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ABSTRACT An approach is proposed for modeling and scheduling batch production systems based
on Petri nets. First, a group of jobs to be carried out by a batch production system is modeled by a
transition-timed Petri net according to logical relations between operations and time requirements on
operations. Second, conflict relations between operations are obtained by operation-resource diagrams that
describe how operations compete for resources, and are formally expressed by linear constraints. Third,
monitor places are designed to enforce linear constraints on the transition-timed Petri net, and a plant net
is consequently built and made free of conflicts between operations, which can well emulate a real batch
production system. Fourth, an optimal schedule problem, where the optimization performance index is to
minimize a makespan, is formalized based on a plant net. Finally, a new variant of filtered beam search
method is proposed to solve the problem based on an ad hoc function and a dynamical timed extended
reachability graph of a plant net. A typical chemical production plant illustrates the theoretic results.

INDEX TERMS Petri net, modeling, optimal schedule, timed extended reachability graph, batch production.

I. INTRODUCTION
In a batch production process, operations require a large num-
ber of resources, such as valves and reactors. These resources
are often shared by different operations such that some oper-
ations cannot be executed at the same time. However, certain
operations that do not compete for resources can be per-
formed simultaneously. Therefore, there are various possible
sequences of operations to accomplish a given group of jobs,
and they have different makespans. It is a valuable issue to
express the relations between resources and operations in
order to model a batch production process and to compute
an optimal schedule.

A batch production system can be viewed as a discrete
event system (DES) since its evolution is driven by various
events such as starting and ending an operation, opening
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and closing a valve, and switching on and off a heater. Petri
nets are a graphical and mathematical tool that provides a
uniform framework for modeling, analysis, and control of
DESs [1]. Tittus and Akesson [2] design Petri net models for
plant resources and production recipes, where recipes consist
of elementary tasks, such as carrying, mixing, adding and
splitting of material. Furthermore, general Petri net building
blocks are used to represent elementary tasks, and, in turn,
to formally describe a recipe. Falkman et al. [3] propose a
process algebra Petri net that is utilized to represent desired
specifications of a batch process. Ferrarini and Piroddi [4]
employ a hierarchical approach to model complex fluid trans-
portation operations, where a higher level is for allocating
resources and synchronizing operations, and a lower one is
for executing operations. Wu et al. [5], [6] design a hybrid
colored Petri net for modeling a crude-oil refining process
such that a scheduling problem can be formulated in the
framework of the control theory of hybrid systems. The above
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mentioned methods fail to formally determine and represent
conflict relations among operations by Petri net structures
since it is a challenging issue due to the large number of
devices and their complicated relations defined by recipes.
However, to do so is valuable since a well developed Petri net
model makes it possible to address the control and scheduling
problems via the Petri net theory.

Furthermore, the processing times of operations need to
be taken into account if a scheduling issue is addressed.
Timed Petri nets (TPNs) that encode time specifications are
used for modeling batch production systems [7]. Tsinarakis
and Tsourveloudis [8] present a transition-timed Petri net
(T-TPN) for the modeling, analysis, synthesis and perfor-
mance evaluation of batch production systems.
Ghaeli et al. [9] model batch plants with place-timed Petri
nets (P-TPNs), where time constants associated with places
represent durations of operations. In general, the size of
a T-TPN model is smaller than a P-TPN one for a batch
production system. Baruwa et al. [10] apply timed colored
Petri nets (TCPNs) to model flexible manufacturing systems,
where each operation has a certain number of precondi-
tions, an estimated duration, and a set of postconditions.
Yang et al. [11] extend a resource-oriented Petri net to model
a cluster tool in wafer fabrication. They define colors of
transitions, and associate both transitions and places with
time. In addition, under uncertain environment, TPNs can
be extended to associate transitions with stochastic transition
firing times [12].

For batch production systems, a schedule issue can be
represented by a mixed integer linear programing (MILP) [9].
However, the number of constraints and variables is large and
MILP may become untractable. Since TPNs have powerful
graphical and algebraic representations and asynchronous
and parallel capabilities, TPNs can model systematically
behaviors of batch production systems. Furthermore, firing
rules of the enabled transitions of TPNs play the roles of
complex time constraints inMILP. Pioneer works try to tackle
schedule issues by using timed extensions of reachability
graphs of T-TPNs, as the state class graph [13], [14], timed
aggregate graphs [15] and modified state class graphs [16].
Based on a relaxed mixed semantics model [17], a state
class method is presented for the verification and analysis
of temporal properties. More recently, control and schedule
issues are considered with timed reachability graphs [18] and
timed extended reachability graphs (TERGs) at the earliest
firing policy [19].

An alternative research direction is to develop informed
graph search algorithms, such as Dijkstra, A* and beam
search ones, with untimed reachability graphs of Petri nets.
Lee and Dicesare [20] design an A* algorithm to heuristi-
cally search for an optimal branch in a reachability graph.
Xiong and Zhou [21] propose two hybrid scheduling methods
that integrates a heuristic best-first strategy and a con-
trolled backtracking one. Mejia and Odrey [22] present an
improved heuristic search, where an aggressive node prun-
ing strategy and an improved evaluation function are used.

Li et al. [23] design an admissible heuristic function based
on available periods. Huang et al. [24] adopt admissible and
non-admissible heuristic functions to improve the searching
efficiency. Xing et al. [25] propose a scheduling method inte-
grating a deadlock control policy and a genetic algorithm to
obtain a strategy. Luo et al. [26] redefine an existing deadlock
prevention policy and embed it into a scheduling method.
Zhang et al. [27] model an assembly process by TPNs, and
dispatch taskswith a dynamic programming algorithm,where
a depth-first search and a heuristic policy are utilized to select
a most promising path. In [28], a filtered beam search (FBS)
algorithm is presented where an evaluation function is used
to pre-valuate and filter out nodes that seem not promising.
Mejia and Nino [29], [30] introduce a filtering mechanism to
limit the number of nodes at each expanding step such that
the complexities in space and time are reduced significantly.
These methods need to evaluate a cost function. Since time
information is absent in reachability graphs, it is difficult to
design and improve heuristic functions.

The main contents and contributions of this work are sum-
marized as follows.

1) A method is presented to model batch production
systems by T-TPNs, where productive processes and
conflicts between operations are represented by Petri
net structures. Compared with [2]–[6], conflict rela-
tions among operations are accurately described by
Petri net structures, and this is helpful to formulate
and solve scheduling problems of batch production
systems. In detail, an operation-resource diagram is
defined for valves and tanks to formally describe the
relationship between operations and resources, and is
used to correctly derive conflict sets which are sets of
operations that cannot be performed in the same time.
In turn, linear constraints are used to express conflict
sets, and are enforced on the T-TPNmodel by designing
their monitor places. As a result, a plant Petri net is
derived to accurately describe and to imitate dynamical
behaviors of batch plants.

2) A dynamical timed extended reachability graph
(D-TERG) is introduced to preserve the timed proper-
ties of T-TPNs on specific regions. In contrast to other
existing timed graphs [15], [16], [19], the D-TERG
encodes only the part of the timed language that is
necessary for a particular schedule issue. The D-TERG
is a dynamical graph that grows up according to a
sequence of states that are successively explored.

3) Based on the D-TERG, a variant of the FBS is proposed
with an improved heuristic cost function. This function
uses the characteristics of the states of the D-TERG and
refines the estimation of the remaining time required
to complete the schedule compared to the usual cost
functions that search the shortest paths from themarked
places to a reference one. In particular it takes into
account the residual times of enabled transitions and
extra waiting times of non enabled transitions due to
conflicts about resources.
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The main challenge of the proposed approach is certainly
to combine both the D-TERG design with the new variant
of the FBS. On the one hand, the proposed heuristic cost
function is based on the D-TERG obtained at a certain point.
On the other hand, the iterative construction of theD-TERG is
driven by the FBS that prunes non-promising branches. This
new scheduling strategy is successfully applied to the T-TPN
models of the batch production system.

The remaining parts of this paper are organized as fol-
lows. In Section II, the concepts and notations of Petri nets
are reviewed. In Section III, a scheduling problem of batch
production systems is formulated. In Section IV, a method
is given for modeling a batch production system. Section V
shows how to solve a scheduling problem with D-TERG and
a new variant of FBS algorithm. In Section VI, examples
are presented to illustrate the proposed methods. Section VII
concludes this paper.

II. PRELIMINARY
A. PETRI NETS
APetri net structure isN = (P,T ,Pre,Post), where P is a set
of m places and T is a set of n transitions with P∪T 6= ∅ and
P∩T = ∅; Pre := P×T → N, and Post := P×T → N are
the pre-incidence and post-incidence functions that specify
the arcs, where N is the set of nonnegative integers. Given a
place pi ∈ P and a transition tj ∈ T , the element of matrix Pre
at row i and column j is denoted by Pre(pi, tj) or Pre(i, j). The
same holds for Post. A marking is a functionm : P→ N that
assigns to each place of a Petri net structure a non-negative
integer number of tokens, represented by black dots. The
number of tokens in p ∈ P at m is denoted by m(p).

A Petri net is (N ,m0) with a Petri net structure N and
an initial marking m0. Given a marking m, P(m) ⊆ P
denotes the set of places with a non-zero number of tokens
at m, i.e., the support of m. A transition t is enabled at
marking m if m ≥ Pre(:, t), which is denoted by m[t〉. The
enabled degree of transition t at m is defined as nt (m) =
min{bm(p)/Pre(p, t)c ,m(p) ∈ •t}, where •t stands for the
set of input places of t: •t = {p ∈ P|Pre(p, t) > 0}, and bxc
stands for the largest integer smaller than or equal to real
number x. The set of all enabled transitions atm is denoted as
m•. The fact that a Petri net reachesm′ fromm via the firing
of t is denoted by m[t〉m′. A firing sequence σ is defined as
σ = tσ1 tσ2 . . . tσh where σ1, . . . , σh are the indexes of the
transitions, the length of σ is h = |σ |, and σ = ε stands
for an empty sequence. A marking m is reachable from an
initial marking m0 if there exists a firing sequence σ such
that m0[σ 〉m, and σ is enabled at m0. R(m0) is the set of all
markings reachable from m0, and, for simplicity, we denote
this set by Rwhen no ambiguity exists. A Petri net is bounded
if and only if (iff) there exists a natural integer k such that the
number of tokens in each place does not exceed k for any
reachable marking. The considered Petri nets in this paper
are assumed to be bounded. A consequence of boundedness
is that R is of finite cardinality.

B. TRANSITION-TIMED PETRI NETS
A transition-timed Petri net (T-TPN) is defined as (N ,m0,D),
where N is a Petri net structure,m0 is the initial marking, and
D : T → R+ (R+ is the set of nonnegative real numbers)
is the function that associates each transition t ∈ T with a
duration D(t), which is the minimal delay that t should take
since it is enabled. If D(t) = 0, t can fire immediately once
it is enabled. The time semantics of TPN depends on D(t),
t ∈ T , and the server, memory and choice policies [13].
In this paper, an infinite server policy, and enabling memory
policy are adopted. With the enabling memory policy, at the
entrance in a marking, the residual durations associated with
still enabled transitions are decremented and the residual
durations associated with disabled transitions are forgotten.
The choice policy is a preselection performed by an external
agent (for example, a scheduler): in case of concurrency
or conflict, the selection of transitions that will fire next is
decided by the scheduler. These specifications are discussed
in Section V.

A timed firing sequence is written as σ = (tj1 , τ1)(tj2 , τ2)
· · · (tjh , τh), where j1, j2, . . . , jh are the indexes of the transi-
tions, τ1, τ2, . . . , τh are the firing instants, and 0 ≤ τ1 ≤ τ2 ≤
· · · ≤ τh. The timed trajectory associated with σ and starting
at m0 is defined by

(σ,m0) = m(0)[(tj1 , τ1)〉m(1)[(tj2 , τ2)〉

· · ·m(h− 1)[(tjh , τh)〉m(h), (1)

such that m(0) = m0. We call m(h) the final marking of
(σ,m0).
A path ph = x1 x2 . . . xK in a T-TPN structure is defined as

an orderly and oriented succession ofK nodes with xk ∈ T∪P
for x1, xK ∈ P and xk+1 ∈ xk• for k = 1, . . . ,K − 1. The
duration of ph is defined as:

d(ph) =
∑
t∈ph

D(t) (2)

For any places p, p′ ∈ P, let us define PH (p, p′) as the set
of paths from the place p to the place p′ and ph∗(p, p′) ∈
PH (p, p′) as the path of shortest duration within PH (p, p′).

In order to define the states of a T-TPN system, it is
necessary to define iteratively the residual times δ(t) of each
transition t enabled at markingm(k), k = 0, . . . , h of a given
trajectory of Eq. (1).
• For k = 0, a set of residual times associated to m(0) =
m0 is defined as a multiset 1(m0) on an ordinary set
{(t,D(t)) ∈ (T ×R+), t ∈ (m0)•}, where the number of
occurrences of the element (t,D(t)) in1(m0) is nt (m0),
i.e., for each transition t enabled at m0 with degree
nt (m0), the residual time D(t) is repeated nt (m0) times
in 1(m0).

• For k > 0, a set of residual times associated to m(k),
conditioned by a timed trajectory (σ,m0), is defined as
a multiset 1(m(k)) on an ordinary set {(t, δ) ∈ (T ×
R+), t ∈ (m(k))•}, where the number of occurrences
of the element (t, δ) in 1(m(k)) is Num(σ,m0) that
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Num : (T × R+)∗ × Nm
→ N+ is a function that

gives the number of occurrences of the element (t, δ) in
1(m(k)) when the timed trajectory (σ,m0) is executed; δ
is theminimal residual time before firing t and computed
as δ = max

(
0, δ′ − (τk − τk−1)

)
(with τ0 = 0) if (1)

(t, δ′) ∈ 1(m(k − 1)) and (2) t is not disabled by the
firing of tjk ; otherwise δ = D(t). It is noted that the
number of occurrences of the element (t, δ) in 1(m(k))
is at most nt (m(k)) when t is enabled nt (m(k)) times at
m(k) (due to the infinite server policy).

Observe that some interactions exist between the infinite
server policy and the enablingmemory policy. At the entrance
in m(k), the enabling degree of some transitions t may
decrease to a non-zero value. In that case the nt (m(k − 1))−
nt (m(k)) latest minimal residual times δ are used to update
1(m(k)).

A timed trajectory (σ,m0) of the form (1) is feasible if (1)
tjk is enabled at m(k − 1), k = 1, . . . , h; (2) the minimal
residual times in 1(m(k)), k = 1, . . . , h are elapsed. Con-
sequently, the set of states S(m0) of a given T-TPN system
(N ,m0,D) is defined as S(m0) = {(m,1) such that there
exists a feasible timed trajectory (σ,m0) of Eq. (1) with final
marking m and 1(m) = 1}. For simplicity, we denote this
set as S when no ambiguity exists.
In addition to the time semantics previously defined,

we consider in this paper a subclass of TPN where the firing
times are computed with the earliest firing policy (EFP).
When a transition is preselected for the next firing, it will fire
as soon as its residual time has elapsed and its firing cannot be
deferred. More formally, a feasible timed trajectory (σ,m0)
of the form (1) is an EFP-trajectory if each transition tjk ,
k = 1, . . . , h, of the trajectory satisfies (tjk , τk − τk−1) ∈
1(m(k − 1)) and for all (tjk , δ) ∈ 1(m(k − 1)), δ ≥ τk −

τk−1. Note that the set of feasible timed trajectories is the
timed language of the TPN system and that the subset of
EFP-trajectories can be viewed as the sublanguage of the TPN
under EFP.

C. EXTENDED TIMED REACHABILITY GRAPH
In this section we give some basic notions about the extended
timed reachability graph (TERG) for T-TPN systems that
behave under EFP. The TERG has been defined and stud-
ied in [38] for T-TPN systems that satisfy the following
assumptions.
• A1: the TPN system is bounded, i.e., there exists a
positive constant k such that, for all m ∈ R(m0) and for
all p ∈ P, m(p) ≤ k;

• A2: the minimal firing time D(t) of any transition t ∈ T
is a multiple of a common time stamp.

In particular in [38], the TERG is proved to represent the
timed language of a T-TPN system that behaves under EFP,
and each state of the TERG coincides to a state of the T-TPN
under EFP. Let (N ,m0,D) be a TPN system. The TERG of
(N ,m0,D) is defined as a four-tuple (SE,�E ,BE , S0), where
• SE is a finite set of NE states, and each state S ∈ SE is
of the form S = (m(S),1(S)),

• �E ∈ (T ∪{ε})NE×NE is the labeled adjacency matrix of
the graph: for all S, S ′ ∈ SE(m0), �E (S, S ′) = t if there
exists (t, δ) ∈ 1(S), otherwise �E (S, S ′) = ε.

• BE ∈ (R+)NE×NE is the earliest firing timematrix: for all
S, S ′ ∈ SE(m0), BE (S, S ′) = δ if (1) there exists (t, δ) ∈
1(S) with �E (S, S ′) = t and (2) for all (t, δ′) ∈ 1(S),
δ ≤ δ′ (i.e. t fires at earliest); otherwise BE (S, S ′) = ∞.

• S0 = (m0,1(m0)) is the initial state.
A path ph = S1 S2 . . . SK in TERG (SE, �E ,BE , S0) is

defined as an orderly and oriented succession ofK states with
Sk ∈ SE for k = 1, . . . ,K such that �E (Sk , Sk+1) 6= ε for
k = 1, . . . ,K − 1. The duration of ph is defined as:

d(ph) =
K−1∑
k=1

BE (Sk , Sk+1) (3)

For any states S, S ′ ∈ SE, let us define PHE (S, S ′)
as the set of paths from the state S to the state S ′ and
ph∗(S, S ′) ∈ PHE (S, S ′) as the path of shortest duration
within PHE (S, S ′).

III. PROBLEM DESCRIPTION
In a batch production system, each type of product corre-
sponds to a job that consists of a series of operations. The
execution of an operation requires a set of resources, such
as valves and tanks, and takes a certain time. This indicates
that multiple operations may compete for the same resource.
The executive logic of operations depends not only on orders
defined by jobs but also on conflicts due to operations com-
peting for limited resource. Thus, it is complicated to describe
processes of a batch production system.
Given a considered batch production system, O =

{o1, o2, . . .} is the set of operations, and � = V ∪
U is the set of resources, where V = {v1, v2, . . .}
denotes the set of valves, U = {u1, u2, . . .} denotes
the set of containing units such as supply or storage
tanks and reactors. The set of all resource states is
�s = {vs1, v̄s1, vs2, v̄s2, . . . , us1, ūs1, us2, ūs2, . . .}, where
vs1, vs2, . . . are open states of valves, v̄s1, v̄s2, . . . are close
states of valves, us1, us2, . . . are empty states of containing
units, and ūs1, ūs2, . . . are full states of them. For an operation
o, r(o) : o → �s is the set of resources that o requires, and
d(o) : o→ R+ is the processing time of o.
Definition 1: Given a considered batch production system,

a job Jj = oj.1oj.2oj.3 . . . oj.I , j, I ∈ N+, is a series of
operations oj.1oj.2oj.3 . . . that need to be executed according
to the order induced by the operation indexes.

Let ρ(Jj) : Jj → N+ be the number of times that Jj is to
be taken. Given a job Jj = oj.1oj.2oj.3 . . . oj.I , the operation
oj.i+1 is the subsequent operation of oj.i and 1 ≤ i ≤ I − 1,
and any sequence of successive operations in Jj is a sub-job
of Jj. For example, oj.3 is the subsequent operation of oj.2, and
oj.1oj.2oj.3, oj.1oj.2 and oj.2oj.3 are sub-jobs of Jj.
Some operations cannot be concurrently executed since

they compete for the same resource. For a same job, there
exist different processing sequences that cost different time.
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A typical scheduling problem is to search for a processing
sequence that is carried out in a minimal time. In order
to illustrate the proposed concepts and notations, a typical
chemical plant is adopted as a running example.
Example 1: A typical chemical plant is shown in Fig. 1.

Seven processing units, which are three supply tanks: u1, u2
and u3, two reactors u4 and u5, and two storage tanks u6 and
u7, are connected by a pipeline system including 13 valves
v1, v2, . . . , v13.

FIGURE 1. A batch production system.

There are two jobs J1 = o1.1o1.2o1.3o1.4o1.5 and J2 =
o2.1o2.2o2.3o2.4o2.5 for manufacturing two types of products.
In Table 1, the resource units and processing times that are
required by the operations are summarized. An operation o1.1
is to transport fluid from u1 and u2 to u5 in 20 minutes.
An operation o1.2 is a chemical reaction in u5 in 30 minutes.
An operation o1.3 is to transport material from u5 and u3 to
u7 in 30 minutes. An operation o1.4 is a chemical reaction in
u7 in 40 minutes. An operation o1.5 is to transport the first
product in u7 to another tank in 40 minutes. An operation
o2.1 is to transport material from u1 to u4 in 30 minutes. An
operation o2.2 is a chemical reaction in u4 in 40 minutes.
An operation o2.3 is to transport material from u4 and u3
to u6 in 40 minutes. An operation o2.4 is a chemical reac-
tion in u6 in 50 minutes. An operation o2.5 is to transport
the second product in u6 to another tank in 60 minutes.

TABLE 1. Two jobs of the batch production system shown in Fig. 1.

As in Example 1, r(o1.1) = {vs1, vs3, v̄s2, v̄s5, ūs1, ūs2, us5},
and d(o1.1) = 20 minutes, which means that o1.1 requires
valves v1 and v3 to be opened, valves v2 and v5 to be closed,
and tanks u1 and u2 are filled by fluid from tank u5 for
20minutes. For this production system,we assume that J1 and
J2 are executed twice, thus ρ(J1) = ρ(J2) = 2. Obviously,
some operations cannot be executed simultaneously, such as
o1.1 (with r(o1.1) = {vs1, vs3, v̄s2, v̄s5, ūs1, ūs2, us5}) and o1.2
(with r(o1.2) = {vs9, v̄s3, v̄s5, us5}), which are in conflict
since o1.2 requires v3 to be opened and o1.2 requires v3 to be
closed. Operations that do not compete for resources can be
executed simultaneously. For example, o1.1 can be executed
with o2.2 simultaneously. Different sequences have different
processing time, and the key of this scheduling problem
is to find an appropriate one to minimize the processing
time.

IV. MODELING METHOD FOR BATCH PRODUCTION
SYSTEMS
A. JOB MODELING
In essence, a job is composed of a series of operations in
a certain order. For the scheduling of a batch production
system, Algorithm 1 is presented to model a job.

Algorithm 1 Modeling a Job by Petri Nets
Input: A job Jj := oj.1oj.2oj.3 . . . oj.I , the processing dura-

tion d(oi,j) to perform operation oi,j, and the number of
times ρ(Jj) of the job Jj manufactured;

Output: The Petri net model (PJj ,TJj , PreJj ,PostJj , m0,Jj ,
DJj ) of the job Jj;

1: The starting place pj.0 is designed, and its initial mark-
ing equals times by which Jj is to be manufactured,
i.e., PJj=

{
pj.0
}
and m0,Ji

(
pj.0
)
= ρ

(
Jj
)
;

2: for all 1 ≤ i ≤ I do
3: A transition tj.i is designed to model the operation oj.i,

i.e., TJj = TJj ∪ {tj.i}, DJj (tj.i) = d(oj.i);
4: A place pj.i is designed, which is the buffer place of the

operation oj.i, i.e., PJj = PJj ∪ {pj.i};
5: The arcs (pj.i−1, tj.i) and (tj.i, pj.i) are designed;
6: end for

Algorithm 1 is presented to design a Petri net model of a
job Jj including the ordering relationship, the processing time
of operations, and the initial marking.

In Algorithm 1, Step 1 is to design the starting place for
a job, and to mark it with ρ(Jj); Steps 2–6 are to design the
place, transition and arc sets of operations, and to determine
the minimal duration D(ti.j) of each transitions.
Example 2: By Algorithm 1, the Petri net model of

J1 := o1.1o1.2o1.3o1.4o1.5 in Example 1 is designed as shown
in Fig. 2. Place p1.0 is the starting place, and m0,J1 (p1.0) =
ρ(J1) = 2. There are five places p1.1, p1.2, p1.3, p1.4 and
p1.5, which are the buffer places of o1.1, o1.2, o1.3, o1.4 and
o1.5, respectively. There are five transitions t1.1, t1.2, t1.3,
t1.4 and t1.5, that represent the execution of o1.1, o1.2, o1.3,
o1.4 and o1.5, respectively. DJ1 (t1.1) = d(o1.1) = 20 min.,
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FIGURE 2. Petri net model of job J1 and J2 of the batch production
system in Fig. 1.

DJ1 (t1.2) = d(o1.2) = 30 min., DJ1 (t1.3) = d(o1.3) =
30 min., DJ1 (t1.4) = d(o1.4) = 40 min., DJ1 (t1.5) =
d(o1.5) = 40 min.

Similarly, the Petri net model of J2 is designed based on
Algorithm 1.

B. MODELING CONFLICTS BETWEEN OPERATIONS
The competition of resources among different operations
results in conflicts. To accurately express conflicts is impor-
tant for finding an optimal sequence to execute operations.
In this section, the specific definition and model of conflicts
are designed.
Definition 2: Two operations o and o′ are conflict if and

only if (iff) there exists a resource v (or u), such that vs ∈ r(o)
and v̄s ∈ r(o′) (or us ∈ r(o) and ūs ∈ r(o′) ).
Definition 3: A set of operations is maximally conflict,

denoted by Omax, iff each operation in it is conflict with any
other one in it, and there exists an operation in it that is not
conflict with any operations not in it.

According to Definitions 2 and 3, any two operations
of Omax = {o1, o2, . . . , ox} are conflict and cannot be
executed simultaneously. One operation corresponds to one
transition according to Algorithm 1. Any two transitions of
{t1, t2, . . . , tx} cannot fire simultaneously, where t1, t2, . . . , tx

are transitions representing the action of o1, o2, . . . , ox ,
respectively. Since p1, p2, . . . , px are the only output places
of t1, t2, . . . , tx , respectively, a Petri net model of the batch

production system should satisfy
x∑
i=1

m(pi) ≤ 1. Since the

relationship between operations and resources is compli-
cated, it is difficult to directly find all maximal conflict oper-
ation sets. Then, an operation-resource diagram is defined to
represent the relationship between resources and operations
and to further obtain Omax.
Definition 4: Given a considered batch production system,

its operation-resource diagram GOR = (NO,NR,EOR) is an
oriented graph, where NO and NR are the sets of nodes that
represent operations and resources, respectively and EOR is
the set of monodirectional edges that represent the relation-
ship between operations and resources (valves and tanks).

The procedure for designing an operation-resource
diagram is presented in Algorithm 2.

Algorithm 2 Design of an Operation-Resource Diagram
Input: Types of jobs Jj, the set of resources �, the set of

resources states �s, and the set of resources states r(oi.j)
of operation oi.j;

Output: An operation-resource diagram GOR = (NO,NR,
EOR), where NO and NR are the sets of triangle nodes
and rectangular nodes, respectively and EOR is the set of
monodirectional edges;

1: NO = NR = ∅, EOR = ∅;
2: for all jobs Ji do
3: for all operations oi.j of Ji do
4: A triangle node n is designed, i.e., NO = {n} ∪ NO;
5: end for
6: end for
7: for all resources of � do
8: A rectangular node n′ is designed, i.e.,NR = {n′}∪NR;
9: end for
10: for all jobs Ji do
11: for all operations oi.j of Ji do
12: for all resources states of �s do
13: if vs ∈ r(oi.j) (or us ∈ r(oi.j)) then
14: A monodirectional edge e = (v, oi.j) (or e =

(u, oi.j)) from the rectangular node of v (or u) to
the triangle node of the operation oi.j is added,
i.e., EOR = {e} ∪ EOR;

15: else
16: if v̄s ∈ r(oi.j) (or ūs ∈ r(oi.j) then
17: A monodirectional edge e′ = (oi.j, v) (or

e′ = (oi.j, u)) from the triangle node of oi.j
to the rectangular node of v (or u) is added,
i.e., EOR = {e′} ∪ EOR;

18: end if
19: end if
20: end for
21: end for
22: end for
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In Algorithm 2, Steps 2–6 are to derive the set NO of
nodes for all operations, denoted by triangles; Steps 7–9 are
to obtain the set NR of nodes for all resources, denoted by
rectangles; and Steps 11–23 are to draw monodirectional
edges among these triangle and rectangular nodes.
Example 3: Let us design the operation-resource diagram

for the batch production system in Example 1, as shown
in Fig. 3. According to Steps 2–6 of Algorithm 2, ten triangle
nodes are designed, which correspond to operations o1.1, o1.2,
o1.3, o1.4, o1.5, o2.1, o2.2, o2.3, o2.4 and o2.5, respectively.
Twenty rectangular nodes are designed by Steps 7–9 for all
resources in � = {v1, v2, . . . , v13, u1, u2, . . . , u7}.

FIGURE 3. Operation-resource diagram of the batch production system
shown in Fig. 1.

An operation-resource diagram correctly shows the rela-
tionship between operations and resources. The conflicts
between different operations come from their competition for
resources with different states. For representing and obtaining
conflicts among operations, an operation-conflict graph is
given in Definition 5.
Definition 5: Given a considered batch production sys-

tem, an operation-conflict graph GOC = 〈NOC ,EOC 〉 is an
undirected graph, where NOC is a set of triangle nodes that
represent operations, and EOC is a set of edges that connect
nodes of conflict operations, i.e, nodes of operation o and o′

are connected by one edge if o and o′ are conflict.
The procedure for designing an operation-conflict graph is

presented in Algorithm 3.

Algorithm 3 Design of an Operation-Conflict Graph
Input: An operation-resource diagram GOR = (NO,NR,

EOR);
Output: An operation-conflict graph GOC = 〈NOC ,EOC 〉;
1: NOC = NO of NOR, EOC = ∅;
2: for all rectangular nodes NO of GOR do
3: if {(o, v) ∈ EOR ∧ (v, o′) ∈ EOR} or {(o, u) ∈

EOR∧ (u, o′) ∈ EOR}, where o and o′ are two different
operations then

4: if |[o, o′]| < 1, where |[o, o′]| is the number of
undirected edges [o, o′] of GOC between the node
of operation o and o′ then

5: An undirected edge [o, o′] between the triangle
node of operation o and o′ is designed;

6: EOC = {[o, o′]} ∪ EOC
7: end if
8: end if
9: end for

In Algorithm 3, Step 1 is to design the nodes, and Steps
2–9 are to determine undirected edges among these nodes.
Example 4: For the operation-resource diagram in Fig. 3,

the operation-conflict graph is obtained by Algorithm 3,
as shown in Fig. 4.

FIGURE 4. Operation-conflict graph of the operation-resource diagram
in Fig. 3.

An operation-conflict diagram clearly represents the rela-
tionship between operations. Actually, a maximal conflict
operation set Omax corresponds to a subgraph of GOC . The
corresponding definition and theorem are given as follows.
Definition 6: A clique of an operation-conflict graphGOC

is a subgraph of GOC , denoted by Cl, if any two nodes of it
are connected by one edge.
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Definition 7: A clique of an operation-conflict graphGOC
is called a maximal clique of GOC , denoted by Clmax, if there
does not exist another clique Cl such that Clmax ⊂ Cl.
Theorem 1: Given a batch production system, there is a

maximal conflict operation set Omax = {o1, o2, . . . , ox} iff
there exists a maximal clique Clmax of GOC such that the
nodes of Clmax represent the operations of Omax.

Proof: We start by proving the if-part and assume that
there exists a maximal clique Clmax consisting of x nodes
o1, o2, . . . , ox . We also assume that {o1, o2, . . . , ox} is not a
maximal conflict operation set. Based onDefinitions 2–7, it is
obvious that any two nodes of Clmax correspond to conflict
operations. That is, any two operations of {o1, o2, . . . , ox}
are conflict. Since we assume that {o1, o2, . . . , ox} is not a
maximal conflict operation set, there is another operation
o′ /∈ {o1, o2, . . . , ox} that conflicts with any one operation
of {o1, o2, . . . , ox}. Based on Definitions 5 and 6, nodes of
o′, o1, o2, . . . , ox in GOC form a clique Cl and Clmax ⊂ Cl.
It is obvious that Clmax ⊂ Cl is in conflict with the definition
of Clmax. We conclude that the assumption is false. The set
{o1, o2, . . . , ox} is a maximal conflict operation set.

Then, we prove the only-if part. Omax = {o1, o2, . . . , ox}
is a maximal conflict operation set. We assume that nodes
of o1, o2, . . . , ox cannot form a maximal clique. Based on
Definitions 2–7, any two operations of {o1, o2, . . . , ox} are
conflict and any two nodes of o1, o2, . . . , ox are connected in
GOC . Nodes of o1, o2, . . . , ox in GOC form a clique. In addi-
tion, nodes of o1, o2, . . . , ox cannot form a maximal clique.
That is, there exists another clique Cl such that Clmax ⊂ Cl.
There exists one node in Cl such that it corresponds an oper-
ation o′ /∈ (o1, o2, . . . , ox) that conflicts with any one opera-
tion of o1, o2, . . . , ox . Consequently, nodes of o1, o2, . . . , ox
form a maximal clique of GOC . N
Theorem 1 converts the computation of Omax into a classic

problem in the graph theory. There exist several algorithms
to find maximal clique in the graph theory. In this paper,
Bron-Kerbosch Algorithm [31] is used. In Algorithm 4, mon-
itor places are designed based on maximal cliques of GOC in
order to prevent a Petri net model from entering any conflict
state.

In Algorithm 4, by Steps 2–5, the Petri net model for
all jobs of the batch production system is designed; by
Steps 6–7, the operation-resource diagram GOR and the
operation-conflict graph GOC are drawn; by Steps 8–9, all
maximal cliques and all maximal conflict operation sets
Omax are obtained; by Steps 10–21, monitor places are
designed.
Example 5:Consider the batch production system in Fig. 1,

Petri net models of J1 and J2 are modeled by Algorithm 1 and
Steps 2–5 of Algorithm 4, where

1) there are two starting places p1.0 and p2.0, and
m0,J1 (p1.0) = ρ(J1) = 2, m0,J2 (p2.0) = ρ(J2) = 2,

2) there are ten places p1.1, p1.2, p1.3, p1.4, p1.5, p2.1, p2.2,
p2.3, p2.4 and p2.5, which are the buffer places of opera-
tions o1.1, o1.2, o1.3, o1.4, o1.5, o2.1, o2.2, o2.3, o2.4 and o2.5,
respectively,

Algorithm 4 Modeling of a Batch Production System
Input: Types of jobs Jj, the set of resources �, the set of

resources states �s, the set of resources states r(oi.j) of
operation oi.j, the processing duration d(oi,j) to perform
operation oi,j, and the number of times ρ(Jj) of the job Jj
manufactured;

Output: A batch production system Petri net model
(P,T ,Pre,Post,m0,D);

1: P = ∅, T = ∅;
2: for all job Jj do
3: The job Petri net model (PJj ,TJj , PreJj ,PostJj , m0,Jj ,

DJj ) is designed by Algorithm 1;
4: P = P ∪ PJj , T = T ∪ TJj ;
5: end for
6: The operation-resource diagram GOR = (NO,NR,EOR)

is designed by Algorithm 2;
7: The operation-conflict graph GOC = 〈NOC ,EOC 〉 is

designed by Algorithm 3;
8: Find all maximal cliques of GOC based on

Bron-Kerbosch Algorithm.
9: Find all maximal conflict operation sets Omax, where

one maximal conflict operation set corresponds to one
maximal clique of GOC ;

10: for all maximal conflict operation sets Omax do
11: The linear constraints of places corresponding to oper-

ations in Omax are got based on Theorem 1, and the
monitor place pc and corresponding arcs are designed
based on those linear constraints [32]–[37]:

12: A monitor place pc is designed, and m0(pc) = 1,
i.e., P = {pc} ∪ P;

13: if all operations oj.i of Omax belong to a sub-job then
14: Let oj.i and oj.i′ be the first and last operations of this

sub-job, respectively;
15: The arcs (pc, tj.i) and (tj.i′ , pc) are designed;
16: else
17: for all operations oj.i of Omax do
18: The arcs (pc, tj.i) and (tj.i, pc) are designed;
19: end for
20: end if
21: end for

3) there are ten transitions t1.1, t1.2, t1.3, t1.4, t1.5, t2.1, t2.2,
t2.3, t2.4 and t2.5 that represent the execution of o1.1, o1.2, o1.3,
o1.4, o1.5, o2.1, o2.2, o2.3, o2.4 and o2.5, respectively.
The operation-resource diagram is designed by

Algorithm 2. The operation-conflict graph GOC is designed
by Algorithm 3. Based on the operation-conflict graph
in Fig. 4, and Steps 8–9 of Algorithm 4, all maximal conflict
operation sets are computed, which are {o1.1, o1.2, o1.3},
{o1.3, o1.4, o1.5}, {o2.1, o2.2, o2.3}, {o2.3, o2.4, o2.5}, {o1.1,
o2.1}, {o1.3, o2.3}.

Taking {o1.1, o1.2, o1.3} as an example, its linear constraint
is formulated as: m(p1.1) + m(p1.2) + m(p1.3) ≤ 1, and its
monitor place pc1 is designed. o1.1 and o1.3 are the first and
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last operations of this sub-job, respectively. Arcs (pc1, t1.1)
and (t1.3, pc1) are designed by Steps 12–20. All monitor
places and corresponding arcs are designed by Steps 12–20,
which are pc1, pc2, . . . , pc6.
Finally, the plant Petri net of the batch production system

is obtained, as shown in Fig. 5.

FIGURE 5. Plant Petri net model of the batch production system.

V. A NEW VARIANT OF FILTERED BEAM SEARCH BASED
ON D-TERG
A. OPTIMAL SCHEDULE
Scheduling problems for systems modeled by a given T-TPN
can be solved thanks to the TERG by reformulating the prob-
lem as the usual problem of searching for the shortest path in
a weighted graph. For this purpose, let us first observe that,
in the proposed T-TPN model, the reference marking mref is
a deadlock (if it is not the case, one can add a counting place
pref to the model to deadlock this marking). Then, introduce
Sref = (mref ,∅) as the unique reference state. The optimal
solution of the scheduling problem is obtained by searching
the shortest path in duration from the initial state S0 to the
reference state Sref , and it can be formalized as the solution

of (4):

ph∗(S0, Sref ) = argmin
ph∈PHE (S0,Sref )

{d(ph)}. (4)

The determination of the optimal path ph∗(S0, Sref ) for
any state S ∈ SE can be obtained with global optimization
algorithms [39], for example the well-known Dijkstra algo-
rithm. Observe that such a method requires the computation
of the complete TERG. One important problem with such
a computation is that the size of the graph may become
rapidly large (the increase in size is a critical limitation for
all variants of state class graphs that are based on time).
Intuitively, the price to pay, when SE is used instead of R,
depends on the number of different earliest firing times that
may occur for a given marking. In some particular cases,
the state space becomes infinite even if the untimed net has
very few reachable markings. Consequently, to obtain an
applicable and tractable approach it is necessary to ensure that
the number of explored states remains finite and as small as
possible.

Note first that the infinite expansion of SE can be avoided
by formulating all earliest firing times as multiples of a given
period dt . More precisely, each transition t is associated with
an earliest firing time D(t) = α(t) · dt and α(t) ∈ N+ (N+ is
the set of all positive integers) then SE is of finite cardinality
NE that satisfies N < NE < N · (αm + 1)k·q with αm =
max{α(t), t ∈ T } [38]. In that case, the number of states is
bounded even if it may be large. Note that this simplification
is reasonable from a practical point of view because any real
number can be approximated by a rational number with a
given precision (i.e., the multiple of a given period dt that
depends on the precision). Then, the computation complexity
to design the complete graph of the TERG can be measured
by the ratio NE/N that equals at least 1.
In order to make the method more tractable, we propose

to expand only the part of the TERG that will be required to
design the expected schedule by pruning the non promising
branches of the graph. We refer to this subgraph as a dynam-
ical TERG (D-TERG).

B. DYNAMICAL TERG
Let us consider a TERG (SE, �E ,BE , S0) and a sequence of
K states 6 = S(1) . . . S(K ), S(k) ∈ SE with S(1) = S0
and S(k) = {S(1), . . . , S(k− 1)}• (i.e. each state S(k)
has a predecessor within {S(1), . . . , S(k−1)}). The D-TERG
(6) obtained for (SE, �E ,BE , S0) and 6 is defined as
(S6 , �6,B6, S0) with
• S6 ⊆ SE is a subset of N6 states of the TERG
(SE, �E ,BE , S0). Observe that N6 ≤ NE , N6 ≥ K and
that S6 is composed of the states S(k), k = 1, . . . ,K
and their successors,

• �6 ∈ (T ∪ {ε})N6×N6 is the labeled adjacency matrix
of the graph computed in a similar way as �E ,

• B6 ∈ (R+)N6×N6 is the earliest firing time matrix of the
graph computed in a similar way as BE ,

• S0 is the initial state.
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The following remarks hold
• as far as each state S(k), k = 1, . . . ,K has a predecessor
within {S(1), . . . , S(k − 1)}, there exists at least one
path from S0 to S(k). Consequently, the D-TERG can
be viewed as a subgraph of the TERG,

• the D-TERG is completly defined by the sequence 6.

C. FILTERED BEAM SEARCH METHOD FOR T-TPN
The filtered beam search (FBS) is an aggressive and efficient
pruningmethod based on original beam search (BS) [30]. The
different variants of BS algorithms expand only a predefined
number of nodes (the beamwidth βg) at each iteration accord-
ing to a cost function that will be discussed in the next section.
The FBS is an improvement of the basic BS that combines the
global filter βg with a local filter βl that allows the expansion
of up to βl nodes from any parent node [30]. In the FBS
method, the selection of nodes to expand is based on a cost
function f composed of the actual cost g from the initial node
to the current node, and an estimate h of the remaining cost to
the reference node. The search uses a list containing at most
βg nodes ranked with the cost function f . The search stops
when one or several solutions are found with a certain cost
g∗ and when all candidates in the list satisfy g > g∗. The
search principle of FBS as explained in [30], [42] is illustrated
in Fig. 6 for parameters βg = 3 and βl = 2, and the explored
nodes are colored in grey. At step 1, the list of nodes contains
only the initial state 1. At step 2, the list is limited by βl and
only 2 nodes are selected: 3 and 5. At step 3, the list of nodes
is limited by βg and 3 nodes are selected: 7, 8 and 10. Finally
at step 4, the list of nodes is limited by both parameters βl and
βg and is computed as 12, 13 and 16. The search continues up
to the verification of the stopping criteria.

FIGURE 6. Filtered beam search principl.

The core of the beam search approaches is the definition
of the heuristic function h that is used to select at each step
the next node to be expanded. To be efficient, this function
should have two important properties:
• in order to ensure that the algorithm converges to a
solution, h should never overestimate the true cost to the
reference,

• in order to avoid to remove promising candidates,
the difference between the true cost and its estimation
computed by h should be as small as possible.

In [40], [41], the heuristic function h is formally defined for
each intermediate markingm of a given trajectory (σ,m0) by
dividing (σ,m0) in two parts: the already computed trajectory
(σ1,m0) fromm0 tom (i.e.m0[σ1〉m) and the residual trajec-
tory (σ2,m) with unknown sequence σ2 from m to mref (i.e.
m[σ2〉mref ). The cost function may be rewritten as (5):

f (σ1,m0,mref ) = g(σ1,m0)+ h(m,mref ) (5)

The function g(σ1,m0) gives the cost, i.e., the duration in
our case, of the already computed trajectory (σ1,m0) and
the function h(m,mref ) approximates the residual duration of
(σ2,m).

For the part of the trajectory (σ1,m0) already computed,
the method in [40] computes the duration g(σ1,m0) of
(σ1,m0) by transforming any untimed trajectory into a timed
one. This algorithm uses the chronological firing order of
the transitions in σ1 and the earliest firing policy to update,
at each new marking m, the residual durations of the tran-
sitions enabled at m. These transitions and their residual
durations are stored in a calendar that is updated at each
intermediate marking of the trajectory. Observe that the trans-
formation previously mentioned and the use of the calendar
are required because the usual method is based on untimed
trajectories and adds a posteriori timing information. In this
paper, on the contrary, we derive directly g(σ1,m0) from the
D-TERG.

For the unknown part of the trajectory, several estimations
h(m,mref ) of the residual duration from the current marking
m to the referencemref have been studied [30], [42]. In partic-
ular, Luo et al. in [41] propose a heuristic function based on
the search of resource and operational places. Lefebvre pro-
poses an estimation based on residual firing count vector [43].
The previous methods are based on the following schema:
• search for the paths that exist in the T-TPN structure
from all places that have at least one token at markingm,

• compute the durations of these paths with Eq. (2),
• estimate the residual duration to the reference marking
with Eq. (6):

h(m,mref ) = max
p∈P(m)
{ min
ph∈PH (p,pref )

{d(ph)− D(t1)}} (6)

where t1 is the first transition in ph. In this paper, we refine
the heuristic function h based on the D-TERG.

D. FILTERED BEAM SEARCH BASED ON D-TERG
Based on D-TERG(6) as previously defined, the cost func-
tion defined in Eq. (5) is reformulated for any state S ∈ S6
as:

f (S0, S, Sref , 6) = g(S0, S, 6)+ h(S, Sref ) (7)

The function g(S0, S, 6) gives the minimal duration of the
paths from S0 to S, and the function h(S, Sref ) estimates
the residual duration from state S to state Sref . Note that
g(S0, S, 6) depends on 6 whereas h(S, Sref ) does not.
Let us first detail the computation of g(S0, S, 6). Accord-

ing to the definition ofD-TERG(6), there at least exists a path
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from S0 to S. Consequently, g(S0, S, 6) results from Eq. (3)
and is computed directly by Eq. (8).

g(S0, S, 6)= min
ph∈PH6 (S0,S)

{

∑
S(k)∈ph,
S(k) 6=S

B6(S(k), S(k + 1))}, (8)

wherePH6(S, S ′) is the set of paths from state S0 to those S in
D-TERG(6). Observe that all paths that exist in TERG from
S0 to S are not in general reported in D-TERG(6) (as far as
N6 < NE ). For this reason, depending on 6, the final results
obtained with the combined use of the D-TERG and the FBS
is not, in general, the optimal schedule. But, compared with
the method in [40], the use of D-TERG has two advantages:
• once D-TERG(6) is computed, g(S0, S, 6) becomes
easy to compute by Eq. (8) because timing information
is included in D-TERG(6), and there is no need to use
the transformation of untimed firing sequence into timed
sequence as proposed in [40],

• more important, all timing information available at state
S is also explicitly encoded in 1(S) and will be used to
compute h(S, Sref ).

Let us compute h(S, Sref ). Observe that Eq. (6) can be
reformulated in D-TERG as h(S, Sref ) = h(m(S),mref ). Two
corrections are proposed to refine the estimation h.
• if the first transition t1 ∈ ph(p, pref ) is enabled at S, the
residual time δ(S, t1) of t1 is the earliest firing time of t1
in state S. Consequently this time should be added to the
estimation h(S, Sref ),

• if the first transition t1 ∈ ph(p, pref ) is not enabled at
S (this could occur if the resources needed to fire t1 are
currently used for another operation), an extra waiting
timeWT (S, t1) before enabling t1 should be considered.
WT (S, t1) depends on the enabled transitions t in con-
flict with t1:

WT (S, t1) = max
t∈m(S)•,(δ,t)∈1(S)
•t∩•t1 6=∅,t 6=t1

{δ}. (9)

Consequently h(S, Sref ) is refined as:

h(S, Sref ) = max
p∈P(m(S))

{ min
ph∈PH (p,pref )

{d(ph)− D(t1)

+δ(S, t1)+WT (S, t1)}}. (10)

where t1 is the first transition in ph. The heuristic func-
tion h(S, Sref ) never overestimate the true duration to the
reference.

VI. APPLICATION TO A CASE STUDY
In this section, we aim to schedule the operations of the batch
production system in order to minimize the total duration
Cmax of the operations according to the T-TPN model of the
system, the D-TERG and the new variant of FBS introduced
in the previous section.

Dijkstra algorithm, FBS algorithm [40], [41], and a variant
of FBS based on D-TERG in this paper are applied to the
case study. For these methods, solutions and performance are
discussed with respect to the initial number of products to

TABLE 2. Results of the global optimization with Dijkstra algorithm and
TER.

TABLE 3. Results of FBS for βg = βl = 20.

be processed m0(p1.0) = m0(p2.0) = ρ(J1) = ρ(J2) = k .
Table 2 sums up the results obtained for Dijkstra algorithm
based on the computation of the TERG. For this purpose,
a period g∗ = 10 minutes has been considered. In this table
we report the number of markings in the usual reachability
set R(m0) (i.e., the size of R(m0) denoted by N ), the number
of states in TERG (i.e., the size of SE denoted by NE ), the
average number of states in TERG for one batch (i.e., NE/k),
the size (as a number of firings) of the control sequence
that is found, the corresponding makespan Cmax and the
computation time required to obtain the solution with an
Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz-2.80 GHz.
In particular for k = 1, the solution σ1 is found using Dijkstra
algorithm in TERG:

σ1 = (t6, 30)(t1, 50)(t7, 70)(t2, 80)(t8, 110)

(t3, 140)(t9, 160)(t4, 180)(t10, 220)(t5, 220)

One can notice that Dijkstra algorithm fails rapidly when
k increases due to the numerical complexity (we limit the
search for TERG with a maximal size of 15,000 states).
On the contrary, when a solution is found, it is of minimal
duration.

Table 3 sums up the result obtained for local optimization
based on the use of FBS with parameters βg = 20 and
βl = 20. In this table, the number of markings expanded by
FBS is also reported, denoted by N ′. In particular for k = 1,
two solutions σ2 and σ3 are found:

σ2 = (t1, 20)(t2, 50)(t6, 50)(t3, 80)(t7, 90)

(t4, 120)(t8, 130)(t5, 160)(t9, 180)(t10, 220)

σ3 = (t6, 30)(t7, 70)(t1, 70)(t8, 110)(t2, 110)

(t3, 140)(t9, 160)(t4, 180)(t10, 220)(t5, 220)

Table 4 sums up the result obtained by the proposed variant
of FBS based on D-TERG with parameters βg = 20 and
βl = 20. The number of states in D-TERG (i.e., the size
of S6), denoted by N6 , is reported in Table 4. In particular
for k = 1, the solution σ4 is found using the proposed variant
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TABLE 4. Results of a variant of FBS based on D-TERG for βg = βl = 20.

of FBS:

σ4 = (t6, 30)(t1, 50)(t7, 70)(t2, 80)(t8, 110)

(t3, 140)(t9, 160)(t4, 180)(t5, 220)(t10, 220)

The size of D-TERG in Table 4 is 476 that is less than
the size of TERG in Table 2 when k = 3. The size of
D-TERG is 3456 when k = 20, it is still much less than
15000. One can notice that FBS and the variant of FBS based
on D-TERG find always a solution when k increases but
the optimality cannot be ensured. It is obvious that Cmax
reflects the performance of solutions obtained by different
algorithms, and that NE , N ′ and N6 reflect the complexity of
the different algorithms. However, these indicators strongly
depends on k . In order to obtain performance and complexity
indicators only depending on the Petri net structure and on the
specific algorithm, but not on k , we further compute Cmax/k ,
N ′/k and N6/k in Tables 3 and 4. Observe that values of
Cmax/k , N ′/k and N6/k converge to asymptotic values as k
increases. It is better to use Cmax/k , N ′/k and N6/k as the
performance and complexity indicators, respectively. From
Tables 3 and 4, we can find that the proposed variant of FBS
has better performance indicators (i.e.,Cmax/k) than classical
FBS. At the same time, classical FBS and the new variant of
FBS have better complexity indicators (i.e., N ′/k and N6/k)
than Dijkstra algorithm. Table 5 provides the duration of the
solution foundwith respect to k as the required computational
time to compute the solution for larger values of k .

TABLE 5. Results of a variant of FBS based on D-TERG for βg = βl = 5.

Note that the performance of the variant of FBS based
on D-TERG also depends on the parameters βg and βl .
By decreasing βg and βl , the size of D-TERG also decreases
as the computation time, but the makespan increases. In par-
ticular, using a small number of global or local beams
can lead to degraded performances: one can notice from
Tables 4 and 5 that the makespan obtained for k = 5 is
880 min. when βg = βl = 20 in Table 4 and increases
to 910 min. when βg and βl decrease to 5 in Table 5. This
is a typical characteristic of the beam search method: The
performance is obviously better when numerous candidates
are expanded (i.e. large values of βg and βl) but rapidity is
penalized, whereas performance is weaker when only few

candidates are expanded (i.e. small values of βg and βl) but
rapidity is improved.

To further illustrate the application and complexity of
our method, we apply it to a more complex batch process
with more jobs. This example is inspired by the model
proposed in [9]. The model in [9] is first transformed
and expanded into a T-TPN model shown in Fig. 7 with
T = {t1, t2, . . . , t15}, P = {p1, p2, . . . , p23}, m0 =

(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1)T .
The T-TPN models a batch production system with five jobs
J1, J2, J3, J4, and J5. Transitions t1 to t3, t4 to t6, t7 to t9, t10
to t12, and t13 to t15 define J1, J2, J3, J4, and J5, respectively.
Minimal durations of transitions are shown in Table 6.

FIGURE 7. Petri net model of a variant of the batch production system
in [9].

TABLE 6. Minimal durations of transitions of Fig. 7.

Table 7 sums up the results obtained for Dijkstra algo-
rithm, FBS algorithm, and the new variant of FBS when r
(r = 2, 3, 4, 5) jobs are considered. In this table we report
Cmax, Cmax/NPn, NE , N ′, N6 , NPn and so on, where NPn
denotes the sum of numbers of places, transitions and arcs
of the Petri net for the first r jobs.
Similar to k in Tables 2, 3, and 4, r affects Cmax, NPn,

NE , N ′ and N6 , in Table 7. Normalized indicators Cmax/NPn,
NE/NPn, N ′/NPn and N6/NPn tend to asymptotic values and
may be used as the performance and complexity indicators,
respectively. The distribution of these indicators for different
algorithms is shown in Fig. 8. We can find that the distri-
bution of the performance and complexity indicators of the
new variant of FBS tend to smaller values, and it has better
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TABLE 7. Results of different algorithms for the first r jobs of Fig. 7.

FIGURE 8. The distribution of performance and complexity indicators
in Table 7.

performance and complexity than the other two approaches.
This verifies that the new variant of FBS is suitable for
solving the scheduling problem of complex batch production
systems.

VII. CONCLUSION
In this paper, modeling and scheduling methods for batch
production systems are proposed. The approach is based on
T-TPNs and a new variant of FBS methods. A method to
model a batch production systemwith multiple resource units
as T-TPN with conflicts resulting from the use of resource
units is proposed. Then a D-TERG is presented according
to a sequence of states that are successively explored for the
schedule issue. Based on T-TPNs and D-TERG, a variant of
FBS is designed with an improved heuristic cost function to
obtain optimal or suboptimal solutions. The application of
this method to the batch production systems illustrates the
proposed scheduling approach.

In the next work, fault diagnosis such as equipment failure
and deadlock control will be considered for the schedul-
ing issue of production systems and multi-agent systems
[44]–[48]. In addition, maximal time constraints will be also
introduced to consider chemical reactions that should respect
maximal processing times.
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