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ABSTRACT Datacentres provide the foundations for cloud computing, but require large amounts of
electricity for their operation. Approaches that promise to reduce power use by minimizing execution
time, for example using different scheduling and resource management techniques, are discussed in the
literature. This paper summarizes some of the most important scheduling techniques in clouds focusing
on power consumption, covering VM-level, host-level and task-level scheduling where the most promising
approach is task level scheduling, with energy savings bymeans of load filtering, consolidation, adapted CPU
throughput, or host power control. We explore use of the rate monotonic (RM) and backfilling algorithms
for real-time task scheduling in cloud environment because RM is the simplest fixed priority scheduling
technique, and thus the choice for modern real-time systems, and prior uses of RM in task scheduling
have demonstrated power efficiency with optimal results. We specifically consider deadline-based tasks
scheduling for real-time clouds which, to the best of our knowledge, has not been employed previously.
RMwith backfilling is experimentally evaluated and results show that, compared to the classical algorithms,
all tasks were scheduled with minimum power consumption (5.5% - 29.3%), on minimum resources (3.9%
- 25.2% less) while majority were meeting their deadlines (93.21% - 94.7%). The approach can guarantee
deadline oriented Software as a Service (SaaS) in cloud if arrival rate i.e. network transfer time can be
estimated in advance. We subsequently provided an extension of the proposed approach to task-based load
balancing for almost balanced resource utilization and approximately 1.0% to 1.6% energy efficiency.

INDEX TERMS Energy efficiency, clouds, performance, scheduling algorithm, DVFS.

I. INTRODUCTION
Cloud computing [1] demonstrates a convergence between
information technology and computer networks and business
efficiency and adaptability. Conversely, this presents the
technology providers and the research community with chal-
lenges in energy efficient computation. With rising energy
costs, strategies which can increase the quantity of useful
compute per unit of input energy, or decrease the amount of
cooling required, become of interest. Such strategies include:
(i) locating datacentres to take advantage of temperatures;
(ii) adopting hardware with a better energy use profile;
(iii) using scheduling strategies which can leave a maximum
of equipment in a very low poweredmode; and (iv) improving
utilization through consolidation, often by taking advantage
of virtualization or similar techniques / technologies. Data-
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centres will have theoretical peak power consumption, based
on which specific measures of efficiency may be taken,
but it is more likely that power demands vary some way
below this peak, requiring continuous measurement. For the
cloud provider, reduced energy consumptionmeans increased
margin. However, it would likely be detrimental if this
margin came at a cost to performance and users’ monetary
costs.

The most frequently used policy to plan tasks is the
priority driven approach, which can be categorized into two
kinds: (i) fixed priority and (ii) dynamic priority [2], [3].
Fixed priority algorithms allocate each task a unique priority
that cannot be changed if a task reappears for execution,
to prioritize all tasks, within the system. On the other hand,
dynamic priority scheduling algorithms place no constraints
on the order of assigning priorities to individual tasks running
in the system, and each task can take a different priority
on its reappearing. Similarly, if more than one task were
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assigned the same priority, then the first one in queue is
selected for scheduling. Amongst deadline monotonic (DM),
the earliest deadline first (EDF) and RM, the later one is
a fixed priority algorithm, well studied for scheduling in
real-time systems where the tasks with minimum clock cycle
are executed first and so on with a risk of long-running
jobs missing their deadlines. We consider in our formulation
that the amount of work is known in advance, as in offline
scheduling. Task scheduling in such distributed environments
is an active research issue [4] as most of the resources are not
fully utilized and still consumes a lot of power. Therefore,
it is important to study different scheduling approaches
to fully utilize the available resources in virtualization
based distributed systems that will help in efficient resource
management in clouds environment in a power efficient way.
The studies in [2], [3], [5], [6] discusses the importance of this
issue, where our work fits to target the same issue to schedule
jobs on minimum resources to fully utilize them.

Real-Time Services (RTSs) are those whose precision
depends not only on logical results but also on the time
in which these results are made. As Cloud computing
becomes growing for Anything as a Service (XaaS) model,
modern real-time cloud services including financial anal-
ysis, distributed databases, gaming applications, scientific
experimentation, flight-control systems or image processing
are also accessible through cloud computing. RTSs need
huge volume of computing resources to scale user utilization
patterns and satisfy time deadlines at the same time. Cloud
computing model can provide this scalability within the
timing constraints to these RTSs. A usual real-time service
involves numerous Real-Time Applications (RTAs) that are
further divided into subtasks. As long as a group of appli-
cations or tasks for a given real-time service meet all their
deadlines, the service achieves the Quality of Service (QoS)
settled with customers. At virtualization level, VM provi-
sioning & allocation is considered a real-time service which
are well studied in [7]. In this work, we investigate host
level power-aware provisioning of cores or PEs (Processing
Elements) for real-time applications divided into real-time
tasks. Our work guarantee the scheduling of real-time tasks
on PEs in a power efficient way before there deadline is
met while ignoring the communication cost. We cannot
guarantee the fulfilment of application deadline for customer
satisfaction over Internet as the underlying communication
medium in cloud because the data transfer to/from cloud
is not managed by the cloud service providers. The major
contributions of our work are:
1) we explore the use of RM algorithm for real-time task

scheduling in cloud environment because RM is the
simplest fixed priority scheduling technique, and thus
the choice for modern real-time systems, and prior uses
of RM in task scheduling have demonstrated power
efficiency with optimal results;

2) we extend the classical RM techniquewith a backfilling
scheduling mechanism to further improve energy and
performance efficiencies;

3) we specifically consider deadline-based tasks schedul-
ing for real-time clouds which, to the best of our
knowledge, has not been employed previously;

4) RM is experimentally evaluated, and results shows that
all tasks were scheduled with minimum power, on min-
imum resources while still meeting their deadlines; and

5) the approach can guarantee deadline-oriented Software
as a Service (SaaS) in cloud if arrival rate i.e. network
transfer time can be estimated in advance.

The rest of the paper is organized as follows. Sec. II is
devoted to scheduling background. An overview of the related
work along with various scheduling algorithms is presented
in Sec. III. We formulate the existing problem in Sec. IV.
We propose a solution for the existing problem in Sec. V;
along with study of scheduling analysis and algorithms.
Simulation results and comparative study are discussed in
Sec. VI. Finally, Sec. VII concludes this article with some
future research directions.

II. BACKGROUND
A scheduling approach that can reduce the power consump-
tion of a system, while still meeting jobs deadline i.e. energy
oriented task assignment is called green scheduling. It is also
a designing technique for servers and other ICT (Information
and Communication Technology) equipment’s with minimal
or no environmental effect. Task scheduling approaches are
normally categorized as static and dynamic [2]. In static
task scheduling, workload size (number of clock cycles),
the required physical resources or VMs and task priorities are
determined prior to their execution. Information about work-
load size, the Worst Case Execution Time (WCET), task’
deadline and communication time is thought to be known at
execution time. Min-min & Min-max are two common static
scheduling techniques. In dynamic scheduling, algorithms
may change tasks priority level on reappearing and resources
or VMs (Virtual Machines) to running processes are allocated
dynamically to maximize resource utilization. The workload
is also not known, which makes dynamic algorithms more
challenging and complex. Additionally, there exists another
category of scheduling i.e. real time scheduling which
comprise static and dynamic priority scheduling algorithms,
as shown in Fig. 1.

To make scheduling green, famous techniques like
Dynamic Voltage Scaling (DVS) and Dynamic Voltage
& Frequency Scaling (DVFS) are integrated to take full
advantage of machine utilization at low operating cost [6],
[8], [9]. These techniques slow down the CPU frequency to
save power, when workload amount falls below a threshold.
Processing with slow frequency means that the CPUwill take
extra clock cycles to complete the running job. Therefore,
if deadline based tasks and real-time data is considered,
they might fail to optimally schedule the tasks. Therefore,
it is important to look at these solutions when running
real-time deadline based applications are considered in cloud
environment. Sec. VI summarizes how resource scheduling
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FIGURE 1. Categorization of the scheduling algorithms.

techniques are implemented in cloud datacentres for power
efficiency. The local policies are implemented to make
hardware more power efficient, while global policies are
used with integration to local policies to schedule jobs and
manage the available resources in a power efficient way. The
local techniques are implemented on host level, while global
policies are implemented on the virtualized level. The authors
in [10], [11] have categorized schedulers in cloud systems
into twomajor types i.e. local scheduler and global scheduler.
Global scheduler receives submitted jobs from users, then
depends on global scheduler policy, it chooses which job to
send to which remote site. How to schedule all the jobs on its
local resources is the responsibility of local scheduler of each
remote site. Local scheduler implements Dynamic Power
Management (DPM) techniques on a single physical host or
PE to schedule jobs optimally e.g. VMware DRS (Distributed
Resource Scheduler), DPM [12] and Credit scheduler [13].

In VMware VSphere DPM, the hypervisor is able to switch
off and on some hosts, while the resource demand is low or
high. Similarly, using DRS, the VMware VSphere hypervisor
can optimize the resources to the best level by placing the
new created VM on a well suitable host. DRS have also
the capability of automated load balancing and optimized
power consumption. The Credit scheduler in Xen hypervisor,
allocate each host according to weight and cap. Each host
is given a weight, and the CPU is allocated to each host
according to its weight. The greater the domain weight,
the more CPU is allocated to execute jobs on corresponding
host. A domain with a weight of 512 will get twice as much
CPU as a domain with a default weight of 256 on a contended
host. A cap optionally fixes the amount of CPU, a domain
will be able to consume. The cap is expressed in percentage
of one physical CPU: 100 is 1 physical CPU, 50 is half a
CPU, 200 is 2 CPUs, etc. The default is 0; means there is
no upper cap. VM allocation policies are studied more in the
literature [7], [11], [12], [14], [15]–[17] as their allocation,
take over, placement in hosts and even migration affect the
performance and cost of cloud infrastructure.

There are two different types of scheduling approaches
in clouds: (i) host level; and (ii) VM level. In respect of
(i), VMs are scheduled on hosts i.e. virtualization level;

whereas, in respect of (ii) multiple CPU cores or PEs are
allocated to user jobs i.e. system level. As discussed above,
local policies are implemented on VM/PE level and global
policies are working on virtualization level. In virtualization,
a local policy controls guest Operating System (OS’s) Power
Management (PM) schemes i.e. hardware based techniques
like DVS through scheduling jobs to different PEs on low
voltage/frequency, while consolidation of VMs is controlled
by global resource policies through live migration [12] to
reallocate VMs. An example of local policy is the on-demand
governor integrated into the Linux kernel [9]. A detail
experiments on local and global policies can be found
in [12], [17].

Time-shared and Space-shared are two scheduling policies
well studied for resource management i.e. tasks allocation to
VM and vice versa. Time-shared is similar to multi-tasking
approach where VM is shared amongst different cloudlets
that can further be shared in terms of PEs when threaded
applications are considered, in that case time-sharing policy
need not be enforced. Similarly, space shared implements
First Come First Serve (FCFS) policy where resources are
fully allocated to the running cloudlet. With confidence both
approaches involve time-sharing of a short given a period
T, two tasks A and B will both be completed in both
approaches. In time-shared approach, this will be through
swapping slices of tasks A and B. In space-shared, task Awill
be completed first. Fig. 2 shows the scheduling approach in
CloudSim. A VM scheduler allocates multiple VMs to host
and a cloudlet scheduler schedules all cloudlets to VMs for
execution while agreeing Service Level Agreement (SLA).

III. RELATED WORK
Efficiency of scheduling approach affects cloud performance
and maximizes profits for cloud service providers. In this
section we have explained some common approaches that
are studied for power efficiency in cloud datacentres.
We follow the following taxonomy in Fig. 3 to discuss
the existing literature and state-of-the-art energy efficiency
techniques [18]. Real-time scheduling has been studied
extensively in uniprocessor and multiprocessor system,
but cloud environment lacks such study. Clouds are soft
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FIGURE 2. Default scheduling models in the CloudSim simulator.

real-time, means if a customer was not satisfied with a
service provider due to service failure or delay, the customer
will definitely move to another service provider which
leads to the study of real-time clouds. The facility to fulfil
timing constraints of real-time tasks plays an important
role in cloud computing. To the best of our knowledge,
the available cloud scheduling techniques are not appropriate
for real-time tasks since they lack strict requirement of
hard deadlines. A real-time scheduling approach must
guarantee that processes meet deadlines, independent of
systemworkload, for successful completion of job. Real-time
scheduling is divided into two types: (i) Fixed priority
algorithms like Rate Monotonic (RM); Deadline Monotonic
(DM) [2]; and (ii) Dynamic priority algorithms like Earliest
Deadline First (EDF). Fixed priority algorithms allocate each
task a unique value that cannot be changed if a task reappears
for execution, to prioritize all tasks, within the system.
Dynamic priority scheduling algorithms place no constraints
on the order of assigning priorities to individual tasks running
in the system. RM prioritizes all the tasks based on the
number of clock cycles (ci) required, i.e. minimum ci means
high priority. DM considers the deadline (di), the nearer
the tasks di, the higher the priority. EDF is same to DM,
but it can re-prioritize the tasks upon its reappearing for
execution. We consider VM level deadline based real-time
tasks scheduling where PEs are allocated to user tasks with
minimum feasible speed. The suitability of RM algorithm is
studied for multicore systems in [8], [19]. They implemented
RM technique to find the lowest core speed to schedule
individual tasks on a multicore CPU. Then, the lightest task
shifting policy is adapted to balance the core utilization,
which is utilized to determine the uniform system speed for a
given task set. Their work guarantees that all the tasks fulfil
their deadlines with reduced system power consumption.

Servers or processing units are the most power consuming
equipment’s in datacentres [20]. It is very clear from our

previous figures that the ratio of power is very small, when
a CPU is 100% utilized and when it is idle. Therefore,
it is more efficient to make the CPU engaged all the
time, or even switch it off to save more power. In [5] the
authors have reported on scheduling policies to decrease
energy consumption of parallel tasks. In such systems,
critical tasks cannot miss their deadline and should be
executed before their deadline. The execution of non-critical
tasks can be delayed that extend their total execution time.
Therefore, they have used DVFS to scale the resource
voltage or frequency for non-critical tasks which reduces
the total energy consumption. Their Power Aware Task
Clustering (PATC) algorithm can schedule task clusters on
homogeneous PEs with an energy reduction of 39.7% due
to PE idle state, task clusters for less communication and
extending the make span. In [21] the authors have extended
OS’s power manager by adaptive power manager APM) that
uses the CPU’s DVS abilities to drop or upsurge its frequency
tominimize overall power consumption. This hardware based
techniques can be integrated with some scheduling policy,
to make the system power efficient. For example, The DVS
approach at the processor level in cooperation with turn
on/off approach at cluster level is proposed in [22] to attain
approximately 45% total energy savings while maintaining
the response time.

Minimization of the total execution time of tasks is also
studied in the literature. Such approaches maximize the
performance of the systems using different optimization
techniques. The objective of PSO-based Genetic Algo-
rithm (PGA) [23], is to find a schedule that minimizes
the WCET of all tasks scheduled on heterogeneous sys-
tems by combining the heuristic based Particle Swarm
Optimization (PSO) policy and modified genetic operators.
Their approach shows better outputs over Heterogeneous
Earliest Finnish Time (HEFT) and Genetic Algorithm (GA).
HEFT is a greedy approach to schedule a set of dependent
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FIGURE 3. State-of-the-art energy efficient techniques.

tasks onto a system of heterogeneous processors taking
communication time into account. All prioritized tasks are
scheduled each one, starting with the highest priority. The
task with the highest priority for which all dependent
tasks have finished is scheduled on the processor which
will result in the earliest finish time of that task [24].
GA is evolutionary-based optimization technique. In [25]
a multi-objective GA (MO-GA) that optimizes the power
consumption, CO2 emissions and maximizes profit of a
geographically dispersed cloud computing setup is presented.
The results suggest that this approach beats the greedy
approach in terms of energy consumption and Green House
Gas (GHG) emissions and is slightly better in terms of
scheduling more tasks per unit time. CO2 emissions are
calculated based on EPA’s eGRID emission factors [26],
where on average, electricity sources emit 1.222lbs CO2 per
kWh i.e. 0.0005925 metric tons CO2 per kWh. Similarly,

profit is estimated by using different price models, dependent
on the use of services provided in $/CPU/hour. The study
claims 10.85% reduction in CO2 emission, 4.66% reduction
in energy and 1.62% profit maximization. In [27] a PSO
based scheduling algorithm maximizes profit by shortening
the average operation time of tasks for cloud service provider
with the lowest system costs whilemaintaining customer QoS
over minimum number of fully utilized resources.

Much of the energy can be saved by maximum utilization
of less number of machines, while switching off underutilized
machines, in a datacentre. The objective can be achieved
using migration techniques. In [14], [28], [29], the authors
have defined a policy that tries to consolidate workloads from
separate machines into smaller number of physical nodes
while keeping most of the servers switched-off for long time
and still satisfying resource requirements to maintain QoS of
each job. This policy also considers virtualization overheads
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such as VM creation, fault tolerance, and VM migration to
periodically decide whether to transfer jobs and to turn off
the less utilized servers resulting in 15% decrease in overall
datacentre energy.

Efficient resource provisioning and management can save
a lot of energy, if efficient algorithms are selected for
VM selection, placement and migration. In VM selection,
a proper VM is selected while during placement, a suitable
host is selected to accommodate the selected VM. The
objective is to manage the hosts in datacentre through bal-
ancing the workload or migration of VMs from underutilized
host to switch them off, to save energy. When to migrate?
Where to migrate? Which to migrate? Are some most
challenging questions that are discussed in [17]. Research
interests have been rising in introducing renewable energy
sources into current datacentres. The basic challenge of such
incorporation is that power sources are irregular due to
seasonal effects. In [30] a holistic workload scheduling policy
is presented to reduce the brown energy consumption in
geographically dispersed datacentres with renewable power
sources. In [30] the experiments with real workload traces
show that the proposed policy significantly reduces brown
energy consumption by up to 40% as compared to other
techniques.

A newer approach uncertainty-aware online scheduling
algorithm (ROSA) by Chen et al. [31] discusses an architec-
ture for the execution of dynamic workflows having uncertain
execution time for task as well as the time to transfer data
within cloud environment. The uncertainties about unknown
time to start, execute or finish a task is discussed in the
proposed method. It helps to achieve optimal cost for service
renting, changes in scheduling, reduced resource usage and
fairness in resource usage for real time workflows having
uncertain time for execution and time to transfer data in cloud
environment. Results show that improvement in performance
in comparison to existing algorithms up to 56% of cost,
changes in scheduling up to 70%, resource usage up to 37%
and the fairness up to 37% is achieved by the proposed
method. Similarly, Chen et al. [32] presents an uncertainty
aware framework to schedule real time tasks in the cloud
environment. The work proposes a newer algorithm Proactive
and Reactive Scheduling (PRS) which focuses on real time
task scheduling along with computing resources in context
to uncertainties present in the system. The effectiveness of
PRS is simulated through experiments conducted on synthetic
and Google workloads respectively. PRS uses proactive and
reactive scheduling in a dynamic way to schedule real time,
aperiodic and independent tasks. It also incorporates policies
to scale-up and scale-down resources used in computing in
connection to workload in order to improve energy efficiency,
resource usage and reduced energy usage for datacentre in
cloud environment is achieved.

The work by Nayak et al. [33] discusses multi cri-
teria decision-making (MCDM) based task scheduling in
collaboration with VIKOR, a multi criteria optimization
method. VIKOR tries to find out the best task that is

backfilled from the available similar tasks. It further helps
to give optimal resources to the best task that is already
allocated to the task that are deadline based. This results
in increased resource utilization as well as helps to reduce
tasks rejection. In the work by Safari and Khorsand [34],
a power-aware and list based scheduling method is combined
with DVFS (PL-DVFS) for real time tasks is proposed.
PL-DVFS maintains QoS using tasks deadlines. It improves
performance as well as reduces overall energy usage for
execution time and communication energies respectively
especially for the case where tasks are high in number. It also
eliminates those hosts/VMs/CPUs which are inefficient in
order to improve resource utilization levels.

In [35], a dynamic cost-efficient deadline-aware (DCEDA)
tries to minimize execution of cost and time. It uses cost
effective scheduling decisions along with continual update
status of each job in order to avoid violation of deadline.
In comparisonwith JIT-C and CEDA,DCEDAyields cheaper
scheduling in order to satisfy deadline given by clients.
In [36], authors have combined RMS and EDF algorithms
to give a hybrid form of EDF-RM scheduling method.
It makes it more flexible and optimal tool because of
non-schedulable jobs are less in number and individual job’s
turnaround time rather than taking set of jobs in RMS/EDF.
Authors in [37], have considered user’s dynamic behaviour
in Fog computing environment for dynamic changes in user
requirements. The proposed algorithm tries to minimize
average execution time by 12% as well as cost by 15% as
compared with existing solutions like resource and latency
aware methods. Reference [38] proposes an energy efficient
scheduler DEWTS which is based over DVFS. It is applied
on DVFS based processors in the datacentres. In context
to previous methods, here jobs are placed over idle slots
where voltage and frequency are low and it does not violate
dependency limitations and increasing the delay time for a
job to complete within the due time for a batch of jobs.
Furthermore, [39] discusses heterogeneous VMs resource
allocation for real time embedded systems. It executes the
gathered data within the deadline from various sources like
heterogeneous, distributed and decentralized nodes in cost
and time effective manner. The proposed avoids data repli-
cation and embeds genetic operators for cuckoo algorithm
in order to solve job to VM limitation optimization issue.
A classical survey of the different scheduling algorithms is
presented, in [40], using various metrics used within the
cloud computing environment. An analysis of their limits
and time complexity are observed. It is pertinent from the
study that none of the scheduling algorithm captures all of
the aspects simultaneously. Hence, they are open for further
modifications to be used in the future. A newCbCP algorithm
is proposed, in [41], where focus is given to minimize the
total cost for execution in context to user’s satisfaction over
specific deadline and reliability. As compared with DRR and
QFEC+, it overpasses both in terms of low sub reliability
within the clusters. It also provides optimal solution wherever
task graph for a simple condition is satisfied.
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IV. PROBLEM FORMULATION
Consider a datacentre which comprises M VMs given by
M = {m1,m2, . . . ,mn}, and assume that each mi is DVS
enabled module where the frequency of each VM is fi that is
measured in cycles per unit time. Having DVS enabled, fi can
vary from fimin to fimax , where 0< fimin < fimax . It is easy to get
speed Sj of the VM that is proportional to the frequency fi.
Furthermore, heterogeneity of the VMs is given by H (mj)
which includes processor architecture, supported buses types,
and processor speed in GHz, I/O and memory in bytes.

Consider a workload T which includes n tasks given by
T = {t1, t2, . . . , tn} and ti = (ci, pi, di) where ci is the
number of CPU cycles that are needs to complete ti execution.
Similarly, pi is the time period and di is the task’s deadline.
We assume that ci is known in advance. H (ti) is the VM that
complete ti execution before di, which is absolute deadline for
ti. Relative deadline D of workload T is met if and only if all
dn for all tasks tn are met individually on each VMwithH (tn).
The total number of CPU cycles required by ti to execute

on VM mj is assumed to be a finite positive number, denoted
by cij. The execution time of ti under a constant speed is
Sij =

tij
cij
, calculated in cycles per second. We also assume

that the processor always retrieve ti from the primary cache,
reducing communication overhead. Assume that task ti when
executed on machine mj consumes pij power. Reducing pij
will also diminish fi, and consequently will decrease Sij
and might cause ti to probably miss its deadline di. If ti
is mapped to H (ti), we say that the architectural mapping
is fulfilled, otherwise not. Our goal is to minimize the
power consumption of VMs such that the performance in not
affected, given by Eq. 1:

min
n∑
i=1

m∑
i=1

pij.xij (1)

where xij ∈ {0, 1}, that shows a boolean factor for
architectural mapping, if a mapping occurs (i.e. a task is
allocated to a VM) then xij = 1 otherwise xij = 0.

V. PROPOSED WORK
It is clear from [2], [19] that RM is the simplest and
applicable amongst fixed priority scheduling technique and
thus is a suitable choice for present real time systems and
applications. We have studied the suitability of RM algorithm
for real-time task scheduling in cloud systems. Our main
objective is to execute user jobs on minimum power i.e. low
frequency with increased utilization by assigning minimum
resources. Our algorithm runs in three phases. In the first
phase, a minimum number of VMs are allocated to execute
jobs. In the second phase, all the feasible schedulable points
are calculated according to RM algorithm for individual tasks
and are compared with its energy requirements. A feasible
schedulable point with minimum power consumption is
chosen to execute the user job. In the third phase, the empty
slots (CPU cycles) created by terminating tasks is are
allocated through a backfilling policy. The algorithm is

explained later in more detail. Initially, a single host with
some VMs is activated while other hosts are kept switched
off to save energy. When some tasks are submitted for
execution, the available VMs are allocated using default
simple VM allocation policy (first fit) one by one until
specific threshold utilization is achieved. It is clear from
our experiments that VMs have limited effect on utilization
unless they are executing large tasks/cloudlets. Again it is
logical, that one host with a number of idle VMs utilizes the
host only a little bit, because the utilization is often calculated
by the workload.

Consider a datacentre containing H heterogeneous hosts
i.e.H = {h1, h2, h3, . . . , hn}. Each host, following a round of
scheduling, will be running zero or more isolated VMs given
by VMh = {vm1, vm2, vm3, . . . , vmn}. Being heterogeneous,
we consider each host as belonging to a subset of hosts,
with each subset differentiated by processor architecture
(CPU family and model). A specific subset can be further
differentiated by multiples of the CPU, in terms of CPU
cores which we may refer to as processor elements (PE) and
CPU speed. The maximumwork that each host can undertake
per unit of time is then a factor of the architecture, number
of PE, and speed of each PE. A VM, then, is allocated
some number of PEs which gives it the possibility to
undertake a specific proportion of the maximum for the host.
To simplify concerns, we assume that hosts are comparable
by a single measure which could be calculated in this
manner such that performance ranking would be possible;
for the sake of simulations only, we will use the MIPS
(Millions of Instructions Per Second) specification as a
proxy for such a calculated value, however we would not
be able to endorse this as a good performance indicator
for real systems. Consequently, each PE in a host would
be capable of delivering inconsistently with respect to other
PEs. We assume, further, that each PE is DVFS enabled,
where decrease in voltage or frequency for that PE impacts
linearly on the achievable work. The actual workload is not
changed but it will take more execution time that will directly
affect the scheduling approach. In deadline based scheduling,
the task execution is flexible, so we focus only on increasing
utilization by reducing PE frequency/voltage. Similarly,
we consider offline scheduling, where all workload is already
known with their deadlines. In online approach the problem
is that incoming tasks will not be allocated for processing, but
that’s only true in space shared policy. A time-shared policy
and dynamically deleting the completed tasks will resolve
this issue while considering online scheduling approach. The
most important question that who and when DVFS-enable
decision is taken is not studied in our approach. We consider
theoretically that each PE can execute cloudlets at different
speed i.e. PE have predefined frequencies, and all tasks are
scheduled from the start with a minimum frequency having
minimum power consumption, feasible schedulable point.
That’s looks like the power save mode of DVFS in Linux
kernel, which is discussed below in more detail. Utilization
based power model was considered a proxy to predict the host
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total power, the reason being that the CPU is the principal
consumer of dynamic power and that its power is determined
largely by its power state (active or sleeping). For non CPU
intensive workload this assumption will fail. The utilization
based power model is given by:

Powerused = Pmin + (Pmax − Pmin)× Utilization (2)

where Pmin is minimum power consumed at idle state
and Pmax is the maximum power consumed at peak load.
Utilization is between 0 and 1. The power at task level
scheduling was calculated using a very standard power model
that shows when the clock frequency f and voltage V is
changed then it will affect power consumption accordingly,
where C is capacitance, and is given by:

P = C × V 2
× f (3)

DVFS control looks very easy but indeed it is a more
complex operation. Reducing CPU rate has a robust influence
on performance that consumers may not accept. Likewise,
if reducing CPU rate reduces power consumption, then the
resulting slowdown may in fact lead to increased energy
consumption as energy depends on power and execution time
both [42]. Therefore, DVFS control is hard and needs exact
policies to attain major power savings. DVFS is integrated
as SpeedStep on Intel processors, or as Cool’n’Quiet on
AMD processors. Besides, software support for DVFS
is common amongst all major OS including Linux that
comes with cpufreq permitting users to set the wanted
frequency at any time. Linux kernel, support five diverse
modes: (i) performance; (ii) power-save; (iii) user-space;
(iv) conservative; and (v) on-demand to activate DVFS.
A lower frequency implies a weaker voltage, decreases CPU
power consumption but slows down the CPU computation
capacity. Regarding the time spent with I/O operations,
the efficiency of DVFS technique depends on the system
architecture [9]. A very brief discussion, implementation on
real host and simulations of such operating modes using
DVFS is discussed and results are compared in terms of
execution time and power saving in [9].

Assuming that each vmi is DVS module enabled (DVS
relates to the PE, so it means that each VM running on top
of a CPU core i.e PE is DVS enabled with power save mode)
where the frequency of each PE related to a specific VM i.e.
vmi is fi which is measured in cycles per unit time. For the
sake of simulation purposes only, we create one PE in one
VM, hence VM and PE is used interchangeably. Although
DVS is hardware based approach but considering that each
VM gets a view of what is offered to it through hypervisor.
If the workload can be scheduled with low speed, permitted
by flexible or far away deadline, then VM gets lesser share
of CPU to extends its completion time. Having DVS enabled,
each vmi have frequency fi that can vary from fimin to fimax ,
where 0 < fimin < fimax . For simplicity, we consider the lower
value of fi as 0.1, otherwise having multiple VMs on a single
host, we have a maximum number of cycles per second to
share amongst the VMs and in some cases we also need to

cycle the VMs in and out i.e. VM migration. In our scenario
VM migration is not enabled but the cloudlet scheduler is
time-shared enabled. It is easy to obtain speed Sj [Table 1] [8],
of the VM corresponding to PE, which is proportional to the
frequency fi. Table 1 shows how the speed of each VM is
calculated against the frequency fi, which the VM is running
with.

Consider a workload W (Ci,Ti), where Ci is the total
computational demand and Ti is the time period required
to execute another instance of W , which also shows the
deadline forW , if not fulfilled, the workload is not scheduled.
Moreover, W include different tasks given by W =

{w1,w2,w3, . . . ,wn} and wi = (ci, ti), where ci is the
number of CPU cycles needed to complete wi execution
and ti is the time of PE allocated for a short interval to
execute a partial part of ci. The time taken will depend
on the useful amount of work doable per cycle on a given
host (for a given microprocessor architecture), this becomes
highly dependent in a heterogeneous setup. We assume that
ci is known in advance, which is the total number of MIPS
required to complete the execution of w, in our simulation
set-up. Predicting the workload MIPS is quite complex,
but using AI techniques we can estimate it using different
parameters. Some authors [15] consider the bandwidth to
calculate the workload to assign only the optimal resources in
cloud environment.We assume the number ofMIPS is known
as in offline scheduling. The total number of MIPS required
by wi to execute on VM vmj is assumed to be a finite positive
number as task must require some CPU cycles, denoted
by cij. This suggests that ci is an independent standard for
measuring CPU cycles in our simulations. The execution time
of wi under a constant speed is Sij =

wij
cij
, calculated in

cycles per second, as wij is measured in (cycle per second)
and cij denotes the number of MIPS in cycle per second.
Our work only consider the scheduling cost, therefore we
assume zero communication overhead and ignore the time
to retrieve the cloudlets from future queue to deferred queue
and from deferred queue to execution unit. Utilization of a
VM is given by ui leading to the total utilization U of a
host. A datacentre contains large number of hosts and VMs
where a single 100% utilized VM is not going to give us a
sensible figure on datacentre overall utilization unless only
one VM exists per host. Assume that task wi when executed
on VM vmj consumes pij power per second. P is the total peak
power of a host when a PE corresponding to a VM is 100%
utilized until PE is less than the complete CPU. Note that, pij
is bounded as shown.

n∑
i=1

m∑
j=1

pij<p (4)

pij must be greater than or equal to 0 because negative power
would breach the laws of physics. Similarly, ui is directly
proportional to pij i.e. the more a server i.e. host is utilized the
more power is consumed. In some cases direct proportionality
might not be true depending on consistency of voltage and
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other system factors like fan speed etc. Reducing pij will also
diminish fi, and consequently will decrease Sij. It is clear that
reducing the power would cause problems for the hardware,
but our purpose is to schedule the tasks with slow speed
until their deadline is not missed. Our goal is to minimize
the power consumption of a host or PE in a way that the
performance in not affected.

n∑
i=1

m∑
j=1

pij.xij (5)

where xij belong to 0 and 1, that shows a Boolean factor for
architectural mapping or scheduling, if a mapping occurs i.e.
a task is scheduled to a PE then xij = 1 otherwise xij = 0.
In later case, when xij = 0, the above equation will result in 0
power, as no task was executed. In other way, these are the
constraints of our scheduling problem.

The RM algorithm allocates static priorities on the basis
of task periods such that for any two tasks ti and tj, priority
(ti) > priority (tj) and period(ti) < period(tj). A task system is
schedulable using RM algorithm iff:

U ≤ n
(
2

1
n − 1

)
(6)

where n denotes the number of tasks. It means that any task
set of static priority is optimally feasible on a uniprocessor
system using RM iff: U is not larger than 0.693, but, it has
been proven in the literature that in average case RM is
feasible for task set havingU = 0.88 [43].We assume that the
workload is initially scheduled on a single PE, whereDi = Pi.
At critical instant t = 0, the workload of task i at time t
running at speed fi is given by:

Li(τ ) = Ci +
i−1∑
j=1

d
t
Pj
e

(
Cj
)

fi
(7)

This is the case for phase one when VM will distribute the
workload equally amongst different available PEs. If the task
is schedulable at fi, it means it is also schedulable at some
other schedulable point at different time t that is< fi, and each
task have different workload at different schedulable point,
which leads to calculate the lowest PE speed as:

min
t∈Si


Ci +

i−1∑
j=1
d
t
Pj
e

τ
Cj

 ≤ ft (8)

In second phase all the schedulable points are calculated
using Algorithm 1, where task i is always feasible on a single
processor iff:

min
t∈Si

Li(t) ≤ t (9)

where t is a single schedulable point and Si denotes a list of
all schedulable points calculated as given below.

Si = lPj

(
J = 1, . . . i&l = 1, . . . d

Pi
Pj
e

)
(10)

Algorithm 1 Rate Monotonic Schedule (Rms)
Require: cloudletList
Ensure: feasiblePoints, infeasiblePoints
1: N = cloudletList.size()
2: Ci = cloudletList.cloudlet(i).getMIPS()
3: Pi = cloudletList.cloudlet(i).getPeriod()
4: index = 1
5: for each i from 1 to N do
6: TPi = Pi
7: for each i from 1 to N do
8: TPi = Pi
9: k = TPi

TPj
10: for each m from 1 to k do
11: schedule[index] = m× Pj
12: end for
13: end for
14: if cloudletList.cloudlet(i).getMIPS()

<

schedule[i] then
15: feasiblePoints.add(schedule[i])
16: else
17: infeasiblePoints.add(schedule[i])
18: end if
19: end for
20: return feasiblePoints, infeasiblePoints

where fi is associatedwith task speed and feasible schedulable
points, t is a scheduling point and Si denotes a set of all
the scheduling points. The feasibility of the workload is also
checked i.e. if L(i) ≤ schedulable point, it means that the
task is feasible otherwise it is added to the infeasible task list,
that are considered for next iteration. In last, speed of every
feasible task is calculated as:

Speed(i) =
Li

SchedulabePoint
(11)

We have scheduled individual task to PEs according
to [2], [8]. The above equation for a single processor can be
converted for multiprocessors as below.

max
t=1...k

{min
t∈Si

(t)
t
} ≤ ft (12)

The following steps, in Algorithm 1, show the process of
finding schedulable points and allocating PEs for VM to
execute W . In our approach some VMs are considered
consolidated on a single host while other hosts are kept
switched off to save energy. When there are some cloudlets
to execute, the resource are made available in one-utilized-
switch-on-another mode. We implement DVS technique with
RM algorithm to schedule the cloudlets on a low power
consumption schedulable point. At this level, we are not
dealing with how much power was consumed, but we only
focus on optimal schedulabilty of real-time cloudlets. Fig. 4
shows the basic flow diagram of RM scheduling technique.
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FIGURE 4. Flow diagram of the proposed scheduling algorithm.

A. THE BACKFILLING APPROACH
The backfilling approach can be used to schedule jobs from
the wait queue if certain stranded resources or VMs, which
cannot be allocated to the next job in the queue, exist in
the system [44]. This ensures that the available resources
are highly utilized and the chances of resource wastage are
minimized. The pseudocode for the backfilling approach is
shown in Alg. 2. The scheduling is achieved by initially
sorting all tasks on their arrival times in accordance with
their execution times. The tasks are checked whether their
requirement is met with available free nodes, and also that
they will finish before the next task from the queue is
scheduled. It also checks requirement of minimal current
free nodes as well as additional nodes. Afterwards, such
task is used for application of backfilling. Backfilling gives
distinct improvements in performance as well as in energy
efficiency. Using the backfilling technique, the first incoming
task is selected and, then, it continues by accepting next
task having smaller execution time; and the process repeats
itself further in a similar fashion. The mechanism adapted,
here, is the pipelined method of execution where various
tasks are executed simultaneously. In a conventional extended
large systems, backfilling increases system usage about 20%
as well as increased amount of turn around time.1 The
typical tendency of the backfilling method is to favour
small size tasks having smaller execution times and resource
requirements than that of larger tasks having higher execution
times and resource requirements. On contrary, sites foresee
improvement in service delivery for smaller tasks and no
such improvement for larger tasks. Moreover, execution of
such larger tasks often tend to have higher priority which is
regretted by backfill method.

B. THE LOAD BALANCING APPROACH
The backfilling approach, as presented in Sec. V-A, guaran-
tees that free VM resources are allocated; however, it still
does not ensure that the entire workload and resources are

1https://www.cs.huji.ac.il/course/2005/oop/exercises/ex2/ex2.html

Algorithm 2 The Backfilling RM Approach
Require: cloudletList
Ensure: feasibleBackfill
1: sort cloudletList based on arrival times
2: Nvm← number of free VMs
3: firstJob← cloudletList[pop]
4: while cloudletList is not empty do
5: schedule firstJob using Alg. 1
6: Nvm = Nvm − firstJob.NumberOfVMs
7: for each job ∈ cloudletList do
8: if job.NumberOfVMs ≤ Nvm then
9: feasibleBackfill← job
10: schedule job using Alg. 1
11: cloudletList[job]← NULL
12: end if
13: end for
14: no suitable job to backfill
15: feasibleBackfill← NULL
16: end while
17: return feasibleBackfill

well-balanced. The rationale behind balancing the resources
is that idle resources consume approximately 60% of the
total energy consumption i.e. 100% utilized. Therefore,
if utilization levels can be increased, then, the workload
will essentially run on lower energy. Alg. 3 presents an
approach to balance all tasks across all VM resources.
An easy approach to well balance the utilization levels of
all VMs is to compute the average utilization of the current
resources and tasks [step 1 to 5]. In step 6 to 12, all VMs
are categorized based on their utilization levels against the
average. This marks all VMs with higher utilization level
from which migration of tasks will occur. Finally, from step
13 to 22, those tasks which: (i) can be placed on lower utilized
VMs; and (ii) the VM utilization level does not exceed the
average utilization; are being migrated. The process repeats
itself until all VMs in use are equally balanced and utilized.
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Algorithm 3 The Load balancing Approach
Require: cloudletList, vmList
Ensure: loadBalance
1: totalUtil = 0
2: for each vm ∈ vmList do
3: totalUtil← totalUtil + vm.getUtil()
4: end for
5: averageUtil← totalUtil ÷ vmList.size()
6: for each vm ∈ vmList do
7: if vm.getUtil() > averageUtil then
8: vmListHigh.add(vm)
9: else
10: vmListLow.add(vm)
11: end if
12: end for
13: for each vm i ∈ vmListHigh do
14: for each vm j ∈ vmListLow do
15: for each task ∈ i do
16: if j can host i.task & j.Util 6≥averageUtil then
17: j.add(task) i.e. allocate task using Alg. 1
18: end if
19: end for
20: end for
21: end for
22: return loadBalance

C. NUMERICAL EXAMPLE
Given three cloudlets cl1(1.1, 3), cl2(1, 5) and cl3(1, 12),
when RM scheduling theory is considered, cloudlet cl3 is
schedulable if and only if it satisfies:

min
t∈Si


Ci +

i−1∑
j=1
d
t
Pj
e

τ
Cj

 ≤ ft (13)

Here t3 schedulable points are S3 = {3, 5, 6, 9, 12}. It shows
that due to the workload of cl1 and cl2, cloudlet cl3 is also
schedulable at 5, 6, 9, and 12 with speed of 0.86, 0.88,
0.72, and 0.76, respectively. The lowest speed is 0.72 that is
achieved at the scheduling point 9. The giant charts are drawn
for the cloudlets at the speeds of 0.86 and 0.72, respectively.
When executed on maximum speed, Ci is less while when
executing on lowest speed, the processor takes more time to
complete one clock cycle. The task set when executed at the
speed of 0.86 becomes cl1(1.33, 3), cl2(1.22, 5), cl3(1.22, 10)
while at speed 0.72 task set is transformed into cl1(1.6, 3),
cl2(1.45, 5), cl3(1.45, 10). The speed is calculated according
to Table 1 [8]. It is clear from the giant charts, as shown
in Fig. 5 below, that when executing jobs with slower CPU
speeds, the PE is more utilized.

VI. EXPERIMENTAL RESULTS
There are two different scheduling policies that are stud-
ied in cloud computing: (i) host based scheduling; and

TABLE 1. Operational levels & speed range [8].

(ii) VM based scheduling. On host level, VM are scheduled
while on VM base, multiple cores or PEs are allocated to
execute users tasks. Our approach is VM based scheduling
policy for deadline based real-time tasks. We have checked
the feasibility of this algorithm using MATLAB program-
ming language. In MATLAB, a workload of 1,000 tasks
was considered. Fig. 6 show total number of VMs that were
allocated during the experiment (left) and power consumption
(right), respectively. Fig. 6 only shows the ratio of power
when the cloudlet was scheduled to a VM, not the actual
power consumption of the overall system i.e. datacentre.
All VMs are initially in off state and tasks are assigned
in round robin fashion. When upper threshold utilization
of 0.9 is achieved or submission of a task increases the
upper threshold value, that task and other following tasks are
assigned to a new VM. Power consumption was calculated
with a specific value against each and every suitable point.
In this scenario tasks were scheduled on availability of VM,
means minimum frequency and minimum power suitable
point. The entire workload was run over 28 VMs while
most of them were maximally utilized i.e. approximately
between 90% and 98.1%. To our best literature knowledge,
we claim no such study is available in cloud systems, with
the notable exception of [7] where VMs are considered as
running real-time services while we, in this paper, consider
real-time cloudlets.

After that CloudSim simple resource allocation policy
was used to verify the feasibility of this approach. The
period of cloudlet was considered the VM time using
VMSchedulerTimeShared policy. In CloudSim, a cloudlet
denotes a task that is submitted to a VM. A datacentre is a
set of physical machines connected by a network available
to receive the VMs and workloads for processing. The
simulations to evaluate the RM scheduling algorithm were
conducted with small datacentres having homogeneous and
heterogeneous hosts in terms of VM available MIPS. For
small datacentres, we considered that they have 5 hosts,
10 VMs, and a total of 10 cloudlets. Each VM was bind
to a single cloudlet. Each host has 1 PE (the processor),
10,000 GB of disk space, 4 GB of RAM and gigabit Ethernet.
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FIGURE 5. Comparison of running three cloudlets with different speeds.

FIGURE 6. Number of VMs allocated during the experiment, VM utilization and VM level power consumption.

It is assumed that the hosts are running on a datacentre
with x86 architecture, Xen as VM monitor, and Linux as
OS. Each cloudlet uses a single PE, having 300 bytes
data before processing and 300 bytes of data after the
processing (standard of CloudSim models). Each cloudlet
in a datacentre has 10,000 Millions of Instructions in a
round-robin fashion. The datacentre VMs have processing
capabilities of 1,000 and 2,000 MIPS in a round-robin
fashion. For example, in a simulation where 6 VMs are
generated, 3 VMs are created with 1,000 MIPS and 3 VMs
with 2,000MIPS. Moreover, it was adopted that each VM has
256 MB of RAM, 1,000 Kbps of bandwidth, 2,500 MB of
image size and Xen as VMmonitor. For assessment purposes,
the important metrics of the simulation are the cloudlets
completion time, the speed at which it was scheduled and
power consumption. Fig. 7 shows the results in terms of
cloudlet length, speed at which VM executed these cloudlets
and the power each VM consumed. It is clear that all tasks
were scheduled optimally with a uniform speed. In the
literature, we do not find any deadline based real-time tasks
schedulers for cloud datacentre, therefore this work is an
initial effort on scheduling deadline based real-time tasks for
VMs. The approach in [7] considers real-time VM allocation
and not real-time tasks.

The presented RM with backfilling technique was further
extended to task based load balancing to achieve power

efficiency and increased levels of VM resource utiliza-
tion. The load balancing approach was implemented as
an optimization module in the CloudSim simulator, that
periodically checks whether certain VMs are mostly loaded
than others and vice versa. From implementation point of
view, this was implemented as part of the RM scheduling
policy. Each after five minute intervals, tasks were balanced
across all running VMs. It is concluded in [45] that task
based load balancing is more effective in terms of memory
transfer during VM migration. Based on these results,
we simulated migration of different tasks to balance the
load amongst different VMs. The results of the balancing
algorithm are shown in Fig. 8. The amount of energy saved,
tasks deadlines, and total number of used VMs are shown
in Table 2. Compared to RM with backfilling approach (RM-
BF) the addition of load balancing (RM-BF-LB) could save
approximately 1.0% to 1.6% energy.

A. COMPARISON WITH THE CLOSEST RIVALS
In this section, we evaluate the performance of the proposed
RM with backfilling technique against the: (i) classical RM;
(ii) No DVFS (first come first serve - FCFS); (iii) No DVFS
(first fit - FF); and (iv) No DVFS (Random) scheduling
algorithms. All these algorithms were simulated using similar
datacentre setup, parameters and hosts’ characteristics such
as energy consumption etc. These policies were implemented
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FIGURE 7. RM speed and RM power vs. cloudlet length (Ci ).

FIGURE 8. Utilization of VMs before (left) and after (right) load balancing.

TABLE 2. Comparison with the closest rivals and classical non-energy-aware scheduling techniques [the experiments were run ten times with different
number of tasks, VMs; and the results are averaged over various runs].

through extending the abstract classes of the VM sched-
uler class in the CloudSim package. Various evaluation
metrics including total energy consumption, and number
of tasks which met their deadlines. The results are shown
in Table 2. Our experimental evaluation of the proposed
RM with backfilling suggests that, compared to the classical
algorithms i.e. Random and RM with no backfilling, all

tasks were scheduled with minimum energy consumption
(5.5% - 29.3%), on minimum resources (3.9% - 25.2%
less) while majority were meeting their deadlines (93.21%
- 94.7%), respectively. We also observed a slight increase in
the energy consumption of datacentre in the implementation
of the backfilling approach which is reasonable due to higher
resource utilization.
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VII. CONCLUSION AND FUTURE WORK
In this paper, we have reported on the feasibility study
of RM scheduling algorithm. In modern ages, there has
been a rush in research on power efficient scheduling
with high focus on grid computing and cloud datacentres.
PSO, game theory, discrete optimization, heuristics, list
scheduling, genetic algorithms, clustering algorithms, goal
programming, task duplication based approaches and linear
optimization have been widely studied in the literature to find
solutions to achieve energy efficiency in high performance
computing [16], [19], [46], [47], [48], [49]. A real-time
scheduling approach must guarantee that processes meet
deadlines, unrelated of system workload. The surviving
cloud scheduling techniques in CloudSim are not appropriate
for real-time tasks, since they lack strict requirement of
hard deadlines. The facility to fulfil timing constraints of
such real-time requests plays an important role in cloud
atmosphere. Current SLAs cannot offer cloud customers with
real-time control over their applications, therefore flexible
and transparent SLAs are needed.

In the future, we will work around improving the
load balancing approach for the current workloads across
VMs in order to account for migration costs, performance
degradation and user costs - since users costs are subject
to execution times. Lower utilization levels can decrease
the energy efficiency while deadlines are largely met due
to availability of resources. However, increasing utilization
levels may decrease workload performance, in particular,
if co-located workloads on a particular host compete for
similar or same resources. Lower performance means longer
execution times that will subsequently cost more money
for cloud customers and deadline misses. Deadline misses
could, at least, result in SLA violations that may result in
penalties to service providers, therefore, lower revenues. Our
future work will investigate these types of scheduling impacts
over energy efficiency, workload performance, and users’
monetary costs [20], [50].
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