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ABSTRACT Resource allocation is essential for cloud-based load testing. The existing techniques use
coarse-grained resource allocation methods with an entire virtual machine occupied by a single test task for
cloud-based load testing. The idle resources in a virtual machine are unable to be used by other load testing
tasks. This may result in uneconomical use of test resources and increase test costs. To optimize the use of test
resources, this paper presents a shared-mode resource allocation method for cloud-based load testing. The
method shares client-side virtual machine resources among load testing tasks. It takes minimizing resource
redundancy, test execution cost, and network communication cost as optimization objectives of resource
allocation, with the assurance of enough test resources as a basic constraint. We introduce a multi-objective
optimization algorithm to create an optimized resource allocation plan for load testing tasks within a time
window. The experiments show that the proposed method can reduce resource demands for load testing and
thereby save the test costs.

INDEX TERMS Cloud testing, load testing, test resource allocation, multi-objective optimization.

I. INTRODUCTION
Many failures in online services are due to their inability to
scale to meet user demands [1]. To ensure service quality,
it is often necessary to conduct load testing before prod-
uct releases [2], [3]. Load testing is usually performed by
simulating workloads from a cluster of client hosts to test
the responses of a service [1]. To enable large-scale load
testing, various issues need to be addressed, such as the con-
struction and maintenance of the client hosts, the installation
of the simulation agents, etc. These issues are costly to be
addressed in a local manner [4]. Nowadays, load testing is
often migrated to the cloud and conducted based on cloud
resources. Performing load testing in the cloud can ease the
setup of test environments and reduce the hardware purchase
and maintenance cost [5]–[7].

To migrate load testing to the cloud, certain resource
allocation and scheduling techniques need to be intro-
duced [8]. The resource allocation that allocates client-side
virtual machines for the simulation of workloads is essen-
tial to the effective execution of load testing tasks and the

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Abdur Razzaque .

operation costs of cloud testing providers [9]. In the existing
work, the techniques in [10]–[12] allocate resources for test
tasks using an exclusive utilization mode of virtual machine
resources, with one virtual machine occupied by at most a sin-
gle test task. Commercial cloud testing services like Tencent
WeTest [13] and Alibaba PTS [14] also adopt exclusive-mode
virtual machine resource allocation in their test-script-driven
load testing. Under the exclusive mode, the virtual machines
in the cloud are used in a coarse-grained manner, and a virtual
machine can simultaneously provide test services for only one
single load testing task. With this granularity, once a virtual
machine is assigned to a test task, no other load testing task
can use the idle resources in the virtual machine until the
assigned task finishes its execution. This may easily result in
inefficient use of the test resources and increase the test costs.

Shared-mode resource allocation can improve resource uti-
lization efficiency and minimize resource waste [15]. Many
cloud systems [16]–[18] share processors, clusters, and vir-
tual machine resources among their cloud tasks. In cloud-
based load testing, shared-mode resource allocation suggests
that a virtual machine can be allocated to multiple load testing
tasks at the same time. A test task no longer occupies entire
virtual machine resources, and the unit of resource allocation
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is refined from a whole virtual machine to parts of its com-
puting resources. With shared-mode resource allocation, it is
possible to use limited virtual machine resources to run more
load testing tasks simultaneously.

However, there is a lack of shared-mode resource alloca-
tion methods in the literature for cloud-based load testing.
The existing shared-mode resource allocation techniques for
common cloud tasks cannot straightforwardly be extended
to cloud-based load testing. The reasons are two folds. First,
load testing exhibits a complex many-to-many task-resource
model, where a load testing task may require multiple vir-
tual machines for execution, and a virtual machine can run
multiple load testing tasks at the same time. This is differ-
ent from the common cloud task scheduling, where a task
is only scheduled onto one virtual resource [19]. Second,
the resource allocation constraints and optimization objec-
tives of load testing tasks are also different from common
cloud tasks. Load testing uses virtual machine resources in
a cooperative way for test execution. We want the resource
allocation to ensure the quality of service and minimize the
amount and costs of the used resources. Although such goals
are similar to many ones in other cloud resource alloca-
tion and scheduling [19], [20], how to express and achieve
these task-specific goals is more complex than that using
a single virtual machine resource to accomplish a cloud
task.

To fill the gap, we propose a shared-mode resource allo-
cation method for cloud-based load testing in this paper.
The method takes minimizing resource redundancy, test exe-
cution cost, and network communication cost as the opti-
mization objectives of resource allocation. It also regards
ensuring enough virtual machine resources for test tasks as
a basic constraint. With these objectives and constraints,
the amount and costs of the used resources can possibly
be reduced, and the load testing tasks can be effectively
executed. Since the optimization objectives are not always
consistent, we design a multi-objective optimization algo-
rithm for resource allocation. The algorithm allocates shared
virtual machine resources for load testing tasks within a
time window. The whole approach can optimize the resource
utilization of load testing, and thereby reduce test costs. Our
experimental results show that for the tested cloud envi-
ronments and load testing tasks, the shared-mode resource
allocation method performs better than the exclusive-mode
one in terms of the resource utilization efficiency. Compared
with the exclusive-mode resource allocation, the shared-
mode resource allocation reduced the resource redundancy
by more than 12.4%, the test execution cost by over 8.6%,
and the numbers of occupied virtual machines and physical
machines by more than 15.9% and 10.2%, respectively.

The remainder of the paper is organized as follows.
Section II highlights the related work. Section III introduces
some backgrounds for cloud-based load testing. We present
the basic model of our shared-mode resource allocation
in Section IV. Section V introduces the multi-objective
shared-mode resource allocation algorithm built on genetic

evolution. Section VI shows the experimental results. Finally,
we conclude the paper in Section VII.

II. RELATED WORK
Resource allocation for cloud tasks is, in general, an NP-hard
problem [19]. In this area, Keshanchi et al. [21] proposed an
improved genetic algorithm to allocate processor resources
for cloud tasks. Sun et al. [22] introduced a QoS-oriented
modeling framework to allocate optimized cloud servers for
web applications to meet the web applications’ QoS goals.
Aladwani [23] introduced a method named TC&VC to clas-
sify cloud tasks based on task lengths and then allocate
virtual machines for the tasks according to the classification.
Zhang and Zhou [24] proposed a two-stage task schedul-
ing framework to allocate virtual machines for cloud tasks.
In the first stage, they mark tasks with the attributes of
the demanded virtual machines. In the second stage, they
assign suitable virtual machines to these tasks with the
objective of minimizing unreasonable resource allocation.
Arunarani et al. [20] presented a comprehensive survey of
task resource allocation strategies and the corresponding
metrics suitable for cloud computing environments. These
resource allocation methods for general cloud tasks pro-
vide references for solving many problems, but they are
not directly applicable to allocating test resources for cloud-
based load testing tasks.

For the allocation of test resources in cloud environments,
Kang et al. [10] proposed a resource allocation method based
on improved Particle Swarm Optimization (PSO) to allo-
cate virtual machines for test tasks, which can improve the
efficiency of cloud resource allocation. Lampe et al. [11]
presented a model for scheduling software tests on a Testing-
as-a-Service system. Based on the model, they analyzed the
resource utilization under a set of scheduling algorithms, e.g.,
Smallest Job Longest Operation First, Shortest Operation
First, and Longest Operation First. Lu et al. [12] attempted
to solve the automatic test task scheduling problem (TTSP)
with the objectives of minimizing the maximal test com-
pletion time and the mean workloads of virtual machines.
A formal model of the TTSP is established, and a chaotic
non-dominated sorting genetic algorithm is presented to solve
the problem. For load testing, [6], [9] use techniques like
admission control to allocate virtual machine resources for
sending client requests, but they do not use virtual machines
in a shared mode. In the above methods, one virtual machine
can process at most a single test task at a time. As discussed in
Section I, such exclusive-mode resource allocation may not
efficiently use the test resources.

Some existing work shares processor, cluster, and vir-
tual machine resources between cloud tasks. In multi-
processor scheduling, Agrawal and Baruah [16] proposed a
measurement-based model for resource allocation of parallel
real-time tasks. It allows the idle processor resources in a
virtual machine to be used by more than one real-time task.
Cano et al. [17] introduced a framework sharing cloud clus-
ter (virtual machine cluster) resources for web service and
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Map/Reduce applications. On the framework, the resource
optimization problem is formulated as a non-linear mathe-
matical programming model to increase cluster utilization.
Zhu and Du [18] divided cloud tasks into multiple sub-
tasks based on the Map/Reduce programming model. These
sub-tasks can execute parallelly and share server comput-
ing resources. The above methods all employ shared-mode
resource allocation. The resource sharing implies that idle
resources in a virtual machine/cluster executing certain tasks
can be allocated to other tasks, and multiple tasks can execute
in parallel on the same virtual machine/cluster by sharing
resources. Compared with the tasks supported by these meth-
ods, cloud-based load testing tasks are more complex than
general cloud tasks in terms of the execution model and the
resource optimization objectives and constraints (Section I).
The existing shared-mode resource allocation methods can-
not be used for cloud-based load testing. Therefore, we design
a new resource allocation method in this work.

III. BASIC CONCEPTS IN CLOUD-BASED LOAD TESTING
We deploy workload generators to the cloud and use them
to create client-side access pressures for cloud-based load
testing (Fig.1). When the target load scale is large, the work-
loads need to be generated from multiple client-side virtual
machines. In the traditional style, one virtual machine is used
to generate workloads for a single load testing task; while
in shared-mode resource allocation, a virtual machine can be
used to generate workloads for multiple load testing tasks.

FIGURE 1. The cloud-based load testing.

1) CLOUD-BASED LOAD TESTING TASK
A cloud-based load testing task is a task to create and execute
workloads from client-side virtual machines deployed in the
cloud to evaluate the performance of a service under test.
The workloads are often expressed via test scripts, which
can be a JMeter [25] test script, a Selenium [26] test script,
a FunkLoad-like program [27], etc. describing the behavior
of a client.

More formally, a cloud-based load testing task T can be
modeled as a tuple T = 〈SUT , Script,Loadmax , duration〉,
where:
• SUT is the service under test;
• Script = [s1, s2, . . . , sn] represents a vector of test
scripts expressing the workloads in the load testing task;

• Loadmax = [maxload(s1), . . . ,maxload(sn)] represents
the maximum load scale for each test script, where
maxload(si) is the maximum load for the script si;

• duration is the execution time duration of the task.
The resources required to parallelly run a test script s at

a load scale load can be estimated by a function Est : s ×
load → R. The function can be manually provided or learned
from the historical records of running a test script at small
scales before doing load testing. For a load testing task T ,
the required resources can be estimated as following,

R(T ) =
∑

s∈Script(T )

Est(s,maxload(s)) = [cpu, ram, bw],

where cpu, ram, and bw represent the CPU (times of the
base frequency × total CPU utilization of multiple cores),
memory, and network bandwidth resources required by the
load testing task T .
Since the maximum load scale Loadmax of a load testing

task is often large, a lot of resources may be required to
execute the task, and these resources usually are difficult to
be provided by a single virtual machine.

2) VIRTUAL MACHINES
We assign virtual machines for different load testing tasks
in order to simulate the workloads. The total set of virtual
machines in the cloud testing environment can be repre-
sented as VMglobal = {vm1, vm2, . . . , vmn}. Each virtual
machine vm in VMglobal can be modeled as a tuple vm =
〈pid,Rv,Tasks, state〉, where:
• pid is the identifier of the physical machine where the
virtual machine belongs to;

• Rv = [cpuv, ramv, bwv] represents the available CPU,
memory, and network bandwidth resources of the virtual
machine, respectively;

• Tasks is the set of load testing tasks being executed on
the virtual machine;

• state ∈ {off , on}, denoting the virtual machine is either
shut down or in a running state, respectively.

The objective of our resource allocation is to determine
the virtual machines bound to each test task or, from another
perspective, the set Tasks for each virtual machine. In the
shared-mode resource allocation, a set Tasks may contain
more than one element. When there is no task assigned to
a virtual machine, the virtual machine can be shut down.

3) CLOUD TESTING ENVIRONMENT
The structure of the cloud testing environment affects the
assignment of virtual machines. We use an undirected graph
in Fig.2 to demonstrate the cloud testing environment.
A cloud testing environment G can be modeled as a tuple
G = 〈VMglobal,PMglobal,Rglobal,E〉, where:
• VMglobal represents the set of virtual machines inG, e.g.,
{vm1, . . . , vm6} in Fig.2;

• PMglobal represents the set of physical machines in G,
e.g., {pm1, pm2} in Fig.2;
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FIGURE 2. A cloud testing environment.

FIGURE 3. Demonstration of the exclusive-mode resource allocation.

• Rglobal represents the set of routers in the cloud testing
environment, e.g., {r1, r2, r3} in Fig.2;

• E is an edge set, where an edge connecting two nodes
(virtual machines or routers) represents the communica-
tion link between them.

IV. SHARED-MODE RESOURCE ALLOCATION MODEL
We present the basic model of the shared-mode test resource
allocation in this section. The below will introduce the
resource allocation plan used in our cloud-based load testing,
the optimization objectives of the resource allocation, and the
constraints on the resource allocation. The detailed algorithm
used to determine the resources allocated for different load
testing tasks is designed based on the model and will be
presented in the next section.

A. SHARED-MODE RESOURCE ALLOCATION PLAN
Given a sequence of load testing tasksTS = 〈T1,T2, . . . ,Tm〉,
we call the assignments of virtual machines to the load testing
tasks in TS a resource allocation plan for TS. A resource
allocation plan can be denoted as a vector P, each row of
which is a set of virtual machines to be allocated for a
corresponding load testing task in the task sequence TS:

P =


P1
P2
. . .

Pm

 =

{vm11, vm12, . . . , vm1c1}

{vm21, vm22, . . . , vm2c2}

. . . .

{vmm1, vmm2, . . . , vmmcm}

 .
We use a map F from a load testing task sequence TS to
a resource allocation plan P to represent the generation of
resource allocation plans for load testing,

F : TS → P.

The existing exclusive-mode test resource allocation methods
take a virtual machine as an allocation unit, a demonstration
of which is shown in Fig. 3. In the figure, we allocate a set of
virtual machines VM1 = {v1, v2, v3, v4, v5} for the load test-
ing task Ti. The idle resources in these virtual machines can-
not be used by another load testing taskTj.We need to allocate

another set of virtual machines VM2 = {v6, v7, v8, v9, v10}
for the load testing task Tj. This may lead to wastes of test
resources.

To reduce resource wastes, this paper proposes a shared-
mode resource allocation method, in which a load testing
task no longer occupies entire virtual machine resources to
generate workloads. This allows a virtual machine to exe-
cute multiple load testing tasks at the same time. A demon-
stration of such resource allocation is shown in Fig. 4.
In the figure, we allocate a set of virtual machines VM1 =

{v1, v2, v3, v4, v5} to the load testing task Ti and a set of
virtual machines VM2 = {v2, v4, v5, v6, v7, v8} to the load
testing task Tj. The virtual machines v2, v4, and v5 are
shared by both Ti and Tj. Compared with the exclusive mode,
the shared-mode resource allocation uses test resources in
a more fine-grained way. It can reduce the number of the
required virtual machines and thereby save the costs of load
testing as much as possible.

FIGURE 4. Demonstration of the shared-mode resource allocation.

B. OPTIMIZATION OBJECTIVES FOR
RESOURCE ALLOCATION
An optimized test resource allocation needs to not only min-
imize the used test resources in order to reduce the test
costs but also ensure the efficiency of testing execution.
A resource allocation plan should meet multiple objectives
as much as possible. These objectives may conflict with each
other and can be coordinated by multi-objective optimization
algorithms [28].

1) MINIMIZING RESOURCE REDUNDANCY
The total resources in the virtual machine set VM (TS,P)
allocated to a load testing task sequence TS under a resource
allocation plan Pmight be more than the actual requirements
of the tasks in TS. This leads to redundancy in the allo-
cated test resources. To reduce redundancy and avoid wastes,
this paper introduces an optimization objective of minimiz-
ing resource redundancy for the load testing task sequence
TS. We define a resource redundancy function L(TS,P) to
denote the difference between the total available resources
in the allocated virtual machines and the minimal resources
required for load testing,

L(TS,P) = ω1 × (
∑

vmi∈VM (TS,P)

R(vmi)−
∑
Ti∈TS

R(Ti)),

where R(vmi) represents the vector of available resources in
a virtual machine vmi, R(Ti) represents the resource require-
ments of a load testing task Ti, and ω1 is the resource
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weight vector. The smaller value of the function L(TS,P),
the fewer wasted resources.

2) MINIMIZING TEST EXECUTION COST
Cloud service providers charge money for the use of virtual
machines according to the scale of the resources and the
use duration, e.g., [29]. This brings test execution costs for
cloud-based load testing. We also introduce an optimization
objective to minimize such test execution costs. The work
mainly considers the occupancy cost of virtual machines
(cloud instances) during testing execution. Given a load test-
ing task sequence TS and a resource allocation plan P for TS,
let VM (TS,P) be the set of virtual machines allocated for TS
in plan P. We define a test execution cost function Z (TS,P)
to denote the occupancy cost of all the virtual machines in
VM (TS,P),

Z (TS,P) =
∑

vmi∈VM (TS,P)

price(vmi) ∗ occupyTime(vmi).

price(vmi) denotes the per time unit occupancy cost of a
virtual machine vmi. The price depends on the hardware
resources in vmi, price(vmi) = ω2 ∗ R(vmi). ω2 is a cost
coefficient vector, and R(vmi) represents the total resources
of vmi. occupyTime(vmi) denotes the occupancy time of the
virtual machine vmi, which depends on the maximum exe-
cution duration of the test tasks allocated to vmi in the load
testing task sequence TS. The smaller value of the function
Z (TS,P), the lower test cost.

3) MINIMIZING NETWORK COMMUNICATION COST
When executing a load testing task, the requests from the
clients are routed to the service under test (SUT). The more
complex routing paths, the higher cost of network communi-
cation. This may result in inefficient execution of load testing
and lead to longer average response time of workloads which
does not reflect the actual performance of the SUT. To ensure
the efficiency of load testing execution, we introduce an opti-
mization objective of minimizing network communication
cost for a load testing task sequence.

For easy estimation of the network communication cost,
we assume the requests passing through each router werewith
the same time delay. The minimum number of routers that
the requests go through between two virtual machines vmi
and vmj, denoted as link(vmi, vmj), is used to determine the
communication cost between these two virtual machines. For
example, for a network shown in Fig. 5, link(vm1, vms) =
link(vm2, vms) = 2, link(vm3, vms) = link(vm4, vms) =
link(vm5, vms) = 1.
Let VM (Ti,P) be the set of virtual machines allocated

for a load testing task Ti in a task sequence TS under a
resource allocation plan P, and assume the SUT is deployed
in node SUT (Ti). We define a network communication cost
function N (TS,P) to estimate the network communication
cost of a load testing task sequence TS under a resource

FIGURE 5. An example network structure.

allocation plan P,

N (TS,P) =
∑
Ti∈TS

delay×
∑

vm∈VM (Ti,P)
link(vm, SUT (Ti))

|VM (Ti,P)|
.

N (TS,P) is the sum of the average network transmission
delay of the virtual machine set corresponding to each load
testing task in TS. |VM (Ti,P)| is the number of virtual
machines in VM (Ti,P), and delay represents the time delay
of the requests passing through a single router.

C. CONSTRAINT FOR RESOURCE ALLOCATION
To ensure that it is possible to generate the designated scale
of access pressures for the service under test and the load
testing tasks sharing resources can execute independently,
we take the resource guarantee ability as a basic constraint.
Let VM (Ti,P) be the set of virtual machines allocated to a
load testing task Ti (Ti ∈ TS) under a resource allocation
plan P. The constraint requires that the total resources of the
virtual machine set VM (Ti, S) not being less than the mini-
mum resources required to initiate the load testing task Ti, i.e.,∑

vm∈VM (Ti,P)

RTi (vm) ≥ R(Ti), Ti ∈ TS.

RTi (vm) represents the available resources allocated to the
load testing task Ti in a virtual machine vm. R(Ti) represents
the resource requirements of the load testing task Ti.

V. MULTI-OBJECTIVE RESOURCE
ALLOCATION ALGORITHM
In this work, our cloud-based load testing system allows
users to submit load testing tasks at any time. All the
submitted tasks form a time-labeled task sequence TS =
〈t1 : T1, t2 : T2, . . . , tm : Tm〉. In a large-scale cloud testing
environment, the test center may receive a large number of
load testing tasks when there are lots of users. If we process
test tasks in a one-by-one manner, because the future arrivals
of test tasks are not considered, the resource allocation plan
may not be sufficiently optimized from an overall perspec-
tive. If we process test tasks in an offline batched mode,
the efficient use of resources can be guaranteed, but the late
responses of test requests may lead to bad user experience.
As a compromise, this work enables nearly real-time resource
allocation for load testing tasks based on a sliding window
mechanism. A demonstration of the sliding window is shown
in Fig. 6, where ti is the arrival time of a load testing task Ti,
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FIGURE 6. A demonstration of the sliding window.

and for two adjacent load testing tasks Tk and Tk+1 on the
timeline, tk ≤ tk+1. Within each processing cycle, the sliding
window moves to the right along the timeline for every 1t
time. We handle all the test tasks in a window in a batched
mode. The order between the tasks in the time window is
ignored. We find an optimized resource allocation plan for
all these tasks at one time, allocate test resources according
to the plan, and start the load testing tasks in the time window
simultaneously.

In a cloud testing environment G, for a load testing task
sequence TS in a sliding window, the shared-mode resource
allocation of TS can be expressed as a multi-objective plan-
ning problem. The problem is close to the Quadratic Multiple
Knapsack Problem (QMKP) [30], where a virtual machine
is an item, and a load testing task is a knapsack. Given n
items and m knapsacks, the objective is to maximize the
total value under the constraint of each knapsack’s capacity.
However, the test resource allocation for load testing tasks is
more complicated than QMKP: 1) a single objective becomes
multiple objectives; 2) the same virtual machine (item) can be
allocated to multiple load testing tasks (knapsacks), and the
fewer virtual machines, the better.

To generate an optimized resource allocation plan for a
load testing task sequence, we propose a multi-objective
optimization algorithm (Algorithm 1) based on genetic evo-
lution. The algorithm takes the resource redundancy, test
execution cost, and network communication cost estimation
functions as the fitness functions. It first generates a number
of resource allocation plans for TS to construct an initial
population and uses combinations of variable-length integer
sets to encode these resource allocation plans. Then, a child
population is created by crossover and mutation operations.
We repair and optimize the allocation plans in the child
population. Next, we merge the parent and child populations
into a mixed population. All the plans in the mixed population
are ranked and sorted to derive a new optimized population.
The process is repeated until reaching the maximum evolu-
tion generation. Finally, the algorithm outputs an optimized
resource allocation plan for TS. More details about the oper-
ations in the algorithm will be introduced in the following
subsections.

A. ENCODING
The QMKP-like problems are often encoded by binary
matrix. Let X be a binary matrix of n×m. If a virtual machine
i is allocated to a load testing task k , then xik = 1; otherwise,

Algorithm 1 Multi-Objective Shared-Mode Resource
Allocation Algorithm for Cloud-Based Load Testing
Input: A cloud testing environmentG and a load testing task

sequence TS
Output: An optimized resource allocation plan for TS
1: Capture a snapshot of G, including the network topolog-

ical structure, the information of the physical machines
and virtual machines, etc.;

2: Initialize the parameters: the maximum evolution gener-
ation K , the population size N , etc.;

3: Generate resource allocation plans for TS to build an
initial population P = {P1,P2, . . . ,PN };

4: Encode the resource allocation plans in P;
5: Calculate the objective function values for each alloca-

tion plan in P;
6: for i = 1→ K do
7: Create a child population by crossover and mutation;
8: Repair and optimize the child population;
9: Merge the parent and child populations into a mixed

one;
10: Rank and sort all the allocation plans in the mixed

population to generate an optimized population;
11: end for
12: return the first plan in the ranked and sorted population;

xik = 0. The number of virtual machines in a cloud testing
environment can be huge, which will lead to a too sparse
matrix. To address the problem, we introduce a combination
of variable-length integer sets to encode resource allocation
plans. A virtual machine is encoded as an integer, a resource
allocation plan of a single load testing task is encoded as a
variable-length integer set, and the resource allocation plan
of the whole load testing task sequence is encoded as a
combination of variable-length integer sets. Fig. 7 shows an
example of the encoding. Assume there are three load testing
tasksA,B, andC in the task sequence, and the virtual machine
sets {vm1, vm2, vm4}, {vm3, vm4, vm5}, and {vm5, vm6, vm7}

are allocated to A, B, and C , respectively. P represents the
encoded resource allocation plan for the task sequence.

P =

 {vm1, vm2, vm4}

{vm3, vm4, vm5}

{vm5, vm6, vm7}

 =
 {1, 2, 4}{3, 4, 5}
{5, 6, 7}



FIGURE 7. An example of the resource allocation plan encoding.
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B. GENERATE CHILD POPULATION
As shown in step 7 of Algorithm 1, we take the last generation
as the parent generation and create a child population of
size N by crossover and mutation. The crossover operation
ensures global searching ability and enables the algorithm
to search for better resource allocation plans. The mutation
operation adds diversity in the resource allocation plans and
prevents premature convergence of the population.

We select two allocation plans f1 and f2 from the
parent population with a crossover probability of pc for
crossover operation (example shown below). The crossover
randomly picks a row in these plans as the intersection
point, e.g., {vm3, vm4, vm5} in f1, which corresponds to
{vm7, vm8, vm13} in f2. Then, it exchanges the rows in f1 and
f2 after the selected row to construct two child allocation
plans c1 and c2. The crossover process is essentially to replace
allocation plans for test tasks.
{vm1, vm2, vm4}

{vm3, vm4, vm5}

{vm5, vm6, vm7}

{vm8, vm9}


f1

⊗


{vm6, vm8, vm12}

{vm7, vm8, vm13}

{vm10, vm12}

{vm11, vm13, vm14}


f2

→


{vm1, vm2, vm4}

{vm3, vm4, vm5}

{vm11, vm13, vm14}

{vm10, vm12}


c1


{vm6, vm8, vm12}

{vm7, vm8, vm13}

{vm8, vm9}

{vm5, vm6, vm7}


c2

We select an allocation plan P from the parent pop-
ulation with a mutation probability of pm for the muta-
tion operation. The mutation randomly picks a row
(e.g., {vm3, vm4, vm5}) in P, which is the resource allocation
plan for a load testing task Ti, and reallocates a new enough-
to-use virtual machine set (e.g., {vm6, vm8, vm10} ) for Ti
to create a new resource allocation plan for the given task
sequence.

P =

 {vm1, vm2, vm4}

{vm3, vm4, vm5}

{vm5, vm6, vm7}

→
 {vm1, vm2, vm4}

{vm6, vm8, vm10}

{vm5, vm6, vm7}


C. REPAIR AND OPTIMIZE CHILD POPULATION
As shown in step 8 of Algorithm 1, to ensure the validity and
superiority of the resource allocation plans, we repair and
optimize the child population created by the crossover and
mutation.

After doing crossover and mutation, the child population
may contain invalid resource allocation plans that violate
the basic constraint (Section IV-C, the total resources should
be enough for testing). This paper uses a repair algorithm
(Algorithm 2) to make these plans satisfy the basic con-
straint. Take the following allocation plan P for example.
Assume the total available resources of the virtual machines
({vm5, vm6}) allocated to the test task T3 are less than the
requirement. We randomly allocate a number of additional
virtual machines with idle resources to T3 for repair until P

Algorithm 2 The Repair of a Resource Allocation Plan
Input: An invalid resource allocation plan P
Output: A valid resource allocation plan
1: for each load testing task Tk in P do
2: let VMk be the virtual machine set allocated to Tk ;
3: calculate the total available resources in VMk , Rk =∑

vm∈VMk

RTk (vm), where RTk (vm) represents the avail-

able resources allocated to Tk in vm;
4: while Rk < R(Tk ) do
5: randomly select a virtual machine vmi, allocate it to

load testing task Tk , and add vmi to VMk ;
6: update Rk and the available resources of vmi;
7: end while
8: end for
9: return P;

satisfies the basic constraint (steps 4-7 of Algorithm 2).

P =

 {vm1, vm2, vm4}T1
{vm3, vm4, vm5}T2
{vm5, vm6}T3



RT1 (vm1)+ RT1 (vm2)+ RT1 (vm4) > R(T1)
RT2 (vm3)+ RT2 (vm4)+ RT2 (vm5) > R(T2)
RT3 (vm5)+ RT3 (vm6) < R(T3)

→

 {vm1, vm2, vm4}T1
{vm3, vm4, vm5}T2
{vm5, vm6, vm7}T3



RT1 (vm1)+ RT1 (vm2)+ RT1 (vm4) > R(T1)
RT2 (vm3)+ RT2 (vm4)+ RT2 (vm5) > R(T2)
RT3 (vm5)+ RT3 (vm6)+ RT3 (vm7) > R(T3)

Some valid resource allocation plans in the child popula-
tion may allocate much more virtual machine resources than
the minimum requirement. They may be far from optimized
for the designated objectives. We use Algorithm 3 to opti-
mize these plans. Take the following allocation plan P for
example, where the total resources of the virtual machine set
{vm1, vm2, vm4} allocated to the test task T1 are more than
required. To optimize the virtual machine resources and avoid
fragmentation, the algorithm removes vm2 which provides
the minimum resources in the virtual machine set to opti-
mize plan P without violating the basic resource constraint
(steps 5-8 of Algorithm 3).

P =

 {vm1, vm2, vm4}T1
{vm3, vm4, vm5}T2
{vm5, vm6, vm7}T3



RT1 (vm1)+RT1 (vm2)+RT1 (vm4)>R(T1)+RT1(vm2)
RT2 (vm3)+ RT2 (vm4)+ RT2 (vm5) > R(T2)
RT3 (vm5)+ RT3 (vm6)+ RT3 (vm7) > R(T3)
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Algorithm 3TheOptimization of a Resource Allocation Plan
Input: A resource allocation plan P
Output: An optimized resource allocation plan P
1: for each load testing task Tk in P do
2: let VMk be the virtual machine set allocated to Tk ;
3: calculate the total available resources in VMk , Rk =∑

vm∈VMk

RTk (vm), where RTk (vm) represents the avail-

able resources allocated to Tk in vm;
4: select a virtual machine vmi with the minimum avail-

able resources in VMk ;
5: while Rk − R(Tk ) ≥ RTk (vmi) do
6: remove vmi from VMk , and update Rk and the avail-

able resources of vmi;
7: select another virtual machine vmi with the mini-

mum available resources from set VMk ;
8: end while
9: end for

10: return P;

→

 {vm1, vm4}T1
{vm3, vm4, vm5}T2
{vm5, vm6, vm7}T3


RT1 (vm1)+ RT1 (vm4) > R(T1)
RT2 (vm3)+ RT2 (vm4)+ RT2 (vm5) > R(T2)
RT3 (vm5)+ RT3 (vm6)+ RT3 (vm7) > R(T3)

D. MULTI-OBJECTIVE OPTIMIZATION
In steps 9-10 of Algorithm 1, we mix the parent and child
populations and preserve the optimized resource allocation
plans to create a new generation of the population so that the
populations can evolve toward the objectives. The process of
the mixing and creation is shown in Fig. 8.

FIGURE 8. The generation of a new population.

In Fig. 8, we merge the parent population Pt and the child
population Qt generated in previous steps into a mixed pop-
ulation Mt . Since the probability of crossover and mutation
is usually less than 1, some allocation plans in the parent
population Pt will not participate in crossover, mutation, and

other operations. They will exist in both the parent population
Pt and the child population Qt . There will be some dupli-
cated plans in the mixed population Mt . This may affect the
efficiency of the evolutionary search. We first eliminate the
duplicated allocation plans in Mt and introduce new alloca-
tion plans to ensure the size of the populationMt .

This work follows the skeleton of the NSGA II
(Non-dominated Sorting Genetic Algorithm II) [31] to
achieve multi-objective optimization. First, we rank the
resource allocation plans in the mixed population Mt into
different levels according to the Pareto dominance [32]
between them (A Pareto dominates B if A is superior to
B in at least one objective and not worse than B in other
objectives). The more optimized dominator plans are ranked
at higher levels. Then, we adopt the crowding distance [33]
(the crowding distance of a resource allocation plan is the sum
of the differences between its two adjacent allocation plans on
each objective function) to sort the resource allocation plans
at the same level. The larger crowding distance, the better for
ensuring the diversity of the population. Finally, we select
the first N allocation plans from the mixed population Mt to
form the new population. The ranking, sorting, and selection
are detailed as follows.

1) RANK
First, calculate the dominance relationship between every
two allocation plans (Pi, Pj) in the mixed population Mt .
We then find the number of allocation plans that dominate
a plan P, i.e., nP, add the allocation plans with nP = 0 to
the dominance level R1, and remove them from Mt . Next,
we update the number of allocation plans dominating a plan
in the remaining plan set Mt , continue to find the plans with
nP = 0, and add them to level R2. The process is repeated
until the entire mixed population Mt is ranked into levels
R1,R2, . . . ,Rn.

2) SORT
Let the objective functions of resource redundancy, test exe-
cution cost, and network communication cost be f1, f2, and f3,
respectively. At the same dominance level, for each objective
function fk (k = 1, 2, 3), we arrange the resource allocation
plans in ascending order of their objective function values and
calculate

Lk (Pi) = (fk (Pi+1)− fk (Pi−1))/(f max
k − f min

k )

for each allocation plan Pi, on objective fk . The value L(Pi) =∑3
k=1 Lk (Pi) is taken as the crowding distance of an allo-

cation plan Pi at the dominance level. We sort the resource
allocation plans at the same level in ascending order of the
crowding distance.

3) SELECT
We select the first N allocation plans from the mixed popu-
lation Mt to form an optimized new population from high to
low dominance levels and large to small crowding distances
in the ranked and sorted results.
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TABLE 1. Virtual machine and physical machine settings.

TABLE 2. Cloud testing environment configuration.

VI. EVALUATION
We validated the effectiveness of the proposed approach by
conducting experiments to answer the following research
questions.

RQ1: How does the shared-mode resource allocation
method compare with an exclusive-mode one in terms of the
economy of resource utilization and the efficiency of resource
allocation?

RQ2: Does the shared-mode resource allocation affect the
effective execution of each load testing task?

RQ3:What are the effects of different parameters, such as
the maximum evolution generations, the population size, and
the crossover and mutation probabilities, on the results of the
resource allocations?

A. EXPERIMENTAL SETUP
We run the resource allocation algorithms on a machine with
an Intel(R) i5-7300HQ CPU and 8GB memory to collect the
experimental data. For the experimental subjects, a real cloud
testing environment can be huge and costly to be used for
conducting experiments. We evaluated the performance of
resource allocation algorithms (RQ1 and RQ3) on simulated
cloud testing environments. The simulated environments are
randomly generated. First, we randomly generate a set of
physical machines and routers. For each physical machine,
a number of virtual machines will be randomly created and
bound to the physical machine. Then, we select a router r
as the base node and randomly associate physical machines
and routers to r to build network connections. The routers
connected to r are recursively processed. Finally, we do a
breadth-first search to collect the topological structure of
the entire network. In the simulation, we assume that the
virtual machines used for generating workloads and the vir-
tual machines hosting web services are located on different
physical machines.

We generated cloud testing environments of different
scales for validation, whose configurations are shown
in Table 2, where the scales of the cloud environments

increase from S1 to S5. The configurations and available
resources of the virtual machines in a cloud testing envi-
ronment were randomly generated according to the settings
in Table 1. In the table, the available memory resource
of 2GB means there is 2GB memory available for the
test tools to generate workloads. The total memory in the
corresponding virtual machine can be just 2GB or over
2GB. The meanings of the available CPU and network
resources are similar. For different scales of the cloud test-
ing environments, the numbers of submitted load testing
tasks in a sliding window may vary from small to large.
We tested different scales of the numbers of tasks in the
sliding windows to evaluate the ability of the resource alloca-
tion algorithm in handling different amounts of load testing
tasks.

For each cloud testing environment in Table 2, the exper-
iment randomly generated load testing tasks for the sliding
window for resource allocation. The configuration of the test
tasks is shown in Table 3. The test tasks are driven by eight
candidate test scripts with resource consumption ranging
from small to large (s1 → s8). The relation between the
resource consumption and the load scale of each test script is
assumed to be linear. The test duration is randomly generated
from the interval (0, 1800s]. For each test script, there are four
candidate load change strategies: ramp-up, linear increasing,
step up and down, or bell curve.

TABLE 3. Load testing task configuration.

The parameter settings of the shared-mode resource allo-
cation algorithm are listed in Table 4. We use the population
size N , the maximum evolution generation K , etc. to con-
trol the multi-objective evolution, and we use the resource
cost vector ω2 and the cost estimation function Z (TS,P) in
Section IV-B(2) to determine the test execution cost.
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TABLE 4. Parameters of the shared-mode resource allocation algorithm.

B. RESULTS AND DISCUSSION
1) RQ1: COMPARISON WITH THE EXCLUSIVE-MODE
RESOURCE ALLOCATION
For RQ1, we evaluate the economy of resource utilization
from the aspects of the resource redundancy, the test execu-
tion cost, the network communication cost, and the number
of allocated virtual and physical machines. The efficiency
of resource allocation is evaluated by the algorithm execu-
tion time. On a group of cloud testing environments shown
in Table 2, we did 10 rounds of testing with different load
testing task sequences executed on each environment to val-
idate the effectiveness of the resource allocation. Resource
allocation plans are generated for the same cloud testing envi-
ronments and test task sequences with both the shared-mode
resource allocation method and an exclusive-mode resource
allocation method to make comparisons between them.

For the five cloud testing environments, the average results
of different allocation methods under the 10 round of task
sequences are shown in Table 5. Columns RR, TC, and CC list
the resource redundancy, test execution cost, and the network
communication cost, respectively (values of the objective
functions in Section IV-B). Columns VM and PM show the
numbers of the virtual machines and physical machines occu-
pied by the load testing tasks. Column t lists the algorithm
execution time.

FIGURE 9. Resource redundancy under different methods.

Fig. 9-11 show the average resource redundancy, test exe-
cution cost, and network communication cost of the shared-
mode and exclusive-mode resource allocation methods on
cloud testing environments S1 to S5 in bar charts. The
horizontal axes of these figures list the cloud testing envi-
ronments, and the vertical axes show the metric values.
Compared with the exclusive-mode one, the shared-mode

FIGURE 10. Test execution cost under different methods.

FIGURE 11. Network communication cost under different methods.

FIGURE 12. The number of virtual machines occupied under different
methods.

resource allocation method has less resource redundancy
(reduced by 12.43-25.11% on S1 − S5), lower test execution
cost (reduced by 8.63-20.81% on S1−S5), and lower network
transmission cost (reduced by 1.36-7.58% on S1− S5).

Fig. 12 and 13 show the average numbers of vir-
tual machines and physical machines occupied by the
shared-mode and exclusive-mode resource allocation meth-
ods on different cloud testing environments. Compared with
the exclusive-mode one, the shared-mode resource alloca-
tion method occupies fewer virtual machines and physical
machines. On the five cloud testing environments S1 to S5,
as the average results of 10 rounds of testing, the numbers
of occupied virtual machines were reduced by 26, 46, 60, 67,
and 78 with reduction rates 15.92%-29.21%, and the numbers
of occupied physical machines were reduced by 16, 20, 22,
27, and 39 with reduction rates 10.23%-25%.

Fig. 14 shows the algorithm execution time of the shared-
mode and exclusive-mode resource allocation methods on
the cloud testing environments with scales from small to
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TABLE 5. Results of the shared-mode and exclusive-mode allocation methods.

TABLE 6. Load testing task configurations for RQ2.

FIGURE 13. The number of physical machines occupied under different
methods.

FIGURE 14. Allocation algorithm execution time under different methods.

large. The execution time consumed by these two methods
is close (the max difference is 2 seconds) and is all less
than 30 seconds. These results show that the shared-mode
resource allocation method has similar performance to the

exclusive-mode one in terms of resource allocation efficiency.
It can generate optimized resource allocation plans for a
task sequence in a very short time (compared with the test
duration). The resource planning efficiency is high enough to
be used in sliding-window-based test task execution.

In summary, the shared-mode resource allocation method
performs better than the exclusive-mode resource allocation
method in terms of the economy of resource utilization, and
the allocation efficiency of the two methods is close.

2) RQ2: EFFECTS ON THE EFFECTIVE EXECUTION
OF EACH LOAD TESTING TASK
For RQ2, we run real load testing tasks in the shared-mode
on the cloud testing system developed by our laboratory to
investigate whether sharing virtual machine resources does
not affect the effective execution of load testing tasks. The
throughput (the amounts of workloads finished per unit of
time) and execution time (the time from execution start to
execution end) of load testing tasks are used to evaluate the
impacts of resource sharing.

We used a representative virtual machine VM with a hard-
ware resource configuration of 4 CPU cores, 8GB memory,
and 1000Mbps network as the experimental environment (the
hardware resources are approximately just enough to launch
the test). As shown in Table 6, three representative web
applications Order, BookManager, and MailReader
were used as the load testing subjects. Order is an order
management system used to manage users’ order records.
We tested viewing and editing order operations in load test-
ing task T1. BookManager is a book management system.
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We tested searching for a book and view book introduction
operations in load testing task T2. MailReader is an email
system. We tested reading and adding email operations in
load testing task T3. The load testing tasks T1, T2, and T3
linearly increase the workloads until reaching the maximum
load. They are executed in seven combinations (C1 to C7) to
investigate the impacts of resource sharing. In each combi-
nation, the load testing tasks are simultaneously executed on
the virtual machine VM . The experimental results are shown
in Table 7, where tps represents the throughput and texecute
represents the actual execution time of a test task.

TABLE 7. Execution results for different task combinations.

The results in Table 7 show that for load testing task T1,
when being separately executed (exclusive-mode resource
allocation), according to the single task combination C1,
its tps is 433.37, and the texecute is 120s. When sharing
resources in the virtual machine VM with other tasks T2 and
T3, according to multiple task combinations C4, C5, and C7,
the tps is 429.78, 433.37, and 422.80, and the texecute is 121s,
120s, and 123s. The throughput and text execution time of
task T1 is close under different execution combinations. The
results on load testing tasks T2 and T3 are similar. We can
see that, when there are sufficient resources, whether a load
testing task occupies an entire virtual machine or shares the
virtual machine resources with other tasks does not affect
the effective execution of the task. The shared-mode resource
allocation can be used in effective load testing.

3) RQ3: EFFECTS OF DIFFERENT PARAMETER SETTINGS
We used S1 in Table 2 as a representative cloud testing
environment and run the shared-mode resource allocation
algorithm on S1 under different parameter settings for the load
testing task sequences in the sliding windows to evaluate the
effects of different parameter value choices.

Fig. 15 shows the results of the multi-objective algorithm
under different maximum evolution generation settings. The
x-axis of the figure represents the maximum evolution gen-
erations. The y-axis represents the values of the objective
functions and the execution time of the algorithm. For the
same load testing task sequences with resources to be allo-
cated, when the maximum evolution generation increases,
the resource redundancy, the test execution cost, and the net-
work communication cost of the generated allocation plan go
down and tend to bemore optimized. The algorithm execution

FIGURE 15. The impacts of the maximum evolution generations.

time gradually increases. This suggests that increasing the
maximum evolution generation is beneficial for achieving
more optimization. However, when the maximum evolution
generation is too high, the optimization reward grows slow,
but the algorithm execution time increases fast. Too high
maximum evolution generation might not be economical.
Therefore, we set the maximum evolution generation to
100 in answering RQ1.

FIGURE 16. The impacts of the population sizes.

Fig. 16 shows the results of the algorithm under different
levels of population sizes. For the same load testing task
sequences to be handled, when the population size increases,
the resource redundancy, the test execution cost, and the
network communication cost of the generated allocation plan
exhibit a downward trend. The greater the population size,
the more optimization toward the objectives. However, as the
population size increases, the execution time of the algorithm
grows up in nearly a power function (xα, α > 1). The
population size has a significant impact on the efficiency of
the resource allocation algorithm. In the experiments, we used
a population size of 200, which provides a good trade-off
between algorithm efficiency and resource allocation opti-
mization, to answer RQ1.

Fig. 17 shows the results of the algorithm under differ-
ent crossover probabilities. For the same load testing task
sequences to be processed, when the crossover probability
increases, the resource redundancy and the test execution cost
of the generated allocation plan grow down, and network
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FIGURE 17. The impacts of the crossover probabilities.

FIGURE 18. The impacts of the mutation probabilities.

communication cost seems to be almost stable. In general,
increasing the crossover probability looks beneficial for the
optimization objectives. Therefore, we set a high crossover
probability of 0.7 for RQ1.

Fig. 18 shows the results of the algorithm under different
mutation probabilities. From the figure, we can see that the
resource redundancy, the test execution cost, and the net-
work communication cost of the generated allocation plan
are better when the mutation probability is in [0.05, 0.15].
This suggests that the mutation probability should better
not be too large. Too large mutation probability may make
the algorithm tend to do random searches, which cannot
guarantee the evolution of the allocation plans toward more
optimized directions. According to the above analysis, we set
the mutation probability to 0.1 for RQ1.

C. THREATS TO VALIDITY
There are three major validity threats in the experiments.
(1) The first is in the parameter settings of the genetic
algorithm. Different parameter settings may lead to different
results. Nevertheless, we determined the parameter values by
experiments and listed the main parameters in Section VI-A.
We believe these parameter settings are reasonable.
(2) The second is in the cloud testing environments used
in the experiments, which may limit the generalization of
the experimental results. We evaluated the approach on a
group of cloud testing environments with sizes from small
to large. This demonstrates the effectiveness of the approach

on different scales of the clouds. Although the cloud envi-
ronments are simulated, we simulated the features key to test
resource allocation, whichmight be enough for drawing some
experimental conclusions. (3) The third is in the number of
tasks in the sliding window. The experimental results may
vary under different numbers of tasks. Even so, we tested
different scales of tasks in the windows. This can relieve
the impacts of the task sequence sizes on the experimental
conclusions.

VII. CONCLUSION
The paper presents a shared-mode resource allocationmethod
for cloud-based load testing to more economically use vir-
tual machine resources in the cloud. We firstly introduce
a multi-objective (objectives of minimizing resource redun-
dancy, minimizing test execution cost, and minimizing net-
work communication cost) and constrained (the minimum
resource requirements must be meet) shared-mode resource
allocation model that can save more test resources. Based
on the model, we propose a shared-mode resource allocation
algorithm to allocate test resources for a sequence of cloud-
based load testing tasks coming in a time window. The exper-
imental results show that compared with an exclusive-mode
resource allocation method, the proposed method effectively
reduced the resource redundancy, test execution cost, and
network communication cost. It saved more than 15% virtual
machines and more than 10% physical machines for cloud-
based load testing. This indicates that the method might be
valuable for practical load testing.
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