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ABSTRACT In the real environment of industrial equipment, the vibration signals of essential components
show deviations due to the fault and noise. Notably, the noise in the signal will interfere with the diagnosis
process of the signal and reduce the accuracy of fault diagnosis. Based on the above problem, adaptive
filtering (AF) is used as an excellent method to attenuate noise without specifying the noise type. However,
how to define the most appropriate length and type of morphological filter element is the most inherent
problem which needs to be solved first. This paper proposed a cooperative diagnosis method of rolling
bearings vibration signal based on improved adaptive filtering and joint distribution adaptation (JDA). First,
the kurtosis under different element types and lengths is calculated as an index. The structural element
corresponding to maximum kurtosis is selected as the most suitable morphological filter element because
the different morphological filter elements reflect the effect of feature extraction. Then, JDA aims to
improve both the marginal distribution and the conditional distribution to solve the chaotic distribution
of time-domain features under variable working conditions. Finally, the improved least squares support
vector machine (LSSVM) verified the effectiveness and improvement of the proposed method under bearing
acceleration signal. At the same time, the comparative experiment proved that the proposed method not only
directly corrects the most appropriate elements greatly optimizes the feature structure, but also enhances the
accuracy of fault diagnosis.

INDEX TERMS Adaptive filters, morphological operation, time domain features, transfer learning, joint
distribution adaptation, LSSVM, fault diagnosis.

I. INTRODUCTION
In the mechanical industrial system, the safety status of criti-
cal parts has always been concerned. During the mechanical
operation process, for example, the health state of bearing
plays a very significant role in industrial systems. However,
bearings in a complex industrial environment may cause
some faults during long time operation, such as external
cracks, inner cracks, wear and other faults. These faults may
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not obvious and are difficult to identify at the beginning. But
if the fault is not immediately recognized, it will cause serious
trouble to the mechanical process. Besides, the complex noise
caused by the fault will also affect the accuracy of signal
diagnosis.

Acceleration data is usually used as a detection object to
verify the validity of the diagnostic model, because acceler-
ation most likely reflects the safety of the bearing. However,
the data collected from the actual equipment contains a lot
of complex noise, and has a serious impact on the extracted
features. Initially, time-domain features are greatly affected
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by noise, and the extracted features may show the noise fea-
tures rather than fault features. Unfortunately, the features of
bearing without de-noising would lead to reduced accuracy of
fault diagnosis. Therefore, most researchers try to de-noising
the signal of acceleration data before extracting features.

At the beginning of the fault diagnosis, the first step is
to reduce the noise of the acceleration signal, and then the
extracted feature would correctly represent the characteris-
tics of fault. However, some de-noising methods have lim-
itations on the type of noise, such as least mean squares
(LMS) [1]. Also, in the actual environment, the type of noise
is complex and variable [2]. In this paper, an adaptive mor-
phological filter is selected as the signal de-noising method
under experiment acceleration data. Specifically, the meth-
ods of adaptive morphological filters have many different
transformations, and they can be used in many different
situations with different operators. The combination of dif-
ferent operators will bring different effects in the de-noising
process. Some researchers have constructed some progres-
sive methods of combination morphological filter such as
(enhanced difference morphological filter (EDMF), adap-
tive smoothingmultiscalemorphological filtering (ASMMF),
an adaptive rank-order morphological filter (ARMF), multi-
scale morphology spectral (MMS), et al.) in [3]–[7]. Based
on this, an appropriate combination operator can be con-
structed to accelerate the rolling bearing. Moreover, there
is another problem that cannot be ignored is how to select
the length and elements of the morphological filter. In order
to solve this problem, there are some relevant literature has
discussed the methods of defining the appropriate length
and elements of the morphological filter. In [8], PSO is
proposed to select the best length and elements of the
morphological filter. [9] applies different evolutionary algo-
rithms to find optimal parameters. Genetic algorithm is used
to optimize the structure of elements in open and closed
operators. Reference [10] uses the sensitive index of fault
feature ratio (FFR) to determine the optimal result of the
element. Although all of the above methods and swarm
intelligence optimization algorithm can find the optimal
parameters of the denoising algorithm, notably intelligence
optimization algorithms will cost more running time of the
de-noising model. All in all, when constructing an adap-
tive de-noising model, it is necessary to find appropriate
indexes to evaluate the best choice of the morphological
filter type. Especially, kurtosis can reflect the fault charac-
teristics of the signal, the larger kurtosis value is gotten,
the more obvious the fault characteristics will be shown.
Therefore, kurtosis is used to calculate the optimal param-
eters of structural elements to ensure the de-noising effect of
morphological filtering and reduce the running time of the
algorithm.

After describing the signal de-noising method in detail,
the next step is to construct the model of signal decom-
position and feature extraction. In this paper, Variational
ModeDecomposition (VMD) is used to decompose the accel-
eration of rolling bearings because it has the advantages

of high decomposition accuracy and strong noise robust-
ness [11]–[14]. Then, time-domain features are adopted to
construct feature sets from signal components [15]–[19].

In multiple fault diagnosis, the classifier cannot clas-
sify the feature set of the fault signal because the distri-
bution of the feature set is very confusing. Although the
multi-dimensional feature set of time-domain characteristics
can describe the state of the signal from different angles.
Therefore, the transferability of data can be used to adjust
the structure of feature sets under variable working condi-
tions [20]. Based on this, some researchers applied related
methods to improve the structure of feature sets; for example,
[21]–[24] proposed the methods such as transfer component
analysis (TCA), Multi-Domain Semi-Supervised TCA, et.al,
which further improve the performance of fault diagnosis.
Through the above related method, the transferability of data
can enhance the accuracy of fault diagnosis by the TCA
algorithm. Unfortunately, TCA cannot solve the problem
of marginal distribution and costs too much time in opera-
tion. Thus, the advanced method of joint distribution adap-
tation (JDA) will be applied in this model of fault diagnosis.
JDA can improve the distribution of marginal and conditional
at the same time [25]. After reducing the dimension of the
dataset, a new dataset with a low dimension can enhance
the effectiveness and accuracy of bearing diagnosis. Some
researchers have applied the JDA to model classification,
such as (JDA improved by sparse filtering, joint distribu-
tion optimal deep domain adaptation, Deep transfer network
with JDA, joint-space force distribution) in [26]–[30]. JDA
is mainly used for feature distribution in image processing,
but rarely in signal processing. JDA originated from transfer
learning and is suitable for signal feature analysis under vari-
able working conditions, it can solve the problem of unbal-
anced data distribution. At the same time, JDA can adjust
the marginal distribution and conditional distribution of sig-
nal features to improve the efficiency of the fault diagnosis
model.

After that, the marginal and conditional distribution of
rolling bearing feature sets has been greatly improved.
The last step is to diagnose the optimized feature set by
the classifier [31]. In general, there are many useful and
classic classifiers of machine learning algorithms such as
K-Nearest Neighbor (KNN), which can measure the dis-
tance between different features for classification purposes.
Random forest (RF) integrates all sub-classifiers to selects
the classifier with the highest vote [32], [33]. Support Vec-
tor Machine (SVM) which uses training data to calculate
the hyperplane [34]. Compared with the least squares sup-
port vector machine (LSSVM), on the one hand, SVM and
LSSVM have different constraints. LSSVM changes the con-
straints of SVM from inequality to equality. On the other
hand, the linear equation of LSSVM can improve the calcula-
tion efficiency. Based on this, some scholars applied LSSVM
method to recognition research such as (particle swarm opti-
mization LSSVM, genetic algorithm LSSVM, local objective
set LSSVM, et.al) in [35]–[38].
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Based on this, AF was introduced to weaken the noise in
the original signal, while the optimal elements of signal in
AF need be calculated first. So, kurtosis is applied to screen
the optimal elements for acceleration data and construct the
improved AF. The optimized AF can better eliminate the
influence of noise on fault diagnosis based on adapting to
the signal characteristics. VMD is then used to decompose
the de-noising signal into components with different charac-
teristics. In order to construct a feature extraction and dis-
tribution optimization model, JDA can shrink the dimension
of the time-domain feature set and improve the efficiency of
diagnosis. At the same time, because the distribution of the
original time-domain feature is chaotic, JDA is introduced
to optimize the feature distribution in both marginal and
conditional. The compactness between the same states of the
features becomes smaller, while the distance between differ-
ent features becomes larger. To sum up, the JDA can improve
fault diagnosis accuracy by optimizing feature distribution.
Finally, the improved LSSVM which optimized by particle
swarm optimization (PSO) to overcome the local optimiza-
tion will be applied to verify the accuracy and effectiveness
of the proposed algorithm.

The remaining part of this paper is organized as follows:
Section 2 will construct the signal preprocessing model under
improved AF and VMD. In section 3, the time-domain fea-
tures will be combined with JDA to construct an integrated
feature extraction algorithm. In section 4, LSSVM will be
introduced to classify the optimized feature set of rolling
bearings. Section 5 will discuss the reliability and effective-
ness of the fault diagnosis model under experiment accelera-
tion data. In section 6, the conclusion and expectation will be
reached.

II. OPTIMIZED MODEL OF SIGNAL PREPROCESSING
BASED ON ADAPTIVE FILTERING AND VARIABLE
MODE DECOMPOSITION
Since the selection of morphological filters is significant and
complex, the improved method of signal de-noising aims to
select the optimal operators, which depends on the kurtosis of
acceleration. In order to achieve the adaptive optimization of
length and type of elements, kurtosis is an important index
to measure the filtering effect. The signal with the most
prominent and obvious fault characteristics will also have
the largest kurtosis value. Especially, to describe the original
signal from different angles of time and frequency domain,
VMD decomposes the denoised signal into multidimensional
signal components with different characteristics. All in all,
the improved preprocessing method can obtain the optimal
morphological filters and divide the original signal into sev-
eral components. Next, the optimized signal preprocessing
method will be introduced first in detail.

A. THE BASIC THEORY OF ADAPTIVE FILTERING
The principle of morphological filter is to use the filter win-
dow structure to modify or match the noise of the signal
to extract the features from the de-noising signal. There are

four basic operations in morphological filtering, and they are
corrosion, expansion, opening operator, and closing opera-
tor. To illustrate the above four operations, f (n) represents
the original signal, and g(m) is the structural element. The
range of f (n) and g(m) are F = (0, 1, · · ·N − 1) and
G = (0, 1, . . . ,M − 1) respectively. And N � M . Then,
the function of four basic operators is defined as follows:

(f2g)(n) = min[f (n+ m)− g(m)] (1)

(f ⊕ g)(n) = max[f (n− m)+ g(m)] (2)

opf (n) = (f ◦ g)(n) = (f2g⊕ g)(n) (3)

clf (n) = (f · g)(n) = (f ⊕ g2g)(n) (4)

where2 is the dilation operator,⊕ is the erosion operator, ◦g
is the opening operator, and ·g is the closing operator.
Because the effect of basic operators is limited, the basic

operator is rarely single used for signal filtering. So,
several classic combinatorial filter operators (such as
opening-closing (FOC), closing-opening (FCO), combina-
tion morphological filter (CMF), morphological gradient
(MG), average (AVG), white top-hat (WTH), black top-hat
(BTH)) are proposed as follows:

FOCf (n) = (f ◦ g · g)(n) (5)

FCOf (n) = (f · g ◦ g)(n) (6)

CMFf (n) = (FOCf (n)+ FCOf (n))/2 (7)

MGf (n) = (f ⊕ g)− (f2g)(n) (8)

AVGf (n) = (f · g+ f ◦ g)(n)/2 (9)

WTHf (n) = f (n)− (f ◦ g)(n) (10)

BTHf (n) = (f · g)(n)− f (n) (11)

Different combinatorial operators of the irreversible morpho-
logical filter have different effects on signal de-noising. In the
actual experiment, the real acceleration data has both positive
and negative pulses. Therefore, the morphological difference
operation (MDO) composed of corrosion and expansion is
used to process the positive and negative pulses of the signal.
The function of MDO is expressed as follows:

mdo(n) = (f · g)(n)− (f ◦ g)(n) (12)

MDO is constructed to eliminate positive and negative pulses.
The next step is to define the specific parameters in the
morphological difference operation.

B. THE OPTIMAL SELECTION STRATEGY OF FILTER
PARAMETERS
The theory of adaptive morphological filter is first used in
image processing. Shape characteristics often accompany
the structural elements. The classic one-dimensional struc-
tural elements include linear, triangular, circular, et.al. The
schematic diagrams of linear, triangular, and circular struc-
tural elements are shown as follows.
For example, the linear and triangular structural ele-

ments with length 5 and height 1 can be represented
as g = (1, 1, 1, 1, 1), g = (0, 0.5, 1, 0.5, 0) respectively.
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The parameters of structural elements are length and height.
Both determine the effectiveness of structural elements. The
length and type of elements mainly influences the filtering
effectiveness of structural elements.

FIGURE 1. Schematic diagram of linear, triangular, and circular structural
elements.

Therefore, kurtosis is used to evaluate the filtering effect
of different parameters of the original signal. The kurtosis is
defined as follows:

K =
E(x − µ)4

σ 4 (13)

where, µ is the average of x, σ is the standard deviation of x.
The height H of the linear and triangular structural ele-

ments is 1,3,5,8, and the length L ranges from 1 to 40.
After de-noising the signal via MDO, the filtering effect is
measured by the kurtosis, and H and L with the maximum
kurtosis of the processed signal are adopted. A large number
of impact components in the signal will significantly increase
the kurtosis of the signal. The impact vibration caused by
the fault will cause the vibration of bearing in different fre-
quency bands, the impact component with the largest kurtosis
is the most obvious, and the fault is the easiest to extract.
Therefore, the value of kurtosis is the principle of optimal
parameters, and the length and height of structural elements
corresponding to the maximum kurtosis are adopted as the
optimal parameters for de-noising. Then the denoised signals
are used as research objects of signal decomposition and
feature extraction.

C. THE SIGNAL DECOMPOSITION ALGORITHM OF VMD
The feature extracted from the one-dimensional signal is
limited. Thus, the denoised signal should be decomposed
with different characteristics. VMD is an adaptive signal
composition method. The variational decomposition of VMD
can overcome the lack of modal confusion and insufficient
endpoint. Compared with other signal decomposition meth-
ods, VMD shows higher decomposition efficiency. The spe-
cific method of VMD is as follows:
Step 1: TheVMDdecomposes the signal into several signal

components, which are defined as follows.

uk (t) = Ak (t) cos [φk (t)] (14)

where the range k is [1,K ], K is the number of signal com-
ponents. Ak (t) is the instantaneous amplitude of uk (t). The
instantaneous frequency of uk (t) is wk (t) = φ′k (t). f repre-
sents the original signal, which is consists of K components
of uk (t). The center frequency of every IMFs is wk .

Step 2: To calculate the analytic signal of the mode func-
tion, the Hilbert transform is applied for every uk (t) as
follows: [

σ (t)+
j
π t

]
uk (t) (15)

Step 3: The estimated center frequency e−jwk t of the analytic
signal is mixed, and the spectrum of each mode is modulated
to the corresponding baseband.[[

σ (t)+
j
π t

]
× uk (t)

]
e−jwk t (16)

Step 4: Calculate the square norm of the gradient, and esti-
mate the bandwidth of each modal component. Then, con-
struct a constrain variational model as follows:

min
{uk },{ωk }

{∑
k

∥∥∥∥∂t [(σ (t)+ j
π t

)
× uk (t)

]
e−jωk t

∥∥∥2
2

}
s.t.

∑
k

uk (t) = f (17)

where uk = {u1, u2, · · ·, uk} represents K components after
decomposition and ωk = {ω1, ω2, · · ·, ωk} represents the
center frequency of each component.
Step 5: The secondary penalty factor of α and LaGrange

multiplication operator of λ (t) are introduced to calculate the
above model. The extended function is shown below.

L ({uk (t)} , {ωk (t)} , λ)

= α
∑
k

∥∥∥∥∂t [(σ (t)+ j
π t

)
× uk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ (t) , f (t)−

∑
k

uk (t)

〉
(18)

Step 6: The center frequency of IMFs is updated by a
multiplier alternating direction algorithm. The saddle point
of Eq. (17) is the optimal result of the original problem. All
the IMFs can be obtained as follows:

ûn+1k (ω) =
f̂ (ω)−

∑
i6=k ûi (ω)+

λ̂(ω)
2

1+ 2α (ω − ωk)2
(19)

where
∧
u
n+1

k (w) is the result of the surplus
∧

f (w)−
∑

i6=k
∧
ui(w)

which through the Wiener filtering. The center frequency of
each IMFs is updated as follows.

ω̂n+1k =

∫
∞

0 ω |̂uk (ω)|2 dω∫
∞

0 |̂uk (ω)|
2 dω

(20)

Based on the above, the process of VMD is thoroughly
introduced. In this paper, the optimal value selection of K
refers to the latest research about [39], [40]. Through the
research on the de-noised signal in the actual experimental
environment, under the acceleration signals of five different
states, the decomposition number of VMD is defined as
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3. After obtaining the de-noising signal components, fea-
ture extraction and structure optimization models will be
described in the next section.

III. THE COOPERATIVE FEATURE EXTRACTED METHOD
BASED ON TIME DOMAIN ANALYSIS AND JDA
The cooperative feature extraction model consists of time-
domain features and JDA. In general, the time domain fea-
tures can describe the state of the fault signal from different
angles. However, the multidimensional time-domain features
cannot make the fault diagnosis model achieve good results.
So, to improve the structure of the multidimensional feature
set, JDA is introduced to optimize both the distribution of
marginal and conditional of the feature set. The optimized
structure of the feature set will significantly enhance the
accuracy of fault diagnosis. Based on the above, the feature
extracted method will be first expressed.

A. CHARACTERISTIC EXTRACTION BY EQUAL INTERVAL
ENERGY PROJECTION
The signal should be denoised before feature extraction; the
denoised signal is decomposed into several signal compo-
nents by VMD. Time-domain features are made up of dimen-
sional indexes and dimensionless indexes. The dimensional
indexes includemaximum value, minimum value, peak value,
average value, root-mean-square value, root amplitude, aver-
age amplitude, skewness, kurtosis, variance, peak to peak
value, and dimensionless indexes include waveform index,
peak index, pulse index, skewness index, and margin index.
To further express the time-domain feature method in detail,
assuming that the acceleration data is xn = {x1, x2, · · ·, xn},
the time-domain characteristics are calculated as follows:

As shown in table 1, the above 16 features are selected
to construct the multidimensional feature set of the bearing.
Then, the feature structure is optimized under variable work-
ing conditions of rolling bearing fault diagnosis.

B. THE BASIC THEORY OF JOINT DISTRIBUTION
ADAPTATION
The original distribution of time-domain feature sets may not
only be chaotic in marginal but also represent the disorder in
conditional.

It can be seen from Figure 2 that the distribution of source
and target domains is completely different. Marginal distri-
bution adaptation (MDA) can adjust the central distribution

FIGURE 2. Illustration of MDA and CDA.

TABLE 1. Calculation of time domain characteristics.

of two domains. However, optimization of central distribu-
tion cannot satisfy the domain classification tasks. Thus,
conditional distribution adaptation (CDA) is introduced to
minimize the difference between the labeled source domain
feature and the unlabeled target domain feature. JDA is
proposed to optimize the distribution of feature sets under
variable working conditions in this section.

To introduce the JDA in detail, Xs =
{
xsi , y

s
i

}ns
i=1 represents

the source dataset, ysi is the label, Xt =
{
x ti
}nt
i=1 represents

the target dataset. Especially, the maximum mean discrep-
ancy (MMD) is used to measure the difference between two
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distributions.

MMD2
H (Xs,Xt) =

∥∥∥∥∥ 1
ns

ns∑
i=1

φ
(
xsi
)
−

1
nt

nt∑
i=1

φ
(
x ti
)∥∥∥∥∥

2

H

(21)

JDA has four main optimization objects: principal compo-
nent analysis (PCA), MDA, CDA, and JDA.
Step 1: PCA aims to maximize the variances between the

orthogonal components to optimize the input features. Input
data can be represented as X =

[
x i, · · · , xn

]
, where x i ∈

RNin×1. The purpose of PCA is presented as follows.

max
ATA=I

tr
(
ATXHXTA

)
(22)

where the tr (·) denotes the matrix trace. The output feature
is Z =

[
z1, · · · , zn

]
= ATK .

Step 2: MDA. The purpose of MDA is to minimize
the marginal distributions of the source and target domain.
Therefore, applying MMD to MDA to calculate the result is
as follows:

L0 =

∥∥∥∥∥∥ 1
ns

ns∑
i=1

AT x is −
1
nt

nt∑
j=1

AT x it

∥∥∥∥∥∥
2

= tr
(
ATXM0XTA

)
(23)

M0 =



1
nsns

, x is, x
j
s ∈ Ds

1
ntnt

, x it , x
j
t ∈ Dt

1
ntnt

, otherwise

(24)

where M0 is defined as Eq. (24). And the Eq. (23) can
minimize the discrepancy distributions between source and
target domain.
Step 3: CDA. CDA is essential for distribution and adap-

tation. However, there is a problem that the label of the
target domain is unknown. Thus, the technique of using
pseudo labels of the target domain in CDA is applied to
unsupervised domain adaptation. The conditional distribution
Q (xs|ys) = Q (xs|ŷt) is an alternative of the posterior prob-
ability Q (ys|xs) = Q (ŷt |xs). So, under the labeled source
domain and unlabeled target domain, the distance between
Q (xs|ys = c) and Q (xs|ŷt = c) can be mapped together. The
number of datasets is C , where c ∈ {1, · · ·C}. MMD is
rewritten to adapt to the conditional distribution, as shown
below.

Lc =
C∑
c

∥∥∥∥∥∥ 1
nCs

∑
xs∈Dcs

AT x i −
1

nCt
AT x j

∥∥∥∥∥∥
2

=

C∑
c=1

tr
(
ATXMcXTA

)
(25)

where the input data Dcs =
{
x i : x i ∈ Ds ∩ y

(
x i
)
= c

}
and

Dct =
{
x i : x i ∈ Dt ∩ ŷ

(
x i
)
= c

}
are in source and target

domain, respectively. y
(
x i
)
and ŷ

(
x i
)
are the true label of

x i, x j is the pseudo label of the target domain. ncs and n
c
t is

the number of samples of source and target domain.Mc is the
MMD matrix of CDA can be rewritten as follows.

Mc =



1
ncsncs

, x i, x j ∈ Dcs
1

nct n
c
t
, x i, x j ∈ Dct

−1
ncsn

c
t
,

{
x i ∈ Dcs, x

j
∈ Dct

x i ∈ Dct , x
j
∈ Dcs

0, otherwise

(26)

Step 4: JDA. The above method of CDA and MDA should
be combined simultaneously. Therefore, the function com-
bined with Eq. (23) and Eq. (25) is as follows:

min
AXHXTA=I

C∑
c=0

tr(ATXMcXTA)+ λ ‖A‖
2
F (27)

Based on the theory of constrained optimization, the Lagrange
multiplier can be represented 8 = diag (ϕ1, · · ·ϕk) ∈ Rk×k ,
and then, Lagrange function is defined as follows.

LZ = tr

(
T

(
X

C∑
c=0

McXT+λI

)
A

)
+tr

((
I−ATXHXT

)
8
)

(28)(
X

C∑
c=0

McXT + λI

)
A = XHXTA8 (29)

At last, the problem of calculating the result of the matrix
A is transformed into solving the Eq. (29), and the k smallest
eigenvectors are obtained. The classifier is used to predict
the pseudo labels, and then the pseudo labels can be obtained
from the feature extracted in the target dataset.

The advantage of time domain feature set is that it can
describe fault characteristics of signals from multiple angles
to distinguish different fault signals. But multi-dimensional
features will cause feature redundancy and affect the effi-
ciency of diagnosis. Therefore, the purpose of JDA is to real-
ize the dimensional-reduction and distribution optimization.

IV. FAULT DIAGNOSIS OF CLASSIFICATION BASED ON
LEAST-SQUARES SUPPORT VECTOR MACHINE
The LSSVM algorithm is an excellent algorithm for fault
diagnosis and classification. However, the two significant
parameters, penalty factor and kernel function, greatly influ-
ence the effectiveness of LSSVM. Therefore, particle swarm
optimization is applied to optimize the two parameters in
LSSVM with the fitness of training accuracy.

A. A THE COOPERATIVE CLASSIFICATION METHOD BASED
ON PSO AND LSSVM
The LSSVM used in this paper is widely used due to its
high accuracy and precision in nonlinear signal processing.
Compared with artificial neural networks, LSSVM can over-
come the problems of long training time, random training
results, and the lack of learning. Moreover, previous studies

159688 VOLUME 8, 2020



Z. Xu et al.: Fault Diagnosis Method Based on Improved AF and JDA

have proposed a method to simplify the calculations, thereby
greatly improving efficiency. However, there are two impor-
tant parameters of kernel function and the penalty factor in
LSSVM. These two parameters determine the calculation
results of the LSSVM classification model. So, the LSSVM
optimized by PSO is adopted in this paper, and the training
accuracy is taken as fitness to find the optimal parameters of
LSSVM. Then, the process of optimized LSSVM is shown
in Figure 3.

FIGURE 3. The process of PSO-LSSVM.

Based on Figure 3, the improved LSSVM could be
described as follows.
Step 1: Input the optimized feature set into the classifier to

train the optimal parameters.
Step 2: Initialize the parameters of the particle swarm

optimization.
Step 3: Set the training accuracy as the fitness, and calcu-

late the speed and position of each particle.
Step 4: Update the optimal solutions according to the fit-

ness of the particle.
Step 5: Determine whether the results of the algorithm

reach the optimal condition, and save the parameters under
optimal condition.
Step 6: Apply the optimal parameters to classifier, and

obtain training and test accuracy.
According to the above algorithm, the cooperative fault

diagnosis method has been completely shown in figure 4. The
flow of the whole diagnosis method is expressed as follows.
Step 1: The acceleration signal data is collected from the

sensor.
Step 2: Use different structural elements to filter the accel-

eration and calculate the kurtosis of denoised.

Step 3: Find the optimal element type corresponding to the
maximum kurtosis.
Step 4: Use the optimal structural element to filter the

signal, and then decompose the denoised signal into several
components by VMD.
Step 5: Extract the time-domain features from the signal

components, and construct multidimensional feature sets.
Step 6: Divide the time-domain features sets into two

datasets, the source domain and the target domain, both of
which are input into kernel space and JDA.
Step 7: Use PSO-LSSVM as the classifier to calculate the

accuracy of the optimized feature set.

V. SIMULATION AND EXPERIMENT ANALYSIS
To verify the reliability and effectiveness of the proposed
diagnosis model, the experimental data is collected from
the key laboratory of Guangdong Petrochemical Equipment.
Figure 5 shows the fault diagnosis platform of the extruder
and expansion dryer of the 100,000-ton butadiene unit. The
rolling bearing has been tested on the extruder and expansion
dryer and used as the fault diagnosis system in Maoming
Branch of China Petrochemical Company.

Figure 6 shows the phenomenon of three different bearing
faults. The inner crack and outer crack of the bearing are
mainly caused by the shock or overloading of the rolling bear-
ing during the operations.Moreover, the inner crack and outer
crack, high temperature and overload working environment
will also cause the ball bearing abrasion. The inner and outer
crack of bearings in pressures deformation or small clearance
will also produce fault phenomenon of rolling ball missing.

Table 2 illustrates the acceleration data under five different
working conditions in key laboratory of Guangdong Petro-
chemical Equipment. Among them, the working conditions
of A, B, C are constructed as the source domain dataset. D and
F are constructed as the target domain dataset.

According to the algorithm proposed in this paper, next
section will show the experiment results in stages.

TABLE 2. Bearing details under different working conditions.

Besides, the fault diagnosis method in this paper can also
apply tomultiple fault diagnosis. So, we obtain another exper-
imental data of multiple faults, which were also collected
from the key laboratory of Guangdong Petrochemical Equip-
ment. Multiple fault diagnosis system is based on bearing and
gearbox, and the multiple faults consist of bearing fault and
gearbox fault. The specific construction of multiple faults is
shown in Table 3.

In this paper, the experimental data collected from the
sensor on fault diagnosis platform includes a normal state and
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FIGURE 4. The flow of the fault diagnosis method.

FIGURE 5. The fault diagnosis system of extruder and expansion dryer of
the 100,000-ton butadiene unit.

TABLE 3. Specific construction of multiple faults.

four failure states. The experimental signals in each state have
the same number of samples and no missing sampling points.

A. THE SIGNAL PREPROCESSING BASED ON IMPROVED
ADAPTIVE FILTERING AND VMD
Morphological difference operation is used to de-noising the
signal. To select the optimal parameters of structural elements
in morphology filtering, the height H of linear and triangu-
lar structural elements is 1,3,5,8, and the length L ranges
from 1 to 40. The de-noising signals kurtosis under different
structural elements types are calculated, and element types
corresponding to the maximum kurtosis are selected as the
optimal parameters. The kurtosis results are shown in Table 4
and Table 5.

TABLE 4. The optimal parameter of linear element under different
bearing states.

TABLE 5. The optimal parameter of triangle element under different
bearing states.

According to Table 4-5, the kurtosis corresponding to tri-
angular elements is larger than linear elements. Therefore,
the results in Table 4 are taken as the optimal parameters in
adaptive filtering. Next, the morphological difference oper-
ation of the structural element with the optimal parameter
is used to de-noise the original signal. Taking the normal
acceleration data as an example, Figure 7 shows the time
domain figure of the original signal and the denoised signal,
and it can be seen from the time domain diagram that the
positive and negative pulses in the signal can be effectively
attenuated. Figure 8 is the frequency domain of the origi-
nal signal and the denoised signal of normal and external
faults in two different states. From figure 8, we can see that
the frequency fault features are relatively clear and orderly
reduced. After signal adaptive de-noising, the denoised sig-
nal will be decomposed into several components by VMD,
where K = 3.
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FIGURE 6. (a) Fault phenomenon of outer crack. (b) Fault phenomenon of
inner crack. (c) Fault phenomenon of rolling ball wearing. (d) Fault
phenomenon of rolling ball missing.

FIGURE 7. Time domain figure of original signal and denoised signal.

B. THE FEATURE EXTRACTION AND OPTIMIZATION
To verify the effectiveness of feature extraction and structure
optimization, time-domain features are extracted from each
component and feature sets are directly constructed. Then,
the feature set is divided into the source domain dataset of 900
features and the target domain dataset of 600 features. After

FIGURE 8. (a) Spectrum diagram of the normal signal. (b) Spectrum of the
denoised normal signal. (c) Spectrum diagram of the external fault signal.
(d) Spectrum of the external fault denoised signal.

using JDA algorithm to optimize the features, it will greatly
improve the structure of the feature set.

Fromfigure 9 and 10, it is hard to diagnose the bearing fault
because the original feature distribution is so messy. But after
optimizing the feature distribution by JDA, the discrimination
(different states) and compactness (same states) are becoming
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FIGURE 9. (a) Two-dimensional original feature distribution. (b) Three-dimensional original feature distribution.

FIGURE 10. (a) Two-dimensional feature distribution after JDA. (b) Three-dimensional feature distribution after JDA.

more and more apparent. The figure of feature distribution
can further prove the effectiveness of JDA.

In addition, some parameters of JDA need to be set in
the proposed method, the regular parameter of λ is 0.95, the
number of iterations is 10, the kernel type is linear, and the
dimensions after adaptation is 10.

Compared with Figure 9 and Figure 10, it can be observed
that the structure of the feature set will be greatly improved
through the optimization of the JDA algorithm. Then,
the optimized bearing feature data is input to the classifier
for diagnosis.

C. THE COMPARISON ANALYSIS OF DIAGNOSIS METHOD
To verify the superiority of the signal preprocessing method,
the denoised signal is compared with the original signal
under the same signal decomposition and feature optimiza-
tion experiment environment of the. Then the KNN is used as
a classifier to diagnose the feature set of rolling bearings. The
results of diagnostic accuracy based on KNN are as follows:
the accuracy of the original signal is 91.0%; the accuracy of
the denoised signal is 93.0%.

TABLE 6. The effectiveness of diagnosis model under different feature
analyzation.

Especially, the PSO-LSSVM is used as a classifier in the
comparison experiment, and the signal of each comparison
experiment is decomposed into three components by VMD.
The source domain dataset includes 900 features under three
different working conditions, and the target domain dataset
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FIGURE 11. (a) Training accuracy of fault diagnosis model. (b) Test
accuracy of fault diagnosis model.

contains 600 features under two different working conditions.
Figure 11 shows the training and test fault diagnosis accuracy
of the proposed method. All 900 features of the training
experiment were correctly classified, while in the test exper-
iment, 583 features were correctly classified and 17 features
were misclassified.

TABLE 7. The superiority of the proposed diagnosis model.

Therefore, to analyze the specific superiority of improved
adaptive filtering and JDA algorithm in the fault diagnosis

model, some comparative experiments are carried out in
terms of the signal de-noising and feature structure optimiza-
tion in this paper. Table 6 and Table 7 show the results of
comparative experiments. Among them, Table 6 analyzes the
diagnosis efficiency of fault diagnosis models under different
feature analysis models. Compared with the other feature
distribution optimization algorithms, JDA can optimize the
feature distribution effectively and has high accuracy in both
training and test results.

Table 7 illustrates the necessity of the improved method.
From the experimental results of two fault conditions,
the accuracy of the fault diagnosis model is much improved
after optimizing the feature structure by JDA. So, the effec-
tiveness of JDA can be proved once again. Besides, the diag-
nostic accuracy of the de-noising signal directly confirmed
that the improved signal de-noising method could effectively
eliminate the influence of noise on fault diagnosis accuracy.

The same acceleration data collected from the Key Lab-
oratory of Guangdong Petrochemical Equipment were used
to prove the superiority of the diagnosis method proposed
in this paper. Table 8 shows the accuracy of different meth-
ods. Where, a variety of different signal decomposition
algorithms, signal denoising algorithms, and classification
algorithms are adopted to compare with the method in this
paper. It is evident that the classification and decomposition
algorithm in this paper has substantial advantages. The results
show that the proposed method has higher accuracy and
efficiency than the previous methods.

TABLE 8. The superiority of the proposed diagnosis model.

VI. CONCLUSION
In summary, this paper proposed a cooperative method for
bearing fault diagnosis, which aims to explore the optimal
parameters in morphology filtering and optimize the structure
of the feature set. Kurtosis is applied to adaptive filtering for
parameter optimization, and then JDA optimizes the marginal
and conditional distribution of the bearing dataset. Through
the algorithm discrimination and comparison experiment,
the main conclusions are as follows.

(1) Because of the difficulty in selecting the width and
height of structural elements, kurtosis is used as the index to
measure the superiority of parameters of length and height
in structural elements. The experimental results show that
the superiority of the improved adaptive filtering lies in
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the greatly improved diagnosis accuracy of the signal after
de-noising the signal through the improved adaptive filtering.

(2) JDA is applied to carry out transfer learning on features
under different working conditions and optimize the condi-
tion distribution and marginal distribution of the features.
Moreover, compared with TCA and SSTCA, the compar-
ative experiments show that the diagnosis accuracy of the
feature set, optimized by JDA is higher than the above two
algorithms.

(3) Compared with other classical diagnostic models,
the diagnostic model in this paper can make full use of the
features under different working conditions, and it can also
solve the problems of lacking sample and unbalance distribu-
tion. In addition, the distribution of an optimized feature set
can improve the diagnosis accuracy of the rolling bearings.
The training and test accuracy of the proposed method is
100% and 97.8%, respectively. Therefore, the effectiveness
and superiority of the proposed fault diagnosis method are
proved for rolling bearings.

The method proposed in this paper discussed the problem
of parameter optimization in adaptive filtering and feature
optimization. Although the proposed method has greatly
improved the accuracy of rolling bearings fault diagnosis,
two serious problems need to be solved immediately. On the
one hand, in feature extraction, it is found that there are
some redundant and unnecessary features in the time domain
feature set, which affects the efficiency of the diagnostic
model. On the other hand, JDA has significantly improved
the distribution of datasets. However, it also takes more time.
Therefore, the following research is based on how to apply
the feature selection method and improve the efficiency of
JDA. In addition, the cause of the bearing fault from its
fault location or the variation trend of fault degree should be
considered in the next step.
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