
Received August 17, 2020, accepted August 27, 2020, date of publication September 1, 2020, date of current version September 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021034

Evaluating Multivariable Statistical Methods for
Downscaling Nighttime Land Surface
Temperature in Urban Areas
PENGCHENG QI 1,2, YAN CUI1, HAIJUN ZHANG1, SHIXIONG HU3,
LUNGUANG YAO1, AND LARRY BAILIAN LI4,5
1Collaborative Innovation Center of Water Security for Water Source Region of Mid-Line of South-to-North Diversion Project of Henan Province, Nanyang
Normal University, Nanyang 473061, China
2College of Environment and Planning, Henan University, Kaifeng 475004, China
3Department of History and Geography, East Stroudsburg University of Pennsylvania, East Stroudsburg, PA 18301, USA
4Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California–Riverside, Riverside, CA 92521, USA
5International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle
Route Project of South-North Water Diversion in Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China

Corresponding author: Pengcheng Qi (qipengchengsd@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 41201099 and Grant 51879130, in part
by the University Youth Excellent Teacher Training Program of Henan Province under Grant 2016GGJS-126, in part by the Scientific
Research and Service Platform fund of Henan Province under Grant 2016151, in part by the fund of Scientific and Technological
Innovation Team of Water Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan
Province, and in part by the Postdoctoral Research Funds of Henan University under Grant BH2012042.

ABSTRACT For research and practice in fields such as the environment and meteorology, nighttime land
surface temperature (LST) images at fine resolution provide important basic data. Since only a few satellite
sensors can take fine-resolution thermal infrared images at night, such images are rather scarce. Downscaling
of coarse-resolution LST images is a potential method for obtaining high-resolution LST images. However,
downscaling methods have been mostly proposed for daytime LST images. This study aimed to evaluate
the performance of methods that combine multiple explanatory variables and machine learning algorithms
for downscaling coarse-resolution nighttime LST images in urban areas. Verification showed that the errors
in the downscaling results were acceptable (mean absolute errors within 2 K). The resulting images could
depict the spatial pattern of night LST in the study area in great detail. It was demonstrated that visible-near
infrared images taken in the daytime could be used for downscaling of nighttime LST images, the rationality
of which was deduced. It was also demonstrated that the performance of the spectral explanatory variables in
nighttime LST downscalingwas not lower than that of themechanism explanatory variables. Thismethod has
high application value in many academic and practical efforts, such as land-atmosphere interface radiation
budget studies, suitability assessments of human settlement, and urban environmental planning.

INDEX TERMS Advanced spaceborne thermal emission and reflection radiometer (ASTER), downscaling,
land surface temperature (LST), landsat 8 operational land imager (OLI), moderate resolution imaging
spectroradiometer (MODIS), nighttime, urban areas.

I. INTRODUCTION
Land surface temperature (LST) reflects the intensity of
molecular thermodynamic movements of surface substances
and the thermal degree of the land surface [1], [2]. LST
has a profound impact on the intensity of energy flow and
exchange of substances between the earth and atmosphere.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingli Li .

Numerous studies on urban thermal environmental monitor-
ing [3]–[5], land surface processes [6]–[8], estimations of
soil moisture [9]–[11] and evapotranspiration [12]–[14] and
other related aspects based on LST data from thermal infrared
remote sensing have been reported. Most of the existing
research is based on LST data obtained during daytime. How-
ever, the research and application values of nighttime LST
data are as important as those of daytime LST data. In the
environment, nighttime LST directly influences the thermal
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comfort of the environment and thus affects the intensity of
human outdoor activities [15], [16]. Furthermore, this fac-
tor can indirectly influence urban weather and atmospheric
pollution at night through stability and the thermodynamic
properties of the boundary layer as well as the height of the
mixed layer. In the fields of forestry and ecology, the night-
time temperature of the canopy or soil has special signifi-
cance for individual organisms and ecosystems. Therefore,
nighttime LST data have important research significance and
application values. However, research on regional nighttime
LST is limited.

Satellite-borne thermal infrared remote sensing images are
the most important data sources for depicting LST at regional
scales due to their advantage of providing spatially continu-
ous and simultaneous views of an area [17], [18]. However,
most satellite-borne thermal infrared sensors produce images
only in the daytime. Although some sensors, such as theMod-
erate Resolution Imaging Spectroradiometer (MODIS) and
Geostationary Operational Environmental Satellite Imager,
can take thermal images at night, the spatial resolution of
their images is too coarse to be suitable for many applications.
The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) has relatively finer spatial resolution
but has a long revisit interval and low probability of acquiring
high-quality images due to cloud disturbances. This limita-
tion may explain why there is currently minimal research
using nighttime LST data at regional scales.

In the absence of fine-resolution satellite sensors capable
of imaging at night, a potential solution is to downscale
coarse-resolution LST images. Until now, numerous studies
have been conducted to develop various methods for daytime
LST downscaling (in fact, the downscaling objects in previ-
ous studies have included three types: digital number (DN)
images in the thermal infrared band, brightness tempera-
ture images, land surface temperature images; for simplicity,
we refer to these as LST in this section). These methods
are also called LST image sharpening, subpixel temperature
estimation or disaggregation of LST in previous literature.
These methods can be categorized into three groups [19]:
statistical [18], [19], physical [20], [21] and spatiotemporal
methods [22]–[24]. Among these groups, statistical methods
have received more attention due to their accuracy and sim-
plicity [1], [19]. The conceptual framework of statistical LST
downscaling methods involves the following steps: (1) con-
struct an LST model (i.e., a statistical relationship between
LST and explanatory variables) using sample pixels from
coarse-resolution images of these variables and (2) simulate
LST at fine resolution by inputting fine-resolution images
of the explanatory variables into the LST model. The two
following paragraphs provide an analysis of previous stud-
ies from the aspects of explanatory variables and regression
tools, respectively.

One trend of statistical LST downscaling research is the
increase in the number of explanatory variables. Most early
methods used a single explanatory variable, such as the nor-
malized difference vegetation index (NDVI) [18], [25]–[27].

However, although those methods are effective in homo-
geneous agricultural areas, they may not perform well in
highly heterogeneous areas, such as urban areas. To improve
the robustness and accuracy of LST downscaling methods,
many recent studies have usedmultiple explanatory variables.
We call these methodsmultivariable statistical methods. They
can be further divided into the following three categories:
(1) directly using raw DN or reflectivity of the visible-near
infrared (VNIR) bands as explanatory variables [28], [29],
which we call spectral explanatory variables; (2) transform-
ing those VNIR images to derive remote sensing indexes
and then using these as the explanatory variables [30]–[34],
which theoretically has more specific physical meaning than
the previous images; we call these mechanism explanatory
variables; (3) adding auxiliary data, such as meteorological
data and digital terrain models on the basis of the previous
categories [35], [36]. The literature that has used the first
category of explanatory variables has emphasized the benefits
of doing so, namely, simplifying the processing steps on
the premise of accurate downscaling results. In contrast, the
literature that has used the second category considered that
these variables were more conducive to LST downscaling
because they had more significant biophysical implications
of surface energy balance (SEB). When the research area was
large or mountainous, use of the third category of explanatory
variables could significantly improve the accuracy of LST
downscaling methods [35].

Given the increased numbers of explanatory variables
used in LST downscaling, simple regression tools are not
competent to determine the statistical relationship between
LST and explanatory variables. At present, machine learning
algorithm are used to solve this problem. In [30], a genetic
algorithm and self-organizing feature map artificial neural
network (ANN) were utilized to model the relationships
between LST and 4-9 land-surface parameters. Gao et al. [28]
employed a regression tree algorithm to train the relation-
ship between brightness temperature and top-of-atmosphere
reflectance for six VNIR bands and found that the algorithm
could avoid the risk of overfitting and reduce the sensitivity
of downscaling results to errors in the input variables. In [19],
machine learning algorithms (i.e., random forest regression
(RFR), support vector regression (SVR), and extreme learn-
ing machine (ELM)) outperformed a traditional temperature
sharpening technique (TsHARP), and ELM performed better
than RFR and SVR. In [29], machine learning algorithms
(i.e., gradient boosting machine and support vector machine)
solved the problem of large numbers of explanatory variables
and strong collinearity between them so they could compe-
tently distinguish the most important explanatory variables
frommore than 100 candidate variables (hyperspectral bands)
and then accurately simulate fine-resolution LST. In contrast,
Wang et al. [34] pointed out that the machine learningmethod
was not always superior to simple linear regression in terms of
simulation accuracy and that a two-variable interactionmodel
would be sufficient to downscale the daytime or nighttime
LST images.
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FIGURE 1. The study area. (a) The location of the area; (b) The area shown using a true color composite image from Landsat 8 OLI.

Thus far, most LST downscaling methods were devel-
oped for daytime LST, while only a few were devel-
oped for nighttime LST, such as [37]. Nichol classified a
SPOT-5 image to derive a land cover type image and then
used the latter to generate an emissivity image; finally, based
on the emissivity image, a nighttime brightness temperature
image was corrected to an LST image while enhancing its
spatial resolution [37]. The reliability of that method depends
on the influence of emissivity on the nighttime LST as well
as the accuracy of the emissivities estimated based on land
cover types.

As a state variable in the complicated process of SEB,
the spatial variability of nighttime LST depends on spatial
variations of the energy budget in a certain time range before
the time being studied, so it also depends on the spatial
variations of various environmental factors in these processes.
Emissivity, the unique explanatory variable in [37], is only
one of these factors. Therefore, in theory, using a multivari-
able method is better than using a single variable method to
improve the accuracy of nighttime LST downscaling. How-
ever, how to accurately depict the spatial distributions of these
environmental factors at night becomes a question worthy
of deliberate consideration. Specifically, only daytime VNIR
images are potential data to depict the nighttime environmen-
tal factors because VNIR images cannot be obtained from
satellite-borne sensors at night. The rationality and reliability
of using VNIR images taken in the daytime for downscaling
of nighttime LST image need to be discussed and verified.

This study aimed to evaluate the performance of the
multivariable statistical methods for downscaling night-
time LST. Specifically, the object of downscaling was the
1000-m resolution nighttime MODIS LST product; the

explanatory variables were calculated from Landsat 8 Oper-
ational Land Imager (OLI) and Thermal Infrared Sen-
sor (TIRS) images, which were obtained during the daytime;
the ASTER nighttime LST product was used as the validation
set. Since MODIS LST products, Landsat data, and similar
data are easy obtainable by ordinary users worldwide, if this
method is shown to be reliable, this method will be of great
significance for many academic and practical works. There
are two key issues in this framework: (1) Can daytime VNIR
images be used for downscaling nighttime LST? (2)Which of
the spectral explanatory variables or mechanism explanatory
variables is more suitable for LST downscaling? For these
two questions, based on the verification of the downscaling
results of this study, the answers were obtained and the rea-
sons were analyzed in this paper.

II. MATERIALS AND METHODS
A. STUDY AREA
The study area is a rectangular area beginning at longitude
120.23◦E, latitude 30.87◦N to longitude 121.03◦E, latitude
31.61◦N. It is located in the southeast of Jiangsu Province
(Figure 1), covering municipal districts of Suzhou and the
surrounding areas thereof. The area was selected as study
area given its diversity of land cover types and availability
of various types of data. The main land use and cover types
are urban land, forestland, cultivated land, and water body.
In particular, urban land has a complex composition, includ-
ing industrial areas, commercial areas, residential areas, and
areas under construction.

B. DATA SOURCE AND PREPROCESSING
Figure 2 shows the workflow of the present study.
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FIGURE 2. A schematic workflow of the current study.
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In this study, MODIS was used to provide a coarse resolu-
tion nighttime LST image. Although both Terra MODIS and
Aqua MODIS could take images at night, considering that
this study was a methodology study, we selected the former
for testing. The Terra MODIS data were downloaded from
the National Aeronautics and Space Administration (NASA)
Distributed Active Archive Center (DAAC) located in the
Goddard Space Flight Center in Greenbelt, Maryland. The
image was a level-3 data product (MOD11A1, Collection-5)
in HDF format, and the original image was taken by Terra
MODIS at 14:13:41 UTC on October 1st, 2015 at H28V05.
The Collection-5 was the latest version available when we
downloaded the data. The HDF file was decompressed to
extract the nighttime LST image (denoted asMODIS_NLST)
and data quality control marks (QA) and then projected into
an image at 1000-m resolution in the WGS84 Universal
Transverse Mercator (UTM) coordinate system. Based on
the QA, the pixels with an error greater than 2 K in the
MODIS_NLST image were removed.

Landsat 8 OLI\TIRS data were obtained from Earth-
Explorer of the United States Geological Survey (USGS).
They were geometrically fine-calibrated images (in UTM
coordinate system) taken at 2:31:11 UTC on October 13th,
2015 with a WRS-2 path\row number of P119R38. Except
the panchromatic wave band, all the remaining bands of
Landsat 8 OLI\TIRS were at 30-m resolution.

The ASTER nighttime LST image (denoted as ASTER_
NLST) was used to conduct a cross-comparison. This type
of data had been used in several previous similar stud-
ies [30], [38], [39], and the reliability meets the requirements
of the study. The image was obtained from USGS EarthEx-
plorer and was a level-2 data product (AST08) in the UTM
coordinate system, and the original image was taken by Terra
ASTER sensor at 14:13:41 UTC on October 1st, 2015.

A 12-day difference is noted between OLI\TIRS data
and MODIS\ASTER data. In practical applications, there
are usually time differences of days or even dozens of days
between coarse-resolution LST images and fine-resolution
explanatory variable images. The 12-day difference in this
study reflects the reality.

C. SELECTION OF EXPLANATORY VARIABLES AND
GENERATION OF THEIR RASTER LAYERS
In the current study, two groups of explanatory variables
were used to construct nighttime LST model (i.e., statistical
relationship between nighttime LST and explanatory vari-
ables). One group was spectral explanatory variables, which
were mainly expressed in the apparent reflectance images of
VNIR bands. The other group was mechanism explanatory
variables, which were chosen mainly based on the previous
studies focusing on SEB [40]–[43] and expressed in raster
layers gained from calculation or transformation of VNIRDN
images; each of these variables pointed to a specific environ-
mental factor that might affect nighttime LST in the process
of surface energy budget. The nighttime LST model that was
constructed by the first group of explanatory variables was

purely statistical, whereas the LST modeling based on the
second group of explanatory variables was performed to inte-
grate human being’s knowledge on land SEB processes into
the statistical model. The goal of this experimental designwas
to observewhether the LSTmodels based the two explanatory
variable groups exhibit significant differences in accuracy.

1) SPECTRAL EXPLANATORY VARIABLES
This group has 8 variables, including the apparent reflectivity
of Landsat 8 OLI bands 1-7 (recorded as ρTOA_i, i = 1
to 7) and the atmosphere top radiance of Landsat 8 TIRS
band 10 (recorded as L10). The ρTOA_i was calculated as
follows [44]:

ρTOA_i =
(
MiQcal_i + Ai

) /
cos θz i = 1 to 7 (1)

where Qcal_i are the Level 1 DN value, and Mi and Ai,
which are acquired from the header file, are the reflectivity
multiplicative rescaling factor and the reflectivity additive
rescaling factor of the band i, respectively. Here, θz is the solar
zenith angle of the study area at the imaging moment.

The formula to calculate the atmosphere top radiance of
the thermal infrared band (L10) is noted as follows [44]:

L10 = M10Qcal_10 + A10 (2)

where M10 and A10 are the radiance multiplicative rescaling
factor and the radiance additive rescaling factor of band 10,
respectively, which are acquired from the header file.

2) MECHANISM EXPLANATORY VARIABLES
Numerous factors can influence LST, such as net shortwave
radiation, air temperature, wind speed as well as moisture,
specific heat capacity, thermal conductivity and density of
the land surface. However, abundant exogenous data (e.g.,
digital terrain model and meteorological data) must be intro-
duced to simulate distribution of all abovementioned factors.
One of the purposes of this study was to observe ‘‘whether
explanatory variable layers formed by combination and trans-
formation of original optical images based on knowledge only
without adding any exogenous data can improve prediction
accuracy of nighttime LST’’. Thus, a total of 11 variables
were selected according to two principles: (1) no exogenous
data need to be added during the construction of the vari-
able raster layers; (2) the variables could represent above-
mentioned environmental factors to a large extent. Specific
reasons for selecting them and themethods of generating their
raster layers are introduced as follows:
• Daytime LST can be viewed as the basis of nighttime
LST. The LST changes occurring from day to night were
mainly determined by the characteristics of the land sur-
face. In this study, the daytime brightness temperature
(BTday) was employed to proxy daytime LST. Although
the value of brightness temperature is not equal to LST,
there is a close correlation between them, and the spatial
distribution of brightness temperature can well fit that of
LST [45], [46]. BTday (K) was calculated by Landsat 8

VOLUME 8, 2020 162089



P. Qi et al.: Evaluating Multivariable Statistical Methods for Downscaling Nighttime LST in Urban Areas

TIRS Band10 as follows [44]:

BTday = 1321.08
/
ln(774.89

/
L10 + 1) (3)

• The shortwave surface albedo (albedo) is the ratio of the
shortwave radiant flux reflected to the shortwave radiant
flux incident on a surface. It reversely determines the
capability of land surface to absorb solar radiation. The
remote sensing retrieval of albedo essentially calculates
the broadband albedo from the reflectivity of several nar-
row bands. Liang [47] proposed retrieval algorithms of
albedo for a variety of sensors, including the algorithm
for retrieving albedo from the atmospheric corrected
reflectivity of Landsat TM/ETM+ Bands 1, 3, 4, 5, and
7. Landsat 8 OLI Bands 2, 4, 5, 6, and 7 are bands
that are similar to Landsat TM/ETM+ Bands 1, 3, 4,
5, and 7. In addition, Xu [48] further proved the high
correlation between the corresponding bands of OLI
and TM/ETM+. Therefore, the corresponding bands of
OLI were input into Liang’s algorithm [47] to calculate
albedo:

albedo = 0.356ρAR_2 + 0.130ρAR_4 + 0.373ρAR_5
+ 0.085ρAR_6 + 0.072ρAR_7 − 0.0018 (4)

where ρAR_i(i =2, 4, 5, 6, 7) is the reflectivity of the ith

band after atmospheric correction. Based on the COST
atmospheric correction algorithm [49], ρAR_i was calcu-
lated as follows:

ρAR_i = (Mi(Qcal − Qh)+ Ai)/cosθz (5)

where Qh is the atmospheric correction value obtained
by dark object method.

• The thermal capacity and surface roughness of under-
lying surface are closely related with vegetation
quantity [40]. Normalized difference vegetation index
(NDVI) was selected to represent the factor of vegetation
quantity. The NDVI image was derived as follows:

NDVI = (ρTOA_5 − ρTOA_4)/(ρTOA_5 + ρTOA_4) (6)

• The land surface in urban areas is mainly composed of
nonevaporation and nonpermeation materials, such as
asphalt, concrete, stone, metal, etc. Normalized differ-
ence build-up index (NDBI) is an effective index for
downscaling of LST in urban areas [18], [34]. TheNDBI
image was derived as follows [18]:

NDBI = (ρTOA_6 − ρTOA_5)/(ρTOA_6 + ρTOA_5) (7)

• Water is a common surface feature with high thermal
capacity. The normalized differencewater index (NDWI)
is an efficient index to distinguish water and lands [50]
and can represent the proportion of water in the mixed
pixel. The NDWI image was obtained using the follow-
ing equations [50]:

NDWI = (ρTOA_3 − ρTOA_6)/(ρTOA_3 + ρTOA_6) (8)

• The thermal capacity of soil and vegetation is closely
related with moisture content. The temperature vegeta-
tion drought index (TVDI) is a simple and effective index
reflecting soil water supply [51]. The TVDI image was
obtained using the following equations:

TVDI = (BTday − BTmin)/(BTmax − BTmin) (9)

BTmin = a1 ∗ (NDVI )+ b1 (10)

BTmax = a2 ∗ (NDVI )+ b2 (11)

where BTmin and BTmax are the brightness tempera-
tures at wet and dry edges for a given NDVI, respec-
tively. The wet and dry edges are the boundaries of
NDVI-LST scatter plot and established by linear regres-
sion method(see [51]). The functions of the two edges
are shown in Equations (10) and (11), where a1, b1, a2,
and b2 were regression coefficients provided by linear
regressions.

• Hue (Hue), lightness (Lit) and saturation (Sat) of true
color composite images might represent the difference
of urban materials to some extent and therefore exhibit
a correlation with thermal properties of the urban land
surface. The images generation method was determined
as follows: true color synthesis results based on OLI
bands 4, 3, and 2 were converted into the HLS space,
obtaining Hue, Lit, and Sat images.

• The principal component layers of visible light (CVis)
and the principal component layers of mid/near-infrared
spectra (CIR) are expected to proxy the thermal proper-
ties of land surface, which are difficult to depict directly
or the factors that influence the energy balance with
unknown mechanism. We performed principal compo-
nent transformation based on OLI bands 1∼4 and bands
5∼7 respectively, and chose the two resultant first prin-
cipal components as CVis and CIR.

Long-wave radiation emitted from land surface is the main
component of SEB at night and largely depends on the
emissivity in thermal infrared range. Therefore, in theory,
emissivity should be taken as an explanatory variable of the
LST downscaling model. However, it is difficult to obtain
the emissivity directly by remote sensing. A previous study
used land-use type data combined with field measurements to
estimate emissivity [37]. However, field-measurement proce-
dures will reduce the simplicity and feasibility of LST down-
scaling method. Moreover, emissivities of buildings, roads
and squares are different, and the emissivities of the various
building roofs are also different due to the difference of
materials. When using remote sensing images to classify land
types, those objects are typically divided into the same type of
land, which causes the problem of using a constant to express
the different emissivities. These errors will be transmitted
to final results. In this study, given the close relationship
between emissivity andmaterial type and vegetation quantity,
the effect of emissivity on LST is implied in hue, lightness,
saturation, and NDVI, and we believed that these variables
can largely proxy emissivity.
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Thus far, 8 layers of spectral explanatory variables (ρTOA_1,
ρTOA_2, ρTOA_3, ρTOA_4, ρTOA_5, ρTOA_6, ρTOA_7, and L10), and
11 layers of mechanism explanatory variables (BTday, albedo,
NDVI, NDBI, NDWI, TVDI,Hue, Lit, Sat, CVis, and CIR) have
been generated. The spatial resolutions of these layers were
determined by resolution of the original data, 30 m. Based on
these layers, the 1000-m resolution layers were produced by
area weight averagingmethod. Specifically, for each explana-
tory variable, the mean of its pixels corresponding to the
scope of every MODIS_NLST pixel was calculated by the
zonal statistics tool of ArcGIS (Version 10.1) [52], which was
used as the value of the corresponding pixel of a new 1000-m
resolution explanatory variable layer. After this process, eight
1000-m resolution spectral explanatory variable layers and
eleven 1000-m resolution mechanism explanatory variable
layers were prepared.

D. SELECTION OF SAMPLE PIXELS
The objective of this section was to select appropriate pix-
els from MODIS_NLST as sample pixels. The values of
these pixels and the pixels of explanatory variable layers
(1000-m resolution) on the corresponding spatial locations
would be used in the next step to establish LST models. The
basis for selecting sample pixels is the degree of heterogene-
ity of explanatory variable pixels (30-m resolution) covered
by each 1000-m resolution pixel, which is represented by
variation coefficient (CVx):

CV x = σx
/
µx (12)

where subscript x represents the explanatory variable,µx and
σx are the mean and the standard deviation of 30-m resolution
pixel values of the x explanatory variable within each 1000-m
resolution pixel, respectively.

A previous study suggested that the statistical model based
on pixel samples with lower heterogeneity was more easily
applied to finer-resolution explanatory variables compared to
that based on pixel samples with higher heterogeneity [28].
However, if we excessively pursued the homogeneity of
30-m resolution explanatory variable pixels covered by each
1000-m resolution sample pixel (i.e., CVx was equal to or
close to zero), the majority of the selected sample pixels
would have belonged to the large homogenous land patches
with weak representativeness of fine and broken land patches,
and the distribution of sample values would have been more
concentrated than that of population values. If the extremely
homogenous sample-based model had been applied to the
entire study area, large errors would have been generated.

Compromises between heterogeneity and representative-
nessweremade here. Specifically, for each 1000-m resolution
pixel, the CVx was calculated. All the 1000-m resolution
pixels were sorted by CVx from high to low. Then, the top
33% pixels in terms of CVx were eliminated as more hetero-
geneous pixels, while the remainder were retained as sample
pixels for modeling. Finally, the pixels selected as samples
account for 31.5% of the total 1000-m resolution pixels.

E. MODELING METHODS
Above two groups of explanatory variables (8 spectral
explanatory variables and 11 mechanism explanatory vari-
ables) on sample pixels were separately used as independent
variables, while the LST on spatially corresponding sample
pixels in MODIS_NLST were used as dependent variables
to establish the statistical relationship model between the
LST and explanatory variables. Two modeling methods were
employed: multivariate adaptive regression splines (MARS)
and regression tree (RT).

MARS is an efficient regression modeling method, which
can predict an output variable according to multiple inde-
pendent variables. This method is suitable for finding com-
plex data structures hidden in high-dimensional data. The
method divides the high-dimensional feature space into sev-
eral subspaces. In each subspace, an independent function is
employed for fitting. See literature [53] for details.

RT is a type of nonparametric regression applicable to
high dimensional data with good effects on nonlinear prob-
lems. This method partitions training samples continuously
through recursion of the binary branching, and the mode
of each branching depends on the ‘‘heterogeneity stan-
dard’’, aiming at the maximum decline of the variation of
the objective variables in the two sub-nodes. With con-
tinuous binary branching, the homogeneity level of the
samples in each node increases continuously and finally
reaches the highest. The final result in the form of a rule
tree obtained after trimming represents the relation between
the LST and explanatory variables. See literature [54] for
details.

The above two modeling methods and two groups of
explanatory variables are crossed to form four models: the
spectral-variable-MARS model, spectral-variable-RT model,
mechanism-variable-MARSmodel and mechanism-variable-
RT model.

F. SIMULATION OF NIGHTTIME LST IMAGES AND
RESULTS VALIDATION
The 30-m resolution explanatory variable raster layers were
input into the four models established in the previous section
successively by the ArcGIS (Version 10.1) raster calcula-
tion tool, yielding four preliminary downscaled nighttime
LST images (30 m resolution). Since the spatial resolution
of validation image (ASTER_NLST) is 90 m, it is neces-
sary to convert the preliminary downscaled images into the
images with 90-m resolution for comparison. The follow-
ing procedure was performed to convert each preliminary
downscaled image as follows: every 3 × 3 pixels in the
preliminary downscaled image is aggregated into one pixel
with a resolution of 90 m, and the pixel value was the aver-
age value of those 3 × 3 pixel values. These results were
noted as Down_NLST1, Down_NLST2, Down_NLST3, and
Down_NLST4 (see Figure 2), which are hereinafter referred
to as downscaling results. The mean absolute error (MAE)
and root mean square error (RMSE) of the downscaling
results were calculated using ASTER_NLST as a reference
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TABLE 1. Basic parameters and errors of the downscaling results.

TABLE 2. The methods and resulting errors of previous similar studies.

to measure accuracy. Moreover, the determination coeffi-
cients (R2) of the results with ASTER_NLST were calcu-
lated.

III. RESULTS AND ANALYSIS
The errors of the four downscaling results are shown
in Table 1. These results were compared with a cubic con-
volution resampling result of MODIS_NLST (CC_NLST).
The reason that we performed the comparison was as fol-
lows: The cubic convolution resampling method is a tradi-
tional method to obtain finer-resolution image and is easy to
operate. Typically, a newly proposed method has application
values only when it achieves greater accuracy than cubic
convolution resampling method. The MAE, RMSE, and R2

of CC_NLST are calculated as 1.710 K, 2.0814 K, and 0.707,
respectively. Table 1 demonstrates that all results except
Down_NLST3 exhibit significantly lower MAE and RMSE
than CC_NLST and higher R2, indicating that the proposed
downscaling method is superior to the cubic convolution
resampling method.

In Table 1, both MARS modeling and RT modeling meth-
ods, the models based on mechanism explanatory variables
exhibit higher errors than the models based on spectral

explanatory variables. The reasons and practical implications
of this phenomenon will be analyzed in Section IV.B.

Several previous studies on surface thermal information
downscaling (or known as sharpening or subpixel tempera-
ture estimation) are selected for comparison, which resolution
is similar or partly similar to this study. Their research meth-
ods and resulting errors are described in Table 2. Based on
Table 2, it can be inferred that RMSE and MAE of the results
obtained in this study are at a moderate level compared to
those of the previous studies.

The most significant difference between this study and
most previous studies is the difference in downscaling
objects. Those studies focused on downscaling of daytime
LST, whereas this study focused on downscaling of nighttime
LST. In addition to this difference, the following difference
also requires attention. Most of the previous studies were
methodological studies and assumed an idealized setting for
the task scenario. Those studies used a fine-resolution LST
image (LSTfine) to create a coarse-resolution LST image
(LSTcoarse_artificial) and then used the sample pixels in the
LSTcoarse_artificial for modeling and then simulating a new
fine-resolution LST image (LST′fine). Finally, LSTfine was
used to verify LST′fine. However, for actual task scenarios,
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the LSTfine does not exist and is the target of simulation.
The present study is an actual-case-based study that used
the true images from different sensors (MODIS_NLST and
ASTER_NLST) as the modeling samples and the verification
data and therefore was affected by several additional factors,
such as the geo-referencing accuracy, the date/time differ-
ence, and the quality of validation set, leading to larger errors
than those of assumed-case-based studies. Thus, the error
level of this study as an actual-case-based study is acceptable.

The downscaling results (Down_NLST1 to Down_NLST4)
of differentmodels and the validation image (ASTER_NLST)
are presented (Figure 3a-e). To save space, only locals of
the images are shown. The downscaling results and valida-
tion image are compared visually for qualitative assessment
of the downscaling effect. Compared to validation images
(Figure 3e), Down_NLST1 (Figure 3a), Down_NLST2 (Fig-
ure 3b), and Down_NLST4 (Figure 3d) exhibit no significant
visual errors, while Down_NLST3 (Figure 3c) exhibits evi-
dent errors at some places. Compared to other three down-
scaling results, the spatial differentiation pattern of nighttime
LST reflected by Down_NLST1 (Figure 3a) exhibits the
highest visual similarity with the validation image.

The downscaling results provide sufficient details on the
spatial variability of nighttime surface temperature. These
images, together with land classification map (Figure 3(f)),
enable us to conveniently observe the relationship between
the nighttime surface temperature and the land types. Based
on visual examination, the downscaling results reflect dif-
ferentiation patterns of the nighttime surface temperature
between land and water accurately, and the distinct water-
land boundaries can be observed. The surface temperature
of land area is significantly lower than that of water area.
This finding confirms to Jensen’s [57] diurnal changes of
LST of urban objects. That literature showed that the ther-
mal capacities of non-water objects were lower than that
of water bodies and the temperature of non-water objects
changed quickly and began to be lower than temperature
of water after ‘‘thermal crossover’’. The term of ‘‘thermal
crossover’’ in the literature referred to the times when the
main objects, such as soil, rock and water, have the same
radiant temperature. Usually, the thermal crossovers occur
after sunrise and near sunset. The simulation time in this study
was 22:14 (local time), which is later than the after-sunrise
thermal crossover. Therefore, the land surface temperature
at that time was significantly lower than the water surface
temperature.

Both the downscaling results and the validation image
show that industrial and commercial lands are the land
types with the lowest nighttime LST. Further observation
of finer-resolution images in Google Earth reveals that such
low-temperature land are mainly factories and warehouses.
This finding could be explained as follows: most factories
and warehouses are roofed by color-steel plates, which have
lower heat storage capacity due to thermodynamic properties
(e.g., thermal conductivity) compared with roof materials of
residential buildings. In addition, the simple and consistent

geometric structure of factories and warehouses forms low-
roughness surfaces that more easily dissipate heat that accu-
mulates at daytime.

In downscaling results and validation image, forestry and
residential lands have close nighttime LST, which is lower
than LST on water and higher than LST on industrial and
commercial lands. This finding disagrees with research con-
clusions of Jensen [57], indicating that LST at night in indus-
trial and commercial lands was slightly higher than that in
vegetation and agricultural regions. This finding might be
related with different roof materials of main commercial and
industrial buildings in these two cities.

IV. DISCUSSION
A. USING DAYTIME VNIR IMAGES TO DOWNSCALE
NIGHTTIME LST
In the past, the explanatory variables used in daytime LST
downscaling were constructed from images of VNIR bands,
which were obtained in the daytime. However, for downscal-
ing nighttime LST, the VNIR bands cannot form images at
night. Moreover, in practice, due to the long revisit period
of Landsat satellites and the influence of clouds, the date
of formation of available VNIR images by remote sensors
on Landsat satellites may be several days different from that
of MODIS thermal infrared images. Therefore, only VNIR
images taken in daytime (and most likely several days ago)
can be used to construct explanatory variables for nighttime
LST downscaling. Is that reasonable?

To answer this question, it is necessary to analyze the
following two classic questions retrospectively. (1) How do
spatial LST variations form? For the sake of simplification,
only a case with clear sky, no wind, small spatial scale and
urban surface is discussed here. As LST is the state variable
of the SEB, the spatial variation of any component (including
incoming shortwave radiation, reflected shortwave radiation,
outgoing longwave radiation, incoming longwave radiation,
latent heat flux, sensible heat flux and subsurface heat flux)
in the SEB will lead to spatial variations of the LST, while
spatial variations of the SEB components mainly depend
on land surface characteristics, including albedo, emissivity,
specific heat, density of soil or building materials, roughness
length, thermal conductivity, soil moisture, vegetation type,
and leaf area index. (2) What is the principle that allows
VNIR-band images to be used as explanatory variables of
LST spatial variations? DN values or their derived data (such
as reflectivity and NDVI) of VNIR bands can directly or
indirectly represent one or several of the land surface char-
acteristics mentioned above, so a statistical correlation exists
between them and the LST. Moreover, because these surface
characteristics are basically stable over one or more days,
the instantaneous information recorded in the VNIR bands
can be used to represent the stable normality of the spatial
variations of surface characteristics. For example, the spatial
variations of vegetation quantities reflected by vegetation
index images will not change from day to night and will not
change significantly in a few days; therefore, it should not
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FIGURE 3. Downscaling results, validation image and land use and cover type (local). (a) Down_NLST1; (b) Down_NLST2;
(c) Down_NLST3; (d) Down_NLST4; (e) Validation image (ASTER_NLST); (f) Land cover type.
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be considered that the vegetation index image formed during
daytime a few days ago is not suitable for representing the
vegetation quantity tonight. This is the basic principle of sta-
tistical LST downscaling whether it is daytime or nighttime.
Therefore, it is reasonable to use daytime VNIR images (and
most likely obtained several days ago) to downscale nighttime
LST.

In the study of Nichol [37], emissivity was employed as
the only explanatory variable. Zhan et al. [1] also noted
that other surface characteristics (such as NDVI and albedo)
other than surface emissivity are not suitable for nighttime
LST downscaling. However, due to heat storage in building
interiors, vegetation canopies and deep soil, the spatial dif-
ferentiation pattern of LST formed in the daytime will still
be reflected at night. After sunset, the land surface produces
different long-wave radiation due to different emissivities and
temperatures; different subsurface heat fluxes due to different
thermal conductivities, densities, and specific heat capacities;
and different sensible heat fluxes due to different roughness
lengths. The spatial variations of these processes lead to the
further evolution of the spatial variability pattern of LST
formed in daytime and thus form a new spatial variability
pattern of LST. Therefore, when conducting nighttime LST
downscaling, it is not sufficient to exclusively use emissivity
as the explanatory variable. The above land surface charac-
teristics should be reflected in the LST downscaling model
as much as possible either directly or indirectly.

B. MECHANISM EXPLANATORY VARIABLE AND SPECTRAL
EXPLANATORY VARIABLE
This study has shown that the downscaling results based on
mechanism explanatory variables exhibit higher errors than
those based on spectral explanatory variables. This finding
indicates that, without adding external data, only combining
and transforming spectral data (i.e., establishing the so-called
mechanism explanatory variables) cannot improve the ability
to interpret LST spatial variation.

A previous study has demonstrated that the information
contained in spectral explanatory variables far exceeds a
single remote sensing index, which can reflect various char-
acteristics of land surface. With the support of machine
learning algorithm, the high-dimensional feature space is
automatically divided into many subspaces, and the specific
relationship between LST and spectral explanatory variables
is determined separately in each of them, thus avoiding the
disadvantages of using higher-order polynomial function to
simulate LST (e.g., over fitting and high sensitivity to sample
noise) [28]. The results of this study support that view, and
further analysis is provided below.

Although mechanism variables exhibit more explicit direc-
tivity than spectral variables (i.e., each mechanism variable
is more inclined to represent certain specific environmen-
tal factor, for example, NDVI represents vegetation quan-
tity), these variables could minimally represent other factors.
In other words, a one-to-many relationship exists between a
spectral variable and some environmental factors, whereas a

one-to-one relationship exhibits between a mechanism vari-
able and an environmental factor. The purpose of this study
was to test whether it is more effective to construct explana-
tory variables through simple combination and transforma-
tion of spectral data without adding any exogenous data
compared with directly using spectral data as explanatory
variables. Limited by not adding exogenous data, the mecha-
nism variables could neither reflect all environmental factors
that will influence nighttime LST comprehensively and accu-
rately nor have a one-to-many relationship like spectral vari-
ables. Therefore, downscaling results based on mechanism
explanatory variables are inferior to those based on spectral
variables.

The above findings suggest that spectral variables should
be used directly in the actual operation of nighttime LST
downscaling. Since the process of producing various remote
sensing indexes (i.e., the mechanism explanatory variable
referred to in this paper) is omitted, this method can be easily
developed as an automatic data processing program.

C. SOURCE OF ERROR
The downscaling results of this study have certain errors,
which are believed caused by the following: (1) self-errors
of models, which refer to errors caused by poor explanation
to target variable (i.e., LST) caused by inaccurate or (and)
incomprehensive explanatory variables or the failure of the
established statistical model to describe the complicated rela-
tionship between explanatory variables and target variable.
Specifically, it can be further divided into two types according
to sources. First, the MODIS_NLST was obtained on Octo-
ber 1st, 2015, while the original Landsat 8 OLI/TIRS data
for constructing explanatory variable images were obtained
on October 13th, 2015. The later were used to represent
the environmental features on previous date (October 1st,
2015). However, a 12-day difference was noted between these
two dates, during which the environmental features would
change slightly. Second, pixels in MODIS_NLST images
with large errors were eliminated by QA (2 K as threshold),
but the remaining pixel values still had errors. The threshold
of removing low quality pixels cannot be stricter because a
standard that is too strict will lead to an insufficient num-
ber of samples. Self-errors of models could be transmitted
to final results. (2) Scale-conversion errors, which refer to
the errors occur when the models built at coarse resolution
were applied at fine resolution. In this study, the errors of
final results are significantly larger than the self-errors of
models (e.g., the self RMSE of theMARSmodel based on the
spectral explanatory variables is 0.631 K, whereas the RMSE
of the final result based on this model is 1.758 K), indicating
that the scale-conversion errors occurred when the 1000-m
scale models are used for the 30-m resolution explanatory
variables.

D. POTENTIAL USE OF THIS METHOD
This method provides a possibility for researchers to obtain
fine-resolution nighttime LST images. The images are
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important basic data in the fields of meteorology, ecology,
and environment.

One example of such image application is urban air pol-
lution research. At present, air pollution has become one
of the most obvious environmental problems in large cities
around the globe. Air pollution is often caused by many
factors, and radiation inversion is considered an important
factor [58], [59]. Radiation inversion refers to a relatively
cool layer of air, which is usually adjacent to some underlying
surfaces cooled by a net loss of radiation. Inversion of temper-
ature causes atmospheric stability that restricts upward and
downward air movements such that pollutants may remain
suspended in a low air layer over a long period and has serious
impacts on the health of the citizens [60]. Due to the different
thermal properties of lands with different use and cover types,
the formation processes and strengths of radiation inversions
above different land surfaces are different. The method pro-
posed in this paper provides the possibility to analyze the
relationship between nighttime radiation inversion and land
use and cover types on a fine spatial scale. Based on the fine-
resolution night LST images generated by this method, it is
shown that the surface temperatures of factories and ware-
houses are significantly lower than those of other objects.
Therefore, we speculate that radiation inversions are more
likely to form over large areas of continuously distributed
factories and warehouses, thus enhancing air pollution in
these areas. In recent years, under the background of the rapid
development of the manufacturing industry, the total area of
factories and warehouses in many Chinese cities has been
growing rapidly and now has become amajor land type. If this
large-scale land use and cover change changes the surface
energy budget, which leads to the aggravation of air pollu-
tion, it will be a very noteworthy problem. To confirm this
inference, it is necessary to perform a comprehensive study of
the thermal properties and energy budgets of land surfaces as
well as the atmospheric stability of the atmospheric boundary
layer in areas with concentrated distributions of factories
and warehouses. The fine-resolution nighttime LST images
produced by this method will be an important data source for
that research.

Another example of the potential application of fine-
resolution night LST images is urban thermal environment
assessment and planning. Urban climate has a profound
impact on many aspects of people’s life and urban operation.
LST is an important aspect of urban climate that directly
affects the physical health and outdoor activity intensity of
citizens, and indirectly affects their mental health, life rhythm
and energy consumption of the city. The spatial distribution
pattern of LST has become an important factor in urban
environmental assessment and planning. Compared with the
daytime, the surface temperature at night has special environ-
mental significance: (1) for many people in cities, night is the
main period of outdoor leisure activities, and the influence of
outdoor environmental comfort on people’s choice of outdoor
activities ismore obvious at night; (2) in the daytime, human’s
cold and hot feelings about the environment depend on the

solar radiation, long-wave radiation from the surrounding
environment and the atmosphere, the heat conduction and
convection between the body surface and the air. After sunset,
given the influence of solar radiation disappears, the influence
of long-wave radiation becomes more important. The method
proposed in this study provides fine-resolution LST images,
which can reflect the spatial distribution pattern of long-wave
radiation in detail and provide important data sources
for future environmental assessment planning for thermal
comfort.

V. CONCLUSION
Downscaling has always been an important method for
obtaining fine-resolution LST images, but most of the pre-
vious downscaling methods were proposed for daytime LST
images. In this study, using 1000-m resolution nighttime
MODIS LST products and 30-m resolution daytime Landsat
8 images as experimental materials, the performance of mul-
tivariable statistical method in nighttime LST downscaling
was evaluated. Verification using ASTER LST image shows
that the downscaling errors are acceptable (the MAE values
vary from 1.475 to 1.761 K). Compared with the previous
studies focused on daytime LST downscaling, the accuracy
of nighttime downscaling results obtained in this study is
satisfactory. The downscaled images clearly reveal the spatial
differentiation pattern of nighttime LST in the study area and
can provide the possibility to analyze the relationships of LST
with land use and cover type on a fine spatial scale.

This study indicates that it is reliable and reasonable to
downscale nighttime LST images by using the VNIR images
obtained in the daytime (and most likely obtained several
days ago). The study also indicated that the spectral explana-
tory variables outperform mechanism explanatory variables
for nighttime LST downscaling; thus, the method can be
more easily developed into an automated image processing
program.

This method only requires several satellite remote sensing
images that are easy to obtain for ordinary users, so it is
simple and thus feasible. It is believed that this method has
important application value in many studies and practices of
urban meteorology, ecology, environment and other fields.
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