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ABSTRACT Wheeled mobile robots (WMRs) inevitably experience positional inaccuracy, which is caused
by a number of factors including design imperfections, problems with component fabrication, sensor errors,
and electromechanical malfunction.We have previously proposed an odometry-based technique that reduces
positional inaccuracy in WMRs driven with standard wheels. This technique combines high sampling
rates and short-term accuracy, and calculates necessary lateral and longitudinal corrections by using linear
regression to model the relationship between positional inaccuracy and angular velocities of the robot’s
wheels. This technique can do so without the precision of measurement required by other techniques. In this
paper, we discuss how a nonparametric bootstrap approach can be used to find both interval and point
estimates of the modified angular velocities required to alleviate the positional inaccuracy of the WMR.
First, the robot travels along a path recommended by the odometry-based error reduction technique. Then,
the positional and angular errors of the robot at the stop point are measured. Next, these measurements
are used to estimate angular velocities, providing the necessary confidence intervals (prediction). Results
from these calculations could be incorporated into the robot program to modify the movement along a
given path (validation). To show viability, the bootstrap technique was applied to a prototype mobile
robot while the robot was programmed to move along an unseen trajectory. Results indicate that, for this
typical unseen path, the bootstrap technique is capable of improving real-time positional systematic and
non-systematic inaccuracy with acceptable levels of precision compared to the linear regression technique
under the normality assumption. The bootstrap technique exhibited better efficacy than the linear regression,
therefore, it may be a useful tool to conduct real-time calibration of differential drive WMRs.

INDEX TERMS Bootstrap technique, calibration, corrective factors, differential drive robot, linear regres-
sion, positional inaccuracy.

I. INTRODUCTION
A. CALIBRATION OF WHEELED MOBILE ROBOTS
Wheeled mobile robots (WMRs) are employed in areas
as diverse as agriculture, logistics, medical care, home
care, planetary exploration, urban transport, surveillance
operations, inspection and maintenance, and security and
defense [1]. The precision of movement is crucial forWMRs;
the robot must be calibrated and any positional inaccuracy
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improved before field implementation. Therefore, finding
effective ways to reduce positional inaccuracy has been a
critical task for those working with robotic systems driven
with different types of wheels including differential drive,
omnidirectional, or caterpillar mechanism [2]. Some of the
techniques that have been developed include 3D camera error
detection, active beacons, gyroscope, magnetic compasses,
and odometry [3]–[7]. Odometry–using data from positional
sensors such as encoders attached to each actuator of the
robot–measures changes in the robot’s position over time.
The odometry method is applied to reduce the positional
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inaccuracy of various WMRs [4]. Odometry has been used
in this way by a number of engineers and researchers. For
example, at the University of Michigan, the UM Benchmark
method was deployed to measure odometry errors in differ-
ential drive mobile robots [8].

B. BOOTSTRAP FOR CALIBRATION OF WMRs
Building on the bootstrap technique, we have found a new
way to reduce both systematic and non-systematic posi-
tional inaccuracy in mobile robots with a differential drive
mechanism [1], [9]. Our method uses positional inaccuracy
information–i.e., lateral and longitudinal errors (response
variable)–to predict estimated values of angular velocities
(explanatory variable) to keep the robot moving along the
desired trajectory and to reduce positional inaccuracy during
the motion. The technique uses both deterministic and physi-
cal properties of WMRs to estimate a set of angular velocities
that enable the robot to correct its positional inaccuracy in
a real-time fashion [9]. Note that this technique does not
obtain precise estimates that allow for the development of
necessary confidence intervals. Nor does the technique rely
on the information in the Training data set to fit themodel that
estimates calibration errors. This, in turn, means the statistical
properties of the estimates cannot be studied [8]. Finally,
the method assumes the same distribution for the encoder
readings in both the odometry-based method for positional
inaccuracy reduction (prediction) and in robot movement in
the field (validation).

To address the issues listed above, a nonparametric boot-
strap technique with a probabilistic methodology was used to
acquire both interval and point estimates of the robot’s posi-
tional inaccuracy as it moved along a given trajectory. These
estimates were obtained by measuring two corrective factors
representing positional inaccuracy: lateral and longitudinal
factors. A more detailed explanation of the bootstrap tech-
nique is given in Efron and Tibshirani [10]. We ensured that
each estimate was precise using multivariate error reduction.
Here, the relationship between the WMR’s positional inaccu-
racy and the angular velocities of the two wheels was calcu-
lated. This was done by applying a linear regression model
to each of the positional inaccuracy components, i.e., two
positions along x and y axes; one rotation of the robot’s center
of mass. We then applied a least-squares method without
making any parametric assumptions, such as normality, for
the distribution of these components. At this point, we used
the bootstrap technique to estimate the unknown angular
velocities and construct necessary confidence intervals (pre-
diction). Our goal was to predict the explanatory variable
(angular velocities of the wheels) by observing the response
variable (positional inaccuracy). To this end, we intentionally
framed our results in calibration terminology.

C. RELATED WORK
Calibration has widely been used in areas such as linear
models (univariate and multivariate linear regression) [11],

[12], nonlinear models (univariate and multivariate nonlinear
regression) [13] and spline regression [14]. There are several
techniques other than the bootstrap model that can be used
to estimate the explanatory variable using the inverse of the
calibration model [15]. The most popular approach is proba-
bly the one based on reverse regression. In this technique, the
explanatory variable ismodeled on the response variable [16].
In this approach, the estimation of the explanatory variable is
based on the observed response variable values. The reverse
regression was demonstrated to be superior to the inverse
regression method by considering the mean squared error
[17]. However, reverse regression fails to provide unbiased
estimates in general, and it is not applicable in controlled
calibration experiments such as the one we consider in this
study. An important issue with reverse regression is the fact
that the estimated slope does not follow the normal distribu-
tion if errors of the model are not normally distributed. This
can result in an infinite variance for the slope, which is not
practical [18].

Another well-known estimation method is the maximum
likelihood approach. This method uses the profile likelihood
function as the unknown variable and then measures the
mutual inconsistency [18]. This helps to illuminate the dif-
ferences between the likelihood-based and Bayes confidence
regions with other unconditional sampling approaches [18].
However, the maximum likelihood approach requires some
parametric and sometimes unverifiable assumptions about the
distribution of the errors of the calibration model. In [18],
the first obvious problem is that the information at the pre-
diction step is normally quite limited. A second problem
involves the distribution of the observed positional inaccuracy
when the WMR travels along an unseen trajectory in an
unknown. In contrast, the bootstrap approach (proposed in
this study) is rather straightforward and does not require such
assumptions. The model adjusts by taking into account the
effect of the robot’s trajectory or environment (e.g., surface
irregularities) in the estimation process using a pooling step
during a required resampling step.

The rest of the paper is organized as follows.
Section II describes the original odometry-based technique
that is employed to reduce positional inaccuracy in WMRs.
Section III explains the concept of the bootstrap technique
used in calibration with multivariate linear models. Exper-
imental results, obtained by implementing the developed
model in the real field to reduce both systematic and non-
systematic errors of a prototype mobile robot, are reported
in Section IV. Discussions are presented in Section V,
followed by conclusions in Section VI.

II. REDUCING POSITIONAL INACCURACY
Hereafter, the wheeled mobile robot with a differential drive
mechanism is called a ‘‘robot’’ for notational compactness.
The sources of systematic and nonsystematic positional inac-
curacy impact the accuracy of the robot movement. Control
andmechanical elements that cause systematic inaccuracy are
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FIGURE 1. Reference coordinate systems of a differential drive wheeled
mobile robot. XOY shows the world frame. (xb,yb) is the coordinate of
the robot center of mass, ẋ and ẏ are the velocities of this center along
XR and YR axes, respectively.

due to imperfections and irregularities that may occur at any
step of production, from original design to component fabri-
cation. Non-systematic inaccuracy is, as the name suggests,
independent of the robot structure. This type of inaccuracy is
the result of surface irregularities and other factors such as
temperature [18].

We employed an error reduction method built upon the
kinematics of robots to reduce the positional inaccuracy. Then
we compared this inaccuracy to a set of quantifiable indices.
In this technique, we used the lateral and longitudinal indices
to measure the positional inaccuracy. These indices require
kinematic modeling of a robot to specify how the robot itself
affects its localization.

Understanding the motion of differential drive WMRs
begins with describing the contribution of each wheel to
the robot’s movement. Just as each wheel contributes to the
movement, each wheel also imposes limitations. Fig. 1 shows
the structure of a commonplace wheeled robot that uses a
differential drive. In this drawing, the driving wheels are used
to provide power to the platform. Insofar as the two driving
wheels roll and do not slip, we have [19]:

ẋb cos θ + ẏb sin θ = (DL θ̇L + DRθ̇R)/4 (1)

2lθ̇ = DRθ̇R − DL θ̇L (2)

where (xb, yb) is the coordinate of the robot center of mass,
ẋ and ẏ are the velocities of this center along XR and YR
axes, respectively. θ denotes the orientation of the robot with
respect to the initial position at the start point of the motion,
and θ̇ is its derivatives with respect to time.DR andDL are the
nominal diameters of the right and left wheels, respectively.
Angular velocities of the right and left wheels are denoted
by θ̇R and θ̇L , respectively. The nominal distance between the
two driving wheels is represented by l.
Besides, the fact that the mobile robot cannot move in the

lateral direction, a third equation is obtained as follows [19]:

ẋb sin θ − ẏb cos θ= 0 (3)

FIGURE 2. The trajectory of a differential drive WMR to reduce the
positional inaccuracy. The proposed error reduction method is built upon
kinematic equations and measuring the values of the lateral error (ye)
and the longitudinal error (xe) in each trial.

Fig. 2 shows the test trajectory and the needed parameters.
As observed, the robot is programmed to travel along path A,
while regardless of the inaccuracy sources, the robot follows
path B [1], [9]. Two corrective indices are defined to correct
these two errors: lateral index and longitudinal index. The
lateral index (Flat ) is applied to the kinematic equations of
the robot to ensure that the robot stays along the desired
trajectory. This factor presents the ratio of two angular veloc-
ities read by the encoders (the displacement over time) and is
defined as below [1]:

Flat =
Dl
DR
+

4l
nDRθL

∑n
i=1 tan

−1
(
δyi
δxi

)
(4)

where n is the number of trial runs and, δxi and δyi are the
longitudinal and lateral errors measured in each trial (Fig. 2).

To compensate the longitudinal positional inaccuracy,
the longitudinal index (Flon) is defined as follows [1]:

Flon =
L√

(L − 1
n

∑n
j=1 xe,i)

2
+ ( 1n

∑n
j=1 ye,i)

2
(5)

In (5), i= 1, 2, . . . ,n is the trial runs and L is the length of
trajectory A.

When the values of the robot’s actual and nominal physical
parameters are not equal, Flat 6= 1 or Flon 6= 1, the nominal
values in (6) must be replaced with the actual ones. In this
case, solving (1) and (2) gives,

[
θ̇L
θ̇R

]
=


2

D̂L
cos θ

2

D̂L
sin θ −

l̂

D̂L
2

D̂R
cos θ

2

D̂R
sin θ

l̂

D̂R


ẋbẏb
θ̇

 (6)

where D̂L and D̂R are the actual values of the left and right
wheel diameters and l̂ represents the actual wheelbase of
the robot. Therefore, (6) can be re-written using the nominal
values of wheel diameters, wheelbase, and the corrective
factors, Flat and Flon. This is done in two stages.

First, the angular velocity of the left wheel is adjusted
by multiplying it by the lateral corrective factor (Flat ). This
ensures that the robot stays along the straight path and man-
ages to stay along the desired path (path A) with no lateral
error (δy). Then, the longitudinal corrective factor (Flon) is
used to fine-tune the speeds of the wheels and help the
robot meet the desired point. The corresponding relationship
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between the robot trajectory variables and the wheels vari-
ables will then become,

[
θ̇L
θ̇R

]
=Flon


2Flat
DL

cos θ
2Flat
DL

sin θ −
Flat l
DL

2
DR

cos θ
2
DR

sin θ
l̂
DR


ẋbẏb
θ̇


(7)

Note that in (7), θ̇L and θ̇R are computed by differentiating
angular displacements (θL and θR) with respect to time that
are calculated from the encoder readings. ẋb, ẏb and θ̇ are
derivatives of xb, yb, and θ with respect to time.
In [9], the authors have mathematically proven that the use

of the corrective factors keeps the robot on thedesired path
and correct the robot’s motion to reach to the end-point.

III. BOOTSTRAPPING IN CALIBRATION WITH
MULTIVARIATE LINEAR MODELS
The focus of this paper is on applying the bootstrap technique
to calculate estimates and associated confidence intervals
of the unknown lateral and longitudinal corrective factors
associated with observed encoder readings; therefore, (7) is
used for inclusion in the developed bootstrap code in the R
software.

A detailed explanation of the bootstrap technique, its appli-
cations, and examples are presented in Efron and Tibshirani
[20]. In this application, for each set of Ẋ=(ẋb, ẏb, θ̇ ), there
is a 2 × 3 matrix with an entry that is called the correction
matrix, 9,

9 = Flon


2Flat
DL

cos θ
2Flat
DL

sin θ −
Flat l
DL

2
DR

cos θ
2
DR

sin θ
l̂
DR

 (8)

After fitting proper models, the interest lies in estimating the
unknown angular velocity vector of each wheel 2̇=(θ̇L , θ̇R),
associated with measured values Ẋ .
To implement the bootstrap technique, we used both Train-

ing and Unknown data sets. The Training data set was
obtained under a controlled setting that covered the required
ranges of the positional inaccuracy that lead to finding esti-
mated angular velocities, as explained in Section II. However,
for the Unknowns, we only observed the values of X and the
goal was to estimate 2̇. For estimating the unknown values of
2̇, we needed to fit the following model to the Training data
set,

E = 2̇−9Ẋ (9)

or, (
ε1
ε2

)
=

(
θ̇L
θ̇R

)
−

(
α1 β1 γ1
α2 β2 γ2

) ẋb
ẏb
θ̇

 (10)

where the components of 2̇ denote the observed angular
velocities of the wheels when the robot travels along path A

(desired trajectory) in Fig. 2. The value of 2 is calculated
using the number of counts read by the encoders over time.
9 is the correction matrix defined in (8) that alleviates the
effects of the positional inaccuracy of the robot. The error is
represented by ε1 and ε2. To construct the bootstrap data set,
the residuals are obtained from both Training and Unknowns
to form the residual pool. This will incorporate the effect of
the type of the trajectory, functioning the robot components,
and the surface irregularities by combining data from the
procedure explained in Section II and the movement of the
robot in the real field. Therefore, the values of S1 and S2 are
estimated by fitting the following models:

S1 =
(
α1 β1 γ1

) ẋb
ẏb
θ̇

+ ε1 (11)

S2 =
(
α2 β2 γ2

) ẋb
ẏb
θ̇

+ ε2 (12)

where S1 = θ̇L and S2 = θ̇R. Si,i= 1, 2, refer to the deriva-
tives of the encoders’ readings measured in the wheels 1 and
2. We use εi, i= 1, 2, to show the error terms associated with
the models that are used to fit linear relationships between Ẋ
and 2̇.

Due to the low variation of the residuals, they were altered
by an adjusting factor,

√
m/(m− p), where m is the number

of data points and p is the number of parameters [21]. After
fitting the necessary regression models, the following steps
were used in order to obtain bootstrap estimates of 2.

1. Calculate 9, from (9) and (10) using the Training
dataset.

2. Calculate residuals for i= 1, 2, . . . ,m using:

ε1 =
(
α1 β1 γ1

) ẋb
ẏb
θ̇

− S1 (13)

ε2 =
(
α2 β2 γ2

) ẋb
ẏb
θ̇

− S2 (14)

3. Construct the bootstrap data set, by resampling from
the residual pool (εi, i= 1, 2) and then sampling
resulted in data to obtain:

Training pool:

S∗1 =
(
α̂1 β̂1 γ̂1

) ẋb
ẏb
θ̇

+ ε∗1 ,
S∗2 =

(
α̂2 β̂2 γ̂2

) ẋb
ẏb
θ̇

+ ε∗2 (15)

Unknowns:

θ̇∗L = θ̇L + ε
∗

1 ,

θ̇∗R = θ̇R + ε
∗

2 (16)
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FIGURE 3. Prototype of the differential drive WMP, ‘‘Maze.’’

where ε∗1 and ε∗2 are random samples with replacement from
the residual pool and Ẋ =

(
ẋbẏbθ̇

)T is considered as the
observed response vector, and is used to predict the amount
of relativity of θ̇L and θ̇R.

4. Estimate ε∗1 and ε∗2 , from (15).

5. Obtain ˆ̇θL and ˆ̇θR using:

ˆ̇θR =
(
α̂∗1 β̂∗1 pγ̂ ∗1

)
XT ,

ˆ̇θL =
(
α̂∗2 β̂∗2 γ̂ ∗2

)
XT (17)

6. Start from 3 and repeat B times (steps 3 to 5).

IV. EXPERIMENTAL RESULTS
We implemented both bootstrap and linear regression
approaches in a real application to predict the corrected angu-
lar velocities of the wheels of a differential drive WMR ( ˆ̇θR
and ˆ̇θL) using a linear regression approach.

A. PROTOTYPE ROBOT
This section describes the prototype of a mobile robot with
a variety of components to examine the effectiveness of
implementing the bootstrap technique with multivariate lin-
ear models to reduce positional inaccuracy. The robot was
designed and built for maze competitions (see Fig. 3). It has
two microprocessor-controlled driving wheels and additional
castor wheels for stability. The robot, Maze, detects obstacles
with two front-mounted ultrasonic sensors.

Throughout the kinematic modeling, two assumptions
were made: first, the robot operates on a horizontal plane;
and second, that the robot is a rigid body on the wheels.
The robot’s dimensionality was defined by three elements
(degrees-of-freedom): two for the position in the plane (xb
and yb) and one for the orientation about the vertical axis (θ),
which is normal to the plane.

B. APPLYING THE BOOTSTRAP TECHNIQUE TO ESTIMATE
ANGULAR VELOCITIES OF THE TWO WHEELS
In order to obtain the data set for Training, the data from
20 trial runs were used during error reduction of the pro-
totype WMR measured by following the instructions given
in Section 3 (B=20). The robot was programmed to move
along the trajectory shown in Fig. 2 for 1.5 m. Data mea-
surement was performed 20 times under the same test condi-
tions such as environment, temperature, surface irregularity,
and velocity of the wheels. Therefore, in total, 20 sets of
data were collected when the robot began traveling from
START point to the desired END point in Fig. 2. In each
trial, the robot was programmed to stop at the desired END
point; however, the positional inaccuracy made the robot
stop at the actual END point. Therefore, there were two
lateral and longitudinal corrective factors associated with
each trial. The Unknowns were considered as the angular
velocities of the two wheels, 2̇=(θ̇L , θ̇R), that will give us
the corrective factors after substituting in (7). To quantify the
estimate and the precision associated with each estimate of
2̇ the mean values of the final inaccuracy of the main body
posture (position and orientation) over time, X=(ẋb, ẏb, θ̇ ),
were computed to be used in the bootstrap algorithm
and in (6) to (16).

In this part, predictions of the corrected angular velocities
of the wheels, ( ˆ̇θR and ˆ̇θL), was presented using the bootstrap-
ping with multivariate linear models and linear regression
that we have used in [19]. Table 1 lists the length of angular
velocities intervals obtained for the right and left wheels. The
results are also visualized in Fig. 4. We used the bootstrap-
ping method to estimate the angular velocity of each wheel.
We based this on the measured mean values of X vector, just
as we did in each trial. This enables the robot to compen-
sate for systematic errors, and allows us to find the confi-
dence interval associated with each estimate. The estimates
were then compared with those obtained from the positional
inaccuracy reduction technique proposed in Section II. For
instance, in the first trial, when the true mean value of the
posture rate X =

(
¯̇xb, ¯̇yb, ¯̇θ

)
is (0.254, 0.013, 0.007), the true

angular velocities of the left and right wheels 2̇=( ˆ̇θL ,
ˆ̇θR)

are (5.082, 5.397) while having associate confidence inter-
vals of (4.955, 5.182) and (5.234, 5.509). This is while
the linear regression method showed true values of (5.168,
5.339) for 2̇. Table 1 shows the amount of ˆ̇θL calculated
using the bootstrap technique was always less than that of
linear regression.

The ratio of each Unknown was also calculated to under-
stand the differences between the two methods, as listed in
the last two columns of Table 1. Specifically, the ratio of ˆ̇θL
of the bootstrap technique to the linear regression method
(rL) changes from 0.983 to 0.992. However, this ratio (rR)
for ˆ̇θR varied around 1, changing from 0.962 to 1.066. The
ratios of velocities in both methods are shown in Fig. 5. Note
that the left angular velocity ( ˆ̇θL) in the bootstrap technique
was smaller than those found using the linear regression
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TABLE 1. Estimated confidence intervals (CI) in different trials conducted to reduce systematic errors. To examine the results of the bootstrap method,
the amounts of the angular velocities of the two wheels were considered as unknown values.

FIGURE 4. Confidence Intervals of the left (top) and the right (bottom)
angular velocities used to reduce systematic errors. Black lines show the
upper and lower bounds of the confidence intervals and the green line is
the estimates obtained using the bootstrap technique, and the red line
shows the results of the linear regression that we have used in [19].

method. However, we could not establish a solid conclusion
by observing the trend of the left angular velocity ( ˆ̇θR).
After calculating the true values of the angular velocity

using the Training pool data, the lateral and longitudinal cor-
rective indices (Flat and Flon) were calculated using (7). The
indices were used to validate the effectiveness of the bootstrap
technique compared to the conventional linear regression
method.

FIGURE 5. Ratio of ˆ̇
θL in bootstrap technique to the linear regression

method (rL) is shown in red and the ratio of ˆ̇
θR is depicted in green in the

process of reducing systematic errors. As observed in all 20 trials, ˆ̇
θL in

bootstrap was always less than ˆ̇
θL in the linear regression method, while

ˆ̇
θR did not show a predictable behavior.

C. APPLYING THE BOOTSTRAP TECHNIQUE TO ESTIMATE
ANGULAR VELOCITIES OF THE TWO WHEELS
Uncontrollable phenomena such as non-point wheel contact
on a testbed and irregularities on the testbed itself cause non-
systematic errors. When the robot faces such a phenomenon,
the wheels angular displacement/velocity cannot follow the
desired rhythm of rotation, i.e., a deviation in the angular
displacement or velocity is seen compared to expected values.
In other words, the robot moves along a different path. Exact
prediction or simulation of the robot’s behavior in response
to surface irregularities is almost impossible, unless a precise
model for those irregularities exists. Therefore, we cannot
present a quantifiable and measurable test algorithm to model
the resources of non-systematic errors [3]. A solution to this
problem involves creating surface irregularities on the testbed
by using artificial obstacles selected based on the geometry
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TABLE 2. Estimated confidence intervals (CI) in different trials conducted to reduce systematic errors. To examine the results of the bootstrap method,
the amounts of the angular velocities of the two wheels were considered as unknown values.

FIGURE 6. The trajectory of the WMR to reduce the non-systematic
positional inaccuracy by simulating bumps on a road. The vertical lines
(in orange) represent artificial obstacles simulating the irregularities
during the experiments.

of the robot’s environment [3]. Afterward, the error reduction
technique was applied to find modified angular velocities.
In this experiment, we chose vertical obstacles that simulate
bumps in a road. The obstacles were round having 10 mm
diameter, common cables with rubber coating, and were
evenly placed 200 mm apart along the trajectories (Fig. 6).

We collected data from 20 trials (B=20). In each trial, we
followed the protocol outlined in Section II. The length of the
path (see Fig. 2) was 2 m. Both lateral and longitudinal errors
were measured while no intentional change was applied to
the test conditions such as temperature and surface irregular-
ity. The robot started moving from the START point to the
desired END point shown in Fig. 5, after passing over the
artificial obstacles. In all trials, it was observed that the robot
did not stop in the desired END point because of the error
sources.

Similar to Subsection IV.A, 2̇ = (θ̇L , θ̇R) were considered
unknowns that were used later to calculate the corrective
factors using (7). Wemeasured Ẋ = (ẋb, ẏb, θ̇ ) in each trial to
compute the estimates and the precision associated with each

estimate of 2̇. Table 2 lists the estimates of angular velocities
of the left and right wheels and their associated intervals.
The values are also illustrated in Fig. 7, pictorially. Similar
to estimating the parameters while the robot faces systematic
errors, the bootstrapping method was employed to estimate
the amount of the angular velocity required to compensate for
non-systematic errors as well as quantifying the associated
confidence intervals. The ratio of each Unknown quantified
using each method is presented in Table 2. As observed,
rL varies between 0.985 and 1.016 and rR changes from
0.977 to 1.022. Fig. 8 depicts the ratios of velocities in both
methods. The data shown in Table 2 were used to compute
Flat and Flon.

V. DISCUSSIONS
A. VALIDATIONS ALONG UNSEEN TRAJECTORY
The results of the study were implemented in the real field
while the robot was programmed to move along an unseen
trajectory. The robot was given a trajectory, formed from a
square, a triangle, and a semicircle to follow, and the robot
was instructed to travel the given path ceaselessly (see Fig. 9).
The length of each side of the square and the triangle was
100 cm and the radius of the semicircle was 80 cm. This
set of tests was performed with three variations: i. the robot
was not calibrated, i.e., the corrective factors, obtained from
the linear regression method or bootstrap, were not entered
into the software and no calibration was done (no calibration:
NC); ii. the corrective factors (Flat and Flon) were calculated
using the linear regression technique and adjusted the robot’s
movement when the software included them in the robot’s
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FIGURE 7. Confidence Intervals of the left (top) and the right (bottom)
angular velocities. Black lines show the upper and lower bounds of the
confidence intervals and the green line is the estimates obtained using
the bootstrap technique, and the red line shows the results of the linear
regression.

FIGURE 8. Ratio of ˆ̇
θL in the bootstrap technique to the linear regression

method (rL) is shown in red and the ratio of ˆ̇
θR is depicted in green in the

process of reducing non-systematic errors. As observed in all 20 trials, ˆ̇
θL

in bootstrap was always less than ˆ̇
θL while in the linear regression

method ˆ̇
θR did not show a predictable behavior.

equations (CL); iii. bootstrap corrective factors were entered
into the robot program (CB). The robot started at the origin of
{XRORYR} coordinate (OR) which is labeled ‘START’, then
moved along the sides of the square, triangle and semicircle,
and stopped at the END point. The test procedure is repeated
5 times for each variation, for a total of 15 iterations. The
robot coordinates in XR and YR directions (xe and ye) were
recorded. In each trial the difference between the desired
END point (desired values of xe and ye) and actual END
points were calculated to obtain the positional inaccuracy
components (xe and ye in Fig. 2).

Table 3 lists the error components in all three scenarios:
NC, CL, and CB. As shown, the movement of the robot
was adjusted for the given path after applying the corrective
factors (CL and CB). Table 3 also illustrates the Root Mean
Square (RMS) values of the positional inaccuracy along both

FIGURE 9. Unseen trajectory to compare the reduction of positional
inaccuracy using linear regression and bootstrap methods. This test
allows the robot to move experience traveling along a straight path with
sharp turns as well as some paths with curvature.

TABLE 3. Components of the positional inaccuracy before calibration
(NC) and after calibration using linear regression (CR) and bootstrap (CB)
techniques to reduce systematic errors.

XR and YR direction, the radial error (re =
√
x2e + y2e), and

shows the RMS error improvement (kI = re,CL/re,NC or
kI = re,CB/re,NC ) after (CL and CB) and before calibration
(NC). For this typical experiment, as reported in Table 3,
the RMS values of positional inaccuracy reduced by 87.6%
in CB compared to 80.9% in CL.

We have programmed the robot to move along the same
trajectory while some artificial obstacles were located along
the path. The obstacles are 20 cm far from each other.
Fig. 9 depicts some samples of the obstacles placed. A list of
error components in NC, CL, and CB scenarios is presented
in Table 4. It is observed that the robot’s motion has been
corrected when the corrective factors have been entered into
the robot program (CL and CB). This improvement is also
validated by RMS values of the positional inaccuracy in XR
and YR axes. As observed, improvement in the RMS values
of errors (kI ) after (CL and CB) and before calibration (NC).
Table 4 illustrates an improvement of 88.1% and 81.4% in
the RMS values of positional inaccuracy in CB and CL,
respectively.
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TABLE 4. Components of the positional inaccuracy before calibration
(NC) and after calibration using linear regression (CR) and bootstrap (CB)
to reduce non-systematic errors.

B. APPLICATION IN THE REAL FIELD
The degree of positional inaccuracy is important as it can
be used to correct the movement of the robot in predictable
(systematic error) and unpredictable (non-systematic error)
environments. Specifically, the quantification of corrective
factors allows the robot programmers to rectify the errors
that stem from the various steps from design to fabri-
cation. Quantification of the intervals allows us to play
with numbers within the interval based on the application
of the WMR.

VI. CONCLUSIONS
In this paper, the bootstrap technique was used to cali-
brate the positional inaccuracy in a wheeled mobile robot
with a differential drive mechanism. We incorporated effects
from both the environment and robot inaccuracies in the
entire process from design to fabrication in our estima-
tions through a pooling stage in the procedure. Results of
the bootstrap technique were combined with the formula-
tions of an odometry-based error reduction method to cor-
rect the systematic and non-systematic errors of mobile
robots with a differential drive mechanism. A prototype
mobile robot was constructed to evaluate the effectiveness
of the bootstrap technique compared to traditional linear
regression.

Experimental results along an unseen trajectory to improve
systematic errors showed that incorporating the corrective
factors obtained using bootstrap reduced positional inaccu-
racy by 87.6%. In comparison, the linear regression resulted
in only an 80.9% error reduction under the same experimental
conditions.Moreover, testing the robot along the same unseen
trajectory, while some artificial obstacles were added to sim-
ulate surface irregularities, showed 81.4% and 88.1% error
improvement using the bootstrap and the linear regression

methods, respectively. These values could change depending
on the surface irregularities and structure of the mobile robot.
In conclusion, the bootstrap technique could reduce both sys-
tematic and non-systematic errors more effectively compared
to the linear regression method.
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