), and
P2 (x2, y2, z2) is the next point. The slope can be defined as

θ =
|y1 − y2|√

(x1 − x2)2 + (z1 − z2)2
. (3)

We observe that the points near the LiDAR are denser than
those far from the LiDAR. In the cases where two consecutive
points are scanned close to the LiDAR, the distance between
the two points will be shorter, and when two consecutive
points are scanned far from the LiDAR, the distance between
them will be longer. To compensate the effect of distance on
the slope, we adjust the threshold slope as

Tadjust =


T0 + α · (dc/d(1,2))2, if dc ≥ d(1,2)
T0 − β · (d(1,2)/df )2, if d(1,2) ≥ df
T0 if df ≥ d(1,2) ≥ dc,

(4)

where dc and df are the predetermined distance of the near
area and the far area, respectively. d(1,2) is the distance
between P1 and P2. T0 is the threshold slope while the dis-
tance is between dc and df . α and β are constants. If the slope
θ is smaller than the threshold slope Tadjust, the next point
would be considered to be a ground point.

B. ROI PRODUCED BY FLOOD-FILL ALGORITHM
After labeling the nonground points, they are clustered by
the flood-fill algorithm [27]. The flood-fill algorithm is com-
posed of two steps. In the first step, nonground points are

FIGURE 4. Geometric relation between a LiDAR and two consecutive
points.

clustered in each scanline. There is a threshold distance d1
to determine whether the two consecutive nonground points
belong to one cluster. If the distance between the points
is smaller than d1, they are assigned to the same cluster.
In the second step, the clusters in each scanline are grouped
into objects. Two threshold distances, dh and dv, are used to
determine whether the clusters belong to the same object in
the horizontal and vertical directions.

C. TRANSFORM THE 3D-POINT CLOUD INTO BEARING
ANGLE AND DEPTH IMAGE AND OBTAIN RGB IMAGE
The depth image represents the proportion of the distance in
gray level. The pixel value can be defined as

PDi =
di

dfarthest
× 255, (5)

where dfarthest is the distance of the farthest point in the point
cloud, and di is the distance between the current point and
the LiDAR.

According to [28], the bearing angle image (BA image)
represents more details in the point cloud. Fig. 4 shows
the angle θi between the laser beam and the line segment
d(Pi,Pi+1) of two consecutive points Pi,Pi+1. To transfer the
point cloud into a BA image, θi can be represented as

θi = arccos(
l2i + d

2
(Pi,Pi+1)

− l2i+1
2 li d(Pi,Pi+1)

) 0 ≤ θi ≤ 180, (6)

where li and li+1 are the distances ofPi andPi+1, respectively,
measured from LiDAR. d(Pi,Pi+1) is the length of the line
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FIGURE 5. Architecture of the proposed DRF-Net. Inputs from (a) (b) (c) are BA images, depth images and RGB images, respectively.

segment connecting two consecutive points Pi and Pi+1. The
pixel value of each point is calculated by

PBi =
θi

180
× 255. (7)

To obtain the ROI of the RGB image, the transforming matrix
provided by the KITTI dataset [26] is adopted. Coordinates
of the points are projected onto the RGB image. We segment
the part that corresponds to the ROI. With the RGB image,
BA image, and depth image, the next stage is classifying the
input images using DRF-Net. Fig. 2 shows in an exemplary
frame the ROI along with the depth image, the BA image,
and the RGB image. The depth image shows the contour of
the frame, and the BA image contains more details that make
the picture look more three-dimensional.

D. NETWORK ARCHITECTURE
The information extracted from different input formats needs
to be carefully fused. Two sorts of fusion strategies, early
fusion and late fusion, are considered. The early fusion strat-
egy allows information to be fused at the front feature level.
The late fusion strategy combines different local decisions
from different sources to avoid the dominance by one of the
input formats. We find that the early fusion performs better
than the late fusion in extensive experiments, so we adopt the
early fusion in our DRF-Net.

The DRF-Net architecture is shown in Fig. 5. The network
consists of three dense-residual blocks to extract features
from each input source. The features are concatenated and
processed by three convolution layers to learn higher level
representations.

Fig. 6 shows the structure of the dense residual block
(DRB). Each dense-residual block is composed of three resid-
ual blocks [17] followed by one max-pooling layer and one
convolution layer with 1 × 1 kernel size which is used to
reduce the dimensionality. Batch normalization and ReLU
are attached after each convolution layer. Batch normaliza-
tion (BN) was proposed to solve the problem of the internal
covariate shift in [29]. BN reduces the sensitivity of themodel

FIGURE 6. The structure of the dense residual block (DRB).

to network parameters, makes the network learning more
stable, and the training speed is faster.

The residual block includes two convolution layers with a
shortcut. The output of ith residual block can be defined as:

Ri = σ (BN(Wi,2(σ (BN(Wi,1xi)))))+ xi, (8)

where xi is the input of the residual block and Wi,c is the cth
convolution layer in the ith residual block. BN denotes the
operation of batch normalization and σ is the ReLU activation
function.

When the network gets deeper, it will make the low-level
information disappear after multiple stacked layers. In order
to reuse feature maps and increase information flow, we add
dense connections. The output of the l th Dense Residual
Block DRBl can be shown as:

DRBl = σ (BN(Wl,(1×1)Ml)), (9)

where Ml = MaxPool(xl ⊕ Rl,i ⊕ Rl,i+1 ⊕ Rl,i+2), Ml is
regarded as the output of the maxpooling layer and xl is
the input feature map of lth DRB. The symbol ⊕ denotes
the concatenation operation. Rl,i is the output of ith residual
block and Wl,(1×1) is the 1 × 1 convolution layer in the
lth DRB.
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FIGURE 7. Various network architectures with different DRB layers before feature fusion. (a) Early fusion without DRB layer, (b) 1 DRB layer,
(c) 2 DRB layer, (d) 3 DRB layer, (e) 4 DRB layer, and (f) Late Fusion.

E. LOSS FUNCTION
Generally, classification networks use cross entropy as a loss
function, regardless of whether the sample is difficult or
easy. However, most of the samples can be classified easily.
Thus, well-classified examples will comprise most of the loss
during training. Using the cross entropy as cost function does
not well handle this situation. To reduce the loss for easy
examples and focus more on hard examples, we use the focal
loss proposed in [30] instead of cross entropy. The focal loss
can be written as

FL(Pt ) = −(1− Pt )γ ln(Pt ), (10)

where Pt denotes the probability of the final prediction. γ is
the parameter which is set to downweight the well-classified
examples. We set γ = 2 in our experiment.

IV. EXPERIMENTS
Five scenes from the KITTI dataset [26] are adopted
in our experiments. The raw data from Residential
2011_09_26_drive_0035 and Campus 2011_09_28_drive_
0021 comprise the training set. The testing set con-
tains the raw data for Residential 2011_09_26_drive_0020,
2011_09_30_drive_0027 and Campus 2011_09_28_drive_
0039. The input images are divided into three categories:
pedestrians, cars, and street clutter. In our dataset, we classify
cyclists as pedestrians. There are totally 2,000 images in the
training set and 1,200 images in the testing set (400 images
in each category). The network is trained with AdamOp-
timizer using Tensorflow, wherein the parameters β1 and
β2 are set to 0.9 and 0.99, respectively. The learning rate
is set to be 0.0005. We run the proposed RF-Net on GTX
1080 Ti GPU with a batch size of 16 for 200 epochs.
The input images are resized into a fixed resolution
of 96× 96.

A. ABLATION STUDIES
In Table 1, we investigate the impact of various input combi-
nations on the output accuracy. When taking the RGB image
as the single input, the performance of our proposed network
is better than the other alternatives. The depth image shows
the texture of the point cloud in 2D. The BA image enhances
the details of outlines and corners. The RGB information
makes it easier to recognize the object in eachROI. The fusion
of the BA image with the RGB image improves the accuracy
from 90.25% to 96.50%. The fusion of the depth image with
the BA image makes the extracted features more robust, and
hence improves the accuracy from 87.17% to 92.08%. The
fusion of the depth image with the RGB image improves the
accuracy from 87.17% to 96.80%. Fusing all three types of
features leads to the best performance of accuracy 97.75%.
In short, entering three types of images simultaneously for
classification can indeed improve overall detection accuracy.

To compare the DRB with the residual block, Table 2
shows the results of the 2-input fusion networks that applying
the residual block [4] and the dense residual block, respec-
tively. The reason we choose only 2 input sources is to save
training time. It can be noticed that the model using the dense
residual blocks achieve better average accuracy than that
using residual blocks by 1.4% to 6.4%.Dense connections not
only transmit more information flow within a block, but also
efficiently prevent both vanishing and explosive gradients.

After concatenating feature maps extracted from different
input sources, we need to combine them for the feature inte-
gration. As Table 3 shows, adding a dense residual block after
feature fusion improves the accuracy from 97.75% to 97.92%.
We accordingly take our DRF-Net with an extra DRB as the
baseline model in the following experiments.

Fig. 7 illustrates different combinations of DRB numbers
used before and after fusion that may affect the accuracy.
In Table 4, the accuracy improves as the number of the DRBs
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TABLE 1. Average testing accuracies of the dense residual fusion netowrk for different input combinations. (single: BA/Depth/RGB image, 2-input: BA +
Depth/BA + RGB/Depth + RGB, 3-input: BA + Depth + RGB).

TABLE 2. Average testing accuracies of 2-input fusion networks for using
residual blocks and dense residual blocks.

TABLE 3. Average testing accuracies for DRB after fusion, where CA
denotes channel attention.

TABLE 4. Average accuracies various fusion models.

TABLE 5. Accuracies for two loss functions.

before fusion increase from (a) to (d). It can be observed that
the more DRBs increase before fusion, the better feature is
extracted. In (e), the decreased accuracy shows the impor-
tance of feature integration after fusion. In (f), a decision
fusion structure is used, which combines the predictions from
each input obtain worse accuracy than (d) and (e). As a result,
fusing the information in the feature level is more appropriate
than fusing in the decision level. We find that model (d) has
the best accuracy of 97.92% and thus we choose (d) as our
final model.

Loss function plays an important role while training. Com-
pared to the cross entropy, the focal loss pays more attention
on hard examples. Table 5 compares the effects of the focal
loss and cross entropy used to train our best model (Fig. 7(d)).
Although the focal loss drops the precision for classifying
cars by 1.2%, it improves the accuracy for pedestrians and
street clutter by approximately 3.25% and 0.75%, respec-
tively. In general, the focal loss appears to be more suitable
than the cross entropy to train the proposed model.

We also investigate the impact of attention mechanism.
We adopt the attention module [31] propose by Hu et al
to learn which channels in the DRBs are worth putting
more weights. Table 3 shows that the scheme with channel
attention (CA) mechanism decreases the accuracy by 0.09%.

TABLE 6. Average testing accuracies for different models, the symbol ‘‘∗’’
denotes DRF-Net with 3-input.

FIGURE 8. Error analysis of the model with the best performance.

The reason for the accuracy drop may be that the chan-
nel weights computed by the Sigmoid function are always
smaller than 1, and consecutive multiplications with these
weights will make the feature values become smaller and
smaller. Consequently, the global average pooling may fail
to extract features as the basis, and hence we do not adopt
attention mechanism in the proposed DRF-Net.

With the widespread use of LiDAR, many new architec-
tures are proposed to perform classification for point clouds.
To be compared, point sets segmented by our preprocess-
ing procedure are input to these models. Table 6 lists the
accuracies of models proposed by PointGCN [7], Point-
Net [5], PointNet++ [6], PointHop [9], DGCNN [8], and
Lin et al. [13]. The model by Lin et al. [13] projects the
point clouds into BA images, while those of DGCNN and
PointGCN convert the point clouds into graph signals. The
other models’ input point clouds to the neural networks
without pre-processing. For a fair comparison, we also listed
the results of our DRF-Net without the RGB input image
in Table 6. Compared with other models, our model keeps sta-
ble classification accuracy for all three classes and achieves
an average accuracy of 92.08%. The inclusion of RGB infor-
mation further enhances the accuracy of street clutter and
pedestrians, and reaches to the best accuracy 97.92%.
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FIGURE 9. A pedestrian in different input sources. (a) BA image, (b) depth
image, (c) RGB image.

FIGURE 10. Street clutter in different views. (a) BA image, (b) depth
image, (c) RGB image.

B. ERROR ANALYSIS
We analyze the classification error for our proposed 3-input
model by tracking the distributions of prediction results in
each category in Fig 8. Our proposed model performs well
in identifying pedestrians. Most of the mispredictions occur
when pedestrians are classified as street clutter, accounting
for 2 mispredictions (0.5%). As shown in the RGB image of
Fig 9(c), the pedestrian overlaps with the other person’s hand.
This misclassification comes from the reduced resolution
due to the long distance between LiDAR and object. The
error rates of regarding cars as pedestrians and street clutter
are similar. Most of the false predictions take place in the
scenes which consider street clutter as cars, accounting for
11 mispredictions (2.75%). Fig 10 shows an example of street
clutter, which is misclassified as a car due to the overlapping
of different objects. In order to improve accuracy, the pre-
processing may need to include more semantic information
from RGB images to help perform segmentation of ROIs.

V. CONCLUSION
In this article, we propose a framework that projects a 3D
point cloud into 2D images as input to the DRF-Net. The
DRF-Net leverages dense residual blocks to extract features
frommultiple input sources, which in turn leads to better clas-
sification performance. We also explore the fusion structures
to further improve the accuracy of classification. Compared to
other classification models, the proposed DRF-Net achieves
better accuracy by transforming the point cloud into BA and
depth images. For future work, we need to tackle similar

issues faced by the R-CNN. For example, there are too many
ROI selection processes that may incur excessive computa-
tions. Since all selected ROIs have to perform classification
by a neural network, the systemmemory may run out quickly.
Inspired by the Faster R-CNN, we would attempt to combine
RPN with ROI to implement a more practical classification
scheme.
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