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ABSTRACT Threat assessment for aerial attack targets is an important aspect of air defense weapon systems
in responding to multiple attacks. We establish a model based on intuitionistic fuzzy rough sets (IFRS) and
D-S evidence theory for threat assessment from the required data with uncertainty in stages. Using the overall
degree of dependency and attribute importance of the intuitionistic fuzzy information system as a heuristic
function, we study algorithms to extract threat elements and rules based on IFRS, to generate an intuitionistic
fuzzy rule base for threat assessment with degrees of belief and disbelief. Based on the threat assessment rule
base, we study the BPA determination algorithm in multi-stage threat assessment. The intuitionistic fuzzy
semantics of degree of belief in the rule conclusion are used to determine the focal elements corresponding to
each aggregate rule, and to obtain the degree of support of the data in a stage for each threat level. A case study
shows that, compared to a threat assessment method based solely on D-S evidence theory or intuitionistic
fuzzy reasoning, the advantage of IFRS knowledge acquisition makes the selection of threat assessment
elements and determination of BPA more objective and less dependent on domain experts, so as to yield
strong, objective results.

INDEX TERMS Threat assessment, intuitionistic fuzzy sets, D-S evidence theory, intuitionistic fuzzy rough
sets.

I. INTRODUCTION
Threat assessment (TA) is at the third level of the JDL infor-
mation fusion model. It quantifies the ability of an enemy’s
military deployment or weaponry to pose a threat, along with
the enemy’s possible action intention. This level of fusion
receives output from the situation assessment level as the
input, and outputs the view of threat, which describes the
enemy’s target positions and threat levels as the basis for sub-
sequent weapon-target allocation. For a regional air defense
systemwith limited deployment, facingmany types of incom-
ing aerial attack targets, classifying a target of high-threat
level as a low-level threat and a target of low-threat level as
a high-level threat could lead to the targets posing the fatal
threat to the air defense system not being effectively inter-
cepted. This may lead to missing the opportunity to defense
and even to face catastrophic failure. Therefore, an important
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part of air defense combat decision-making is to accurately
assess the threat level of an incoming aerial attack target.

The battlefield situation and threat assessment processes
data at the decision-making level, and solves a specific
domain problem based on the commander’s battlefield
knowledge and combat experience. Because of limited devel-
opment in cognitive theory and the military background,
research of battlefield-related situation and threat assessment
has made limited progress. The lack of a unified theoretical
system creates a bottleneck in battlefield information fusion
research, which is gaining increased attention. A number of
theories and methods are used in threat assessment research,
such as the Bayesian network, [1] multi-attribute decision
theory, [2], [3] case-based reasoning, [4] fuzzy reasoning, [5]
and belief rule base [6] The Bayesian network [1] combines
graph theory and Bayesian reasoning, and has a strong abil-
ity to deal with uncertainty. However, in application, threat
elements are difficult to extract and a priori knowledge is
difficult to determine. Based on the multi-attribute decision
method, [2], [3] the weight of each attribute is generally
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evaluated by experts, and values are assigned based on their
professional knowledge and experience, which are subject
to subjectivity and uncertainty. Furthermore, this method
is incapable of self-learning, hence it adapts with diffi-
culty to rapidly changing battlefield situations. The use of
these methods reflects different perspectives and opinions of
researchers, and there is no unified, generally accepted view.

A future air defense battlefield will facemulti-batch, multi-
direction, multi-latitude, and continuous saturation attacks in
a complex electromagnetic environment. The research objec-
tives of threat assessment vary and involve many factors. Past
threat assessments assumed that complete threat information
could be obtained, and they assumed a certain environment.
However, it will be more difficult to obtain information in
a complex electromagnetic attack environment. Lack of key
data may make a threat assessment difficult to complete.
Threat assessments in future air defense operations will be
conducted in an uncertain environment. Based on available
data, a threat assessment in an air defense operation gradually
reaches a conclusion regarding the defense combat plan and
level of threat through dynamic, step-by-step refinement.
Most modern incoming aerial targets, especially hypersonic
targets, are at high speed and have excellent maneuverabil-
ity. Static assessment methods discard past observation data,
making it difficult to fully analyze the overall characteristics
of targets. Threat assessment is a dynamic information fusion
process with uncertainty. It is a challenge to effectively assess
threat levels based on continuously received information that
is incomplete, inaccurate, or uncertain.

Precise processing is ineffective. Given the uncertainty
in threat assessment, the solution must rely on cognitive
uncertainty and fuzzy thinking [14], [15]. Zadeh proposed
the concept of fuzzy sets (FS) [7] An important expansion,
intuitionistic fuzzy sets (IFS), [2] can effectively overcome
the shortcoming of the single degree of membership in
Zadeh’s fuzzy sets, and they show a clear advantage in many
applications. IFS theory deals simply and effectively with
complex systems, especially those with human intervention,
and has been effectively applied to fields such as command
and control and information fusion. However, the use of FS
theory often relies on subjective threat assessment factors and
judgement criteria, [3] and does not solve the problems of
threat element selection and automatic discovery of decision
knowledge. The rough sets (RS) [8] can effectively process
uncertain information. It can remove irrelevant or unimpor-
tant attributes while maintaining the classification ability of
the information system, derive refined information, and effec-
tively support multiple steps in knowledge processing. The
intuitionistic fuzzy rough sets (IFRS) [9]–[13] introduces IFS
to an RS model, expanding data reduction and rule extraction
to the field of fuzzy decisions to enhance flexibility and
representativeness. Data analysis and automatic knowledge
acquisition based on RS and IFRS have attracted much atten-
tion in the field of intelligent decision-making, providing new
ideas and methods for the extraction of threat assessment
factors and knowledge discovery in uncertain environments.

Dynamic information fusion in threat assessment requires
the determination of threat level based on continuously
received information that is incomplete, inaccurate, or uncer-
tain. D-S evidence theory [16], [17] has inherent advan-
tages in expressing uncertain and unknown situations. Its
combination rules can synthesize knowledge or data from
different data sources, and it is widely used in fields such as
decision-level information fusion and research in equipment
intelligence. However, for threat assessment under uncer-
tainty, problems in D-S evidence theory, such as determina-
tion of basic probability assignment (BPA) [18]–[27] remain
to be solved. To extract decision rules based on IFRS could
be a breakthrough in solving this problem.

This paper presents a multi-stage threat assessment model
and algorithms based on IFRS and D-S evidence theory. IFRS
data analysis and knowledge reduction are used to obtain
a threat assessment knowledge base. Using target attribute
data acquired in stages and D-S evidence theory, we study
a method to determine BPA based on the established threat
assessment knowledge base, i.e., to obtain the degree of
support for the threat level from the data in stages, and use
the combination rule of evidence theory to synthesize the
probability distribution functions of data in various stages to
obtain the final threat assessment.

The rest of this paper is organized as follows.
Section 2 introduces the relevant concepts of IFRS theory
and D-S evidence theory. Section 3 proposes the knowledge
reduction algorithms and the BPA generation method for
a threat assessment information system by analyzing the
problem and the factors affecting it, and presents a model
based on IFRS and D-S evidence theory. Section 4 ana-
lyzes the effectiveness of our method through a case study.
Section 5 presents our conclusions and proposes topics for
further study.

II. IFRS AND D-S EVIDENCE THEORY
A. INTUITIONISTIC FUZZY ROUGH SETS
Let U be a nonempty finite universe, and R an intuitionistic
fuzzy equivalence relation on U . FAS=(U ,R) is referred to
as an intuitionistic fuzzy approximation space, and F(U )
represents the intuitionistic fuzzy subsets on U .

We apply R to partition U to obtain equivalence classes
U /R = {F1,F2, · · · ,Fk} of the intuitionistic fuzzy sets. Let
the elements of U /R construct the intuitionistic fuzzy set
X ∈ F(U ). Then the resulting lower approximation R−X and
upper approximation R+X are a pair of intuitionistic fuzzy
sets on U /R,

R−X (x) = inf
Fi∈U/R

max{1− Fi(x), inf
y∈U

max{1− Fi(y),X (y)}}

R+X (x) = sup
Fi∈U/R

min{Fi(x), sup
y∈U

min{Fi(y),X (y)}}. (1)

ForFAS=(U ,R),R = C∪d is the IF attribute set consisting
of a condition attribute setC and decision attribute d . LetV be
the range of the attribute setR andG an information function.
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Then IFIS=(U ,C ∪ d,V ,G) is referred to as intuitionistic
fuzzy information system.

Let IFIS=(U ,C∪d,V ,G),P ⊆ C. ThePpositive region of
dPOSP(d), is a fuzzy set onU . POSP(d) is expressed ∀x ∈ U
as

POSP(d)(x) = ∪
Xj∈U/d

P−Xj(x). (2)

The classification ability of an information system can
be measured by the degree of dependency of the decision
attribute d on the condition attributes C, which is referred
to as the overall degree of dependency of the information
system,

νC(d) =
|POSC(d)|
|U |

=

∑
x∈U

POSC(d)(x)

|U |
, (3)

where |POSC(d)| is the cardinality of POSC(d) ∈ F(U ).
The cardinality of the intuitionistic fuzzy set X ∈ F(U ) is

defined as [23]

|X | =

(∑
x∈U

µX (x),
∑
x∈U

(1−γX (x))

)
. (4)

Whether an attribute is important depends on the degree
of its influence on the classification capability of the system.
Therefore, the importance of a condition attribute R ∈ C can
be evaluated by the change in overall degree of dependency
of the information system calculated when R is removed.
The greater the change in the overall degree of dependency
the greater effect of R on the classification ability of an
information system, and thus the more important is R. If the
change in the overall degree of dependency is small, then R
has a relatively small impact on the classification ability of
the system, hence it is less important.
∀R ∈ C, the importanceof R to the information system,

σC,d (R) is expressed as

σC,d (R) = νC(d)− νC−{R}(d). (5)

Because the overall degree of dependency of IFIS is an
intuitionistic fuzzy value, the distance measure between intu-
itionistic fuzzy values is defined. Let x = (µx , νx) and
y = (µy, νy) be two intuitionistic fuzzy values on U . Then
the distance measure between x and y is defined by

d(x, y) =

√
(µx − µy)2 + (νx − νy)2

2
. (6)

Based on the degree of dependency and attribute impor-
tance, we can define the relative reduction of the information
system.

For IFIS=(U ,C ∪ d,V ,G), Red(C) ⊆ C is the rel-
ative reduction of IFIS=(U ,C ∪ d,V ,G) if and only if
Red(C)satisfies νC(d)− νRed(C)(d) = 0.
The overall degree of dependency before and after the

reduction of the intuitionistic fuzzy information system
remains unchanged. However, the conditions that require the
overall degree of dependency to be completely consistent

are often too stringent. Especially for intuitionistic fuzzy
information systems, an object’s attribution to an intuition-
istic fuzzy equivalence class is represented by the degrees of
membership and non-membership. Intuitionistic fuzzyinfor-
mation systems are more complex and fragile than ordinary
information systems. A small disturbance may affect the cal-
culation of the degree of dependency, which is not conducive
to the reduction of redundant attributes. Therefore, we use the
concept of approximate relative reduction.

For IFIS=(U ,C ∪ d,V ,G), Red(C) ⊆ C is the approx-
imate relative reduction of IFIS=(U ,C ∪ d,V ,G) if and
only if Red(C) satisfies νC(d) − νRed(C)(d) ≤ ε, where
ε ∈ [0, 0.05] is the threshold value. When ε = 0, Red(C)
degenerates to a conventional relative reduction.

The attribute reduction of information systems is normally
not unique, and the intersection of all the reductions is called
the kernel. The reduction with the lowest dimensionality is
referred to as the minimum reduction.

B. D-S EVIDENCE THEORY
The frame of discernment is the most basic concept in evi-
dence theory. Let 2 denote the frame of discernment; the
set of all its subsets is the power set 22. Any proposition
corresponds to a subset of 2.
If the function m: 22 → [0, 1] satisfies m(∅) = 0 and∑
A⊆2m(A) = 1, thenm is called the probability distribution

function on 22, and m(A) is called the basic probability
assignment of A. If A ⊆ 2 and m(A) > 0, then A is called
the focal element.

The belief function Bel(A) and plausibility function Pl(A)
are defined as:

Bel(A) =
∑
B⊆A

m(B),∀A ⊆ 2, (7)

Pl(A) =
∑

B∩A6=∅

m(B) = 1− Bel(¬A). (8)

For proposition A in 2, the brief interval [Bel(A), Pl(A)]
can be formed to describe the possibility of A.

Independent sources of information can be combined using
Dempster’s rule of combination.

Let m1m2, . . . ,mn be n probability distribution functions.
Then their orthogonal set m = m1 ⊕ m2 ⊕ . . . ⊕ mn can be
obtained as:m(A) = (1− K )−1 ×

∑
∩Ai=A

n∏
i=1

mi(Ai), A 6= ∅

m(A) = 0, A = ∅
(9)

where K is the conflict factor expressed as:

K =
∑
∩Ai=8

n∏
i=1

mi(Ai) (10)

Dempster’s rule of combination is commutative and asso-
ciative, and is the most commonly used rule of combination
in evidence theory.
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III. MODEL AND ALGORITHMS FOR THREAT
ASSESSMENT
A. THREAT ASSESSMENT INFORMATION SYSTEM
A threat assessment information system is a prerequisite for
threat assessment. The factors influencing the threat assess-
ment of aerial targets are the basis for the assessment of their
threat level. Therefore, in a threat assessment information
system, the condition attribute set corresponds to the threat
assessment factor set, and the decision attribute to the target’s
threat level.

Let U be the target’s nonempty finite universe, R=C∪W
the set of intuitionistic fuzzy attributes containing threat
assessment factor set Cand threat level W , V the range of
attribute set R, and G an information function. Then TAIS=
(U , C∪W ,V ,G) is called a threat assessment information
system.

A threat assessment factor set usually involves many fac-
tors such as the type, speed, distance, heading, altitude,
electronic jamming capability, and penetration capability of
the target. At the same time, the acquisition of the target’s
characteristic information is a dynamic process, hence the
threat assessment is a dynamic process. The threat level
of the target cannot be effectively evaluated using only the
characteristic information at a certain moment. Therefore,
in addition to the above factors, we select the characteristic
information of the target at several representative moments
as the basis for assessment. The characteristic informa-
tion of target speed, distance, heading, altitude, and elec-
tronic jamming capability at two representative moments is
selected. Thus the threat assessment information system con-
tains 17 condition attributes, C={A1,A2, . . . ,A17}={target
type, speed, distance, heading, altitude, electronic jam-
ming capability, penetration capability, speed 2, distance 2,
heading 2, altitude 2, electronic jamming capability 2,
speed 3, distance 3, heading 3, altitude 3, electronic jamming
capability 3}.

To deal with the uncertainty of threat assessment factors,
intuitionistic fuzzy partitioning is applied to each factor. The
aerial attack targets are partitioned into three types according
to their radar cross-section, U/A1 ={A11,A12,A13}={small
target, large target, other targets}. The other factors are sim-
ilarly partitioned as U/A2={A21, A22, A23}={high speed,
medium speed, low speed}, U/A3 = {A31, A32, A33,
A34}={immediate proximity, close proximity, medium dis-
tance, far away}, U/A4 = {A41, A42, A43, A44} =
{radial, approaching, flanking, diverging}, U/A5 = {A51,
A52, A53}={low altitude, medium altitude, high altitude},
U/A6 = {A61, A62, A63, A64}={strong, medium, weak,
none}, and U/A7 = {A71, A72, A73}={strong, medium,
weak}, and U/A8 = U/A2= U/A13, U/A9 = U/A3=U/A14,
U/A10 = U/A4=U/A15, U/A11 = U/A5=U/A16, and
U/A12 = U/A6= U/A17.
By combining the real-time nature of integrated air defense

and anti-missile operations, the feasibility of model process-
ing, and the commander’s thinking habits, we characterize
the threat of an incoming aerial attack target on three levels,

U/W ={w1w2w3}={major threat, moderate threat, minor
threat}.

We have established the representative data based on his-
torical data and combat doctrine, and can obtain the threat
assessment intuitionistic fuzzy information system by pro-
cessing the data using intuitionistic fuzzy sets theory.

B. ALGORITHMS TO EXTRACT THREAT ELEMENTS AND
ASSESSMENT RULES
Extraction of threat elements is the basis of threat assessment.
The threat level of a target depends on various factors. Threat
elements differ by combat tasks. Most threat assessment
methods make inferences or decisions on the basis that threat
elements have been given or are artificially selected. This
ignores the problem of selecting the threat elements. We use
IFRS to evaluate methods to extract the generated elements
of threat assessment and to extract their rules.

For a threat assessment intuitionistic fuzzy information
system, the reduction of redundant attributes based on IFRS
can realize the extraction of a threat element. Solving themin-
imum reduction is an NP-hard problem. We use a heuristic
search to solve the reduction. The overall degree of depen-
dency and attribute importance of the intuitionistic fuzzy
information system are used as the heuristic function, which
reduces the search space.

The algorithms obtain the threat assessment intuitionistic
fuzzy information system TAIS= (U , C∪W ,V ,G), and
perform intuitionistic fuzzy preprocessing on the continuous
attribute data. We set the initial value of the reduction set
to C. In a top-down manner, the amount of change in the
overall degree of dependency is calculated after a condition
attribute is removed. The condition attribute corresponding to
the amount of change that satisfies νC(d)− νRed(C)(d) ≤ ε is
selected iteratively, and is deleted from the reduction set C.
The process continues until removing any condition attribute
changes the degree of dependency to be greater than ε. The
algorithms are described as follows.

The time complexity of Algorithm 1 is mainly reflected
in the calculations of the degree of dependency νC(d) =
|POSC(d)|

/
|U |, and the calculations of the degree of depen-

dence is mainly to calculate the relatively positive region,
so the time complexity of the calculation of the relatively
positive region has a direct impact on the efficiency of
Algorithm 1. The algorithm optimizes the calculation of the
relatively positive region POSC(d)(x) = ∪

Xj∈U/d
C−Xj(x).

In step 2, the algorithm sorts all task values of the deci-
sion attribute from smallest to largest, thereby reducing the
computational complexity of partitioning, lower approxima-
tion and the relatively positive region. In step 5, the cal-
culation of the relatively positive region is divided and
POSY−{Ai}d(x) = inf

Si∈U/{Y−{Ai}}
max {1− Si(x)), ti}, where

ti = sup
Xj∈U/d

inf
y∈U ,y/∈Xj

(1 − Si(y)). Each calculation of the

relatively positive region retains the calculation result ofU/Y
from the previous iteration, which simplifies the calculation
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Algorithm 1 Algorithm to Extract Threat Element
Input: Intuitionistic fuzzy information system
TAIS=(U ,C∪W ,V ,G) after preprocessing. Output:
Reduction set Y=Red(C)
Step 1: Initialize ε ∈ [0, 0.05], and letY=C;
Step 2: Sort the value of decision attribute W on U calcu-
late the partitioning of W on U , U/W = {Xi|Xi ∈ U/W },
and obtain the set of equivalence classes {X1,X2, · · · ,Xq};
Step 3: Use equation (3) to calculate the overall degree of
dependency of the system, νC(W );
Step 4: ∀Ai ∈ Y, calculate U/{Y − {Ai}} =

{S1, S2, · · · , Sm};
Step 5: ∀Ai ∈ Y, ∀Si ∈ U/{Y − {Ai}}, ∀Xj ∈ U/W
calculate ti = sup

Xj∈U/d
inf

y∈U ,y/∈Xj
(1 − Si(y)) obtain t =

{t1, t2, · · · , tm}; ∀x ∈ U calculate POSY−{Ai}W (x) =
inf

Si∈U/{Y−{Ai}}
max {1− Si(x)), ti}, and obtain νY−{Ai}(d);

Step 6: ∀Ai ∈ Y calculate σ ′Y−{Ai},d (Ai) = νC(W ) −
νY−{Ai}(W ); if σ ′Y−{Ai},d (Ai) ≤ ε, set Y = Y−{Ai} and
return to step 4;
Step 7: ∀Ai ∈ Y, if σ ′Y−{Ai},d (Ai) > ε, exit the algorithm
and output the reduction set Y.

and reduces the time complexity of Algorithm 1 to a certain
extent.

With the above threat element extraction algorithm,
the post-attribute reduction intuitionistic fuzzy informa-
tion system TAIS=(U,Red(C)∪W ,V ,G) can be obtained.
Based on TAIS=(U,Red(C)∪W ,V ,G), the logical relations
implied by the intuitionistic fuzzy information system can be
extracted as

(A11 ∨ A12 ∨ · · · ∨ A1k1) ∧ (A21 ∨ A22 ∨ · · · ∨ A2k2) ∧

· · · ∧ (Am1 ∨ Am2 ∨ · · · ∨ Amkm)⇒ (w1 ∨ w2 ∨ · · · ∨ wq).

(11)

By decomposing equation (11), the following logical rela-
tionships can be obtained, which are the initial rules of group
p, p = k1 · k2 · · · · · km:

RL1 :


A11 ∧ A21 ∧ · · · ∧ Am1 ⇒ w1

· · · · · ·

A11 ∧ A21 ∧ · · · ∧ Am1 ⇒ wq

RL2 :


A11 ∧ A22 ∧ · · · ∧ Am1 ⇒ w1

· · · · · ·

A11 ∧ A22 ∧ · · · ∧ Am1 ⇒ wq
. . . . . .

RLp


A1k1 ∧ A2k2 ∧ · · · ∧ Amkm ⇒ w1

· · · · · ·

A1k1 ∧ A2k2 ∧ · · · ∧ Amkm ⇒ wq,

where Ai1,Ai2, · · · ,Aiki are the intuitionistic fuzzy linguistic
values corresponding to an intuitionistic fuzzy subset on U .
This set of rules contains all the rules that can be obtained by

the information system. The rule set contains rules with a low
degree of belief. Therefore, the degree of belief of rules must
be calculated so as to extract the rules that have high degrees
of belief or meet user’s requirements.

For the intuitionistic fuzzy rule, RL11, C11 ∧ C21 ∧

· · · ∧ Cm1 ⇒ w1. Let the set of objects be X1 ⊆
U for decision value w1. Project A11,A21, · · · ,Am1 ∈
FS(U ) on X1 to obtain m intuitionistic fuzzy subsets on X1,
C1
11,C

1
21, · · · ,C

1
m1 ∈ FS(X1). Perform the combination oper-

ation on C1
1i,C

1
2j, · · · ,C

1
mh and obtain the degree of belief of

RL11 as κ(RL11) = ∨(C1
11 ∧ C

1
21 ∧ · · · ∧ C

1
m1). The degree

of belief of other intuitionistic fuzzy rules can be similarly
obtained.

The degree of belief here, κ(RL1l) = (µκ (RL1l),
γκ (RL1l)), is an intuitionistic fuzzy value, where µκ (RL1l)
represents the degree of support to the degree of belief, and
γκ (RL1l) represents the degree of rejection of the degree of
belief, i.e., the degree of disbelief:

µκ (RL1l) = ∨
x∈Xl

(µC l11
(x) ∧ µC l21

(x) ∧ · · · ∧ µC lm1
(x))

γκ (RL1l) = ∧
x∈Xl

(γC l11
(x) ∨ γC l21

(x) ∨ · · · ∨ γC lm1
(x)). (12)

The algorithm is given below.

Algorithm 2 Algorithm to Extract Assessment Rules
Input: Post-reduction intuitionistic fuzzy information sys-
tem, TAIS=(U,Red(C)∪W ,V ,G);
Output: Intuitionistic fuzzy assessment rule set RC
Step 1: Set the threshold values (α, β), where 0 < α+β ≤

1, and RC = ∅;
Step 2: ∀x ∈ U , solve U/W = {Xi|Xi ∈ U/d};
Step 3: Extract and decompose the logical relationships in
the intuitionistic fuzzy information system to obtain p sets
of initial rules {RLl,|l = 1, 2, . . . , p};
Step 4: For each set of initial rules RLl, find
the degree of belief of each rule, κ(RLl) =

{κ(RLl1), κ(RLl2), · · · , κ(RLlq)}, by equation (12),
and select the intuitionistic fuzzy rule with the highest
degree of belief to join RC = RC ∪ {rl};
Step 5: Screen the rules in RC according to the threshold
values α and β, excluding those rules with degree of belief
less than α and degree of disbelief greater than β, output
the intuitionistic fuzzy rule set RC, and exit the algorithm.

Since the input of Algorithm 2 is the intuitionistic fuzzy
information system that has reduced the redundant condition
attributes (according to Algorithm 1), the calculation results
of partitioning of W on U of Algorithm 1 can be directly
referenced in step2 of Algorithm 2. The time complexity of
Algorithm 2 is mainly in the calculation of the degree of
belief. If the initial rule set of post-reduction intuitionistic
fuzzy information system has a total of p = k1 · k2 · · · · · km
groups and each rule group has q rules, then w · q calcu-
lations of degree of belief must be performed. So the time
complexity of the algorithm is O(w · q). When the number of
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intuitionistic fuzzy linguistic values of conditional attributes
is larger, the complexity of the Algorithm 2 will be higher.

C. ALGORITHM TO DETERMINE BPA
Determination of the probability distribution function is a key
in the application of evidence theory. For a threat assessment
with target attribute data acquired in stages, we apply the
threat assessment rule set acquired by IFRS to establish a
method to determine BAP.

Let the acquired intuitionistic fuzzy rule set RC contain the
following rules:

RC1 : A11 ∧ A21 ∧ · · · ∧ Am1 ⇒ wRC1(κ(RC1))

RC2 : A11 ∧ A22 ∧ · · · ∧ Am1 ⇒ wRC2(κ(RC2))

· · · · · ·

RCp : A1k1 ∧ A2k2 ∧ · · · ∧ Amkm ⇒ wRCk (κ(RCp))

where A1,A2, · · · ,Am are the rule antecedents, and W
is a decision attribute whose value is in the range
{w1,w2,w3,w4}. Because the values of W are independent,
at any one time, each rule takes the value of an element in the
range, so W can be used as the framework of discernment,
i.e., 2 = {w1,w2, · · · ,ws}.
To simplify the description, suppose the data of a target

attribute provided by the system in the i-th stage consist of
X = (x1, x2); the attributes corresponding to x1 and x2 are
C1 and C2, respectively; C1 contains the IF linguistic values
{A11,A12,A13}; andC2 contains the IF linguistic values {A21,
A22, A23}.
First, IF processing is conducted on the input data. The

degree of membership of x1 for {A11, A12, A13} is denoted by
{A11(x1), A12(x1), A13(x1)}. The degree of membership of x2
for {A21, A22, A23} is denoted by {A21(x2), A22(x2), A23(x2)}.
Next, the degrees of match between the input data x1 and x2
with respect to their IF linguistic values are calculated as

t(x1) = max
x
{min(x1(x),A1i(x))}

t(x2) = max
x
{min(x1(x),A2i(x))}. (13)

Under this condition, the algorithm to determine BPA is as
follows

For the information provided by the system in subsequent
stages, BPA can be obtained by Algorithm 3 based on the
information of the rule items provided in the previous stage.
For example, if the information of rule items provided in
the second stage is A32, then the rule subset RC ′ containing
A32 will be searched from the rule setRC and used as the input
of algorithm 3 to obtain the BPA corresponding to the second
stage. The information of rule item provided in the subse-
quent stages can be processed in the same way, and the BPA
of each stage can also be obtained by Algorithm 3.

D. THREAT ASSESSMENT MODEL
Based on the above analysis, for the threat assessment of
the data of target attributes acquired in stages, we present a
threat assessment model based on IFRS and D-S evidence

Algorithm 3 Algorithm to Determine BPA
Input: The i-th stages of data, X , and the rule set, RC
Output: BPA
Step 1: Determine the IF linguistic valuescorresponding
to X = (x1, x2) according to the maximum membership
principle on the degree of match t(xi), and extract all rules
that contain these IF linguistic values in the rule set RC,
denoted by {RC1,RC2, · · · ,RCk};
Step 2: For all RCi ∈ {RC1,RC2, · · · ,RCk}, find Yi =
min{κ(RCi), t(x1), t(x2)} to generate a new rule subsetRC ′,
where κ(RC ′i) = Yi
Step 3: Extract different decision values that κ(RC ′i)
contains, denoted by DC={dj|j ≤ q}, ∀dj ∈ DC ;
determine the sum of the degree of belief and degree
of disbelief of all rules at dj in RC ′; and obtain
DZ={dj(

∑
µκ (dj),

∑
γκ (dj))|j ≤ q};

Step 4: Using DZ, determine the focal element set
JY={dj|dj ∈ DC} ∪ {d̄j|γκ (dj) 6= 0} ∪ {∪dj|dj ∈ DC},
which comprises three types of focal elements:dj, d̄j, and
∪dj, denoted by Aj, Bj, and Cj, respectively;
Step 5: Determine the pseudo BPA function Zm, where
Zm(Aj) =

∑
µκ (dj), Zm(Bj) =

∑
γκ (dj), Zm(Cj) =

ρ − max{
∑
µκ (dj)}, where ρ is the maximum number of

rules that have the same decision value in RC ′;
Step 6: Normalize Zm, yielding m(Aj), m(Bj), m(Cj), and
exit the algorithm.

FIGURE 1. TA model.

theory, as shown in Figure 1. The key is to use a combina-
tion of the knowledge discovery function of IFRS and the
decision-making function of D-S evidence theory to assist
the combat commander to make threat assessments of cur-
rent targets based on incomplete, inaccurate, or uncertain
information obtained in multiple stages. The model has two
parts: extraction of threat assessment elements and assess-
ment rules, and fusion reasoning on the data acquired in
stages.

For the threat assessment of aerial attack targets, we con-
struct a threat assessment information system with seven
basic factors, dynamic factors at two typical moments,
17 condition attributes, and one decision attribute. The threat
intuitionistic fuzzy information system is obtained through
intuitionistic fuzzy processing of the information system.
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Based on that, Algorithm 1 is used to reduce the redundant
attributes of the threat assessment intuitionistic fuzzy infor-
mation system, and Algorithm 2 is used to extract the intu-
itionistic fuzzy decision rules. These rules can be revised by
the combat commander to obtain the final threat assessment
knowledge base.

In the case that the target attribute data are acquired
in stages, based on the threat assessment knowledge base,
the assessment rules corresponding to the attribute data in
each stage are obtained. The intuitionistic fuzzy semantics
for the degree of belief in the rule conclusion are used to
determine the focal elements. Algorithm 3 is then used to
calculate its basic probability assignment, and to calculate the
fused reasoning on the conclusion of each stage. For attribute
data received in the first stage, the threat assessment knowl-
edge base is used to determine the degree of support by those
data to each threat level, i.e., the corresponding probability
distribution function m1. Then, the attribute data are received
in the second stage. As in the first stage, the probability
distribution function to the threat level, m2, of the attribute
data obtained in the second stage is determined. The rule
combination is used to combine the values of the probability
distribution in the first and second stages to obtain a newBPA.
The data-receiving and BPA-determining process is repeated
in subsequent stages. The BPA from the previous stage is
combined with the new BPA in the current stage. A compre-
hensive BPA is eventually obtained. After all the evidence
is combined, a decision must be made based on the result.
The main trust quantification functions in evidence theory
are the probability distribution function, belief function, and
likelihood function. These give a measure of belief to the
evidence from different perspectives. These three functions
can be assigned or used together as the basis for judgment in
decision-making. We use the decision method based on the
probability distribution function.

According to the calculation result from the combination,
if ∃A1,A2 ⊆ 2, then{

M (A1) = max{m(Ai),Ai ⊆ 2}
M (A2) = max{m(Ai),Ai ⊆ 2\A1}.

(14)

If M (A1), M (A2), and M (2) satisfy
M (A1)−M (A2) > δ1

M (2) < δ2

M (A1) > M (2),

(15)

then A1 is a result of judgment, where δ1 and δ2 are the set
threshold values.

The threat assessment result obtained by applying the
above model is the target’s BPA at a certain threat level. The
final decision for the threat level can be made based on this
BPA. Sorting the threats of targets at the same threat level can
be accomplished by sorting the values of targets’ BPA at that
threat level. The larger the BPA the greater the threat. This not
only ranks the targets but also determines their threat levels.

IV. CASE STUDY
An example of air defense operations is used to illustrate
the reasoning process of threat assessment. In a ground air
defense operation, there are three batches of incoming targets.
The target attribute data provided by the system in different
stages are shown in Table 1.

TABLE 1. Attribute data of targets in stages.

FIGURE 2. Intuitionistic fuzzy partitioning of attributes.

For the threat assessment information system, TAIS=
(U ,C∪W ,V ,G), whereC={A1,A2, . . . ,A17}={target type,
speed, distance, heading, altitude, electronic jamming capa-
bility, penetration ability, speed 2, distance 2, heading 2,
altitude 2, electronic jamming ability 2, speed 3, distance 3,
heading 3, altitude 3, electronic jamming ability 3}. Accord-
ing to the tactical principles and the range of values of
each characteristic parameter, 500 lines of threat assessment
characteristic data are simulated, where the value of each
characteristic is normalized to [0, 1]. An initial threat assess-
ment information system is established. Intuitionistic fuzzy
partitioning for each attribute is conducted. The membership
function µ(x) is a combination of triangles and trapezoids,
as shown in Figure 2. The non-membership function γ (x) is
determined as follows:

∀x ∈ [0, 1], 0 ≤ τ ≤ 1− µ(x), τ ∈ [0, 0.5]

γ (x) =

{
0, µ(x) ≥ 1− τ
1− µ(x)− τ, µ(x) < 1− τ.

(16)
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(1) According to Algorithms 1 and 2, for ε = 0.01, α =
0.6, β = 0.4, we obtain Red(C)={A1, A3, A4, A6, A7, A8,
A9, A15} after removing redundant attributes. The final threat
assessment rule set is shown below.

A11 ∧ A33 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

41

⇒ w1(0.72, 0.18)
A11 ∧ A33 ∧ A42 ∧ A64 ∧ A71 ∧ A′22 ∧ A

′

33 ∧ A
′′

41

⇒ w1(0.6, 0.3)
A11 ∧ A33 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A

′

33 ∧ A
′′

42

⇒ w2(0.81, 0.09)
A11 ∧ A33 ∧ A42 ∧ A64 ∧ A71 ∧ A′22 ∧ A

′

33 ∧ A
′′

42

⇒ w2(0.72, 0.18)
A11 ∧ A31 ∧ A43 ∧ A62 ∧ A71 ∧ A′23 ∧ A

′

31 ∧ A
′′

41

⇒ w3(0.73, 0.17)
A11 ∧ A33 ∧ A43 ∧ A63 ∧ A72 ∧ A′22 ∧ A

′

32 ∧ A
′′

41

⇒ w1(0.8, 0.1)
A11 ∧ A33 ∧ A41 ∧ A62 ∧ A73 ∧ A′23 ∧ A

′

33 ∧ A
′′

41

⇒ w3(0.82, 0.08)
A11 ∧ A33 ∧ A41 ∧ A64 ∧ A73 ∧ A′23 ∧ A

′

33 ∧ A
′′

41

⇒ w3(0.87, 0.03)
A11 ∧ A33 ∧ A43 ∧ A63 ∧ A72 ∧ A′22 ∧ A

′

32 ∧ A
′′

42

⇒ w1(0.85, 0.05)
A13 ∧ A31 ∧ A41 ∧ A63 ∧ A71 ∧ A′22 ∧ A

′

33 ∧ A
′′

44

⇒ w3(0.8, 0.1)
A13 ∧ A32 ∧ A43 ∧ A63 ∧ A71 ∧ A′22 ∧ A

′

33 ∧ A
′′

42

⇒ w1(0.89, 0.01)
A11 ∧ A33 ∧ A42 ∧ A63 ∧ A72 ∧ A′22 ∧ A

′

32 ∧ A
′′

42

⇒ w2(0.62, 0.28)
A11 ∧ A33 ∧ A41 ∧ A63 ∧ A71 ∧ A′22 ∧ A

′

33 ∧ A
′′

42

⇒ w2(0.6, 0.3)
A11 ∧ A33 ∧ A43 ∧ A63 ∧ A71 ∧ A′21 ∧ A

′

33 ∧ A
′′

43

⇒ w1(0.61, 0.29)
A11 ∧ A34 ∧ A43 ∧ A63 ∧ A72 ∧ A′21 ∧ A

′

33 ∧ A
′′

43

⇒ w3(0.75, 0.25)
A11 ∧ A32 ∧ A41 ∧ A63 ∧ A72 ∧ A′21 ∧ A

′

31 ∧ A
′′

43

⇒ w3(0.6, 0.3)
A11 ∧ A33 ∧ A41 ∧ A63 ∧ A71 ∧ A′21 ∧ A

′

32 ∧ A
′′

42

⇒ w2(0.65, 0.25)
A12 ∧ A34 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A

′

32 ∧ A
′′

43

⇒ w3(0.7, 0.2)
A12 ∧ A34 ∧ A42 ∧ A62 ∧ A71 ∧ A′21 ∧ A

′

33 ∧ A
′′

43

⇒ w3(0.68, 0.22)
A12 ∧ A34 ∧ A42 ∧ A62 ∧ A71 ∧ A′21 ∧ A

′

33 ∧ A
′′

43

⇒ w2(0.8, 0.1)
A13 ∧ A31 ∧ A42 ∧ A61 ∧ A74 ∧ A′21 ∧ A

′

32 ∧ A
′′

41

⇒ w1(0.8, 0.1)
A13 ∧ A32 ∧ A41 ∧ A61 ∧ A74 ∧ A′21 ∧ A

′

32 ∧ A
′′

41

⇒ w1(0.73, 0.17)
A12 ∧ A32 ∧ A41 ∧ A62 ∧ A71 ∧ A′21 ∧ A

′

33 ∧ A
′′

42

⇒ w3(0.87, 0.03)
A12 ∧ A34 ∧ A41 ∧ A62 ∧ A71 ∧ A′21 ∧ A

′

33 ∧ A
′′

43

⇒ w3(0.8, 0.1)
A13 ∧ A33 ∧ A41 ∧ A62 ∧ A71 ∧ A′22 ∧ A

′

32 ∧ A
′′

44

⇒ w3(0.8, 0.1)
A13 ∧ A33 ∧ A43 ∧ A62 ∧ A71 ∧ A′21 ∧ A

′

32 ∧ A
′′

41

⇒ w1(0.6, 0.3)
A13 ∧ A31 ∧ A42 ∧ A61 ∧ A73 ∧ A′21 ∧ A

′

33 ∧ A
′′

41

⇒ w1(0.88, 0.02)
A13 ∧ A31 ∧ A43 ∧ A61 ∧ A73 ∧ A′21 ∧ A

′

32 ∧ A
′′

41

⇒ w1(0.85, 0.05)
A13 ∧ A31 ∧ A43 ∧ A64 ∧ A73 ∧ A′21 ∧ A

′

32 ∧ A
′′

41

⇒ w1(0.6, 0.3)
A12 ∧ A34 ∧ A42 ∧ A64 ∧ A71 ∧ A′21 ∧ A

′

33 ∧ A
′′

43

⇒ w2(0.65, 0.25)
A12 ∧ A32 ∧ A41 ∧ A64 ∧ A71 ∧ A′21 ∧ A

′

33 ∧ A
′′

42

⇒ w3(0.9, 0)

(2) For target x1, after acquiring the data in the first stage,
the rule subset RC1 containing A63 and A71 in the rule set is
searched:

A11 ∧ A33 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

41

⇒ w1(0.72, 0.18)

A11 ∧ A33 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

42

⇒ w2(0.81, 0.09)

A13 ∧ A31 ∧ A41 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

44

⇒ w3(0.8, 0.1)

A13 ∧ A32 ∧ A43 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

42

⇒ w1(0.89, 0.01)

A11 ∧ A33 ∧ A41 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

42

⇒ w2(0.6, 0.3)

A11 ∧ A33 ∧ A43 ∧ A63 ∧ A71 ∧ A′21 ∧ A
′

33 ∧ A
′′

43

⇒ w1(0.61, 0.29)

A11 ∧ A33 ∧ A41 ∧ A63 ∧ A71 ∧ A′21 ∧ A
′

32 ∧ A
′′

42

⇒ w2(0.65, 0.25)

A12 ∧ A34 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

32 ∧ A
′′

43

⇒ w3(0.7, 0.2)

RC1 and the data of the first stage for x1 are used as the
input of Algorithm 3 to obtain BPA.

For RC1, Yi=min{κ(RC1i), (0.85,0.05), (0.8, 0.1)}. A new
rule subset RC1′ is formed, where κ(RC1′i) = Yi:

A11 ∧ A33 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

41

⇒ w1(0.72, 0.18)

A11 ∧ A33 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

42

⇒ w2(0.8, 0.1)
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A13 ∧ A31 ∧ A41 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

44

⇒ w3(0.8, 0.1)

A13 ∧ A32 ∧ A43 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

42

⇒ w1(0.8, 0.1)

A11 ∧ A33 ∧ A41 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

42

⇒ w2(0.6, 0.3)

A11 ∧ A33 ∧ A43 ∧ A63 ∧ A71 ∧ A′21 ∧ A
′

33 ∧ A
′′

43

⇒ w1(0.61, 0.29)

A11 ∧ A33 ∧ A41 ∧ A63 ∧ A71 ∧ A′21 ∧ A
′

32 ∧ A
′′

42

⇒ w2(0.65, 0.25)

A12 ∧ A34 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

32 ∧ A
′′

43

⇒ w3(0.7, 0.2)

RC1′ contains different decision values, DC={w1, w2,
w3}. For all wj ∈ DC , the sum of the degrees of belief and
non-belief of all the rules whose values are wj in RC1′ is
obtained, resulting in DZ={w1 (2.1,0.57), w2(2.05, 0.65), w3
(1.5,0.3)}.

The focal element set JY={w1, w2, w3, {w2, w3}, {w1,
w3}, {w1, w2} {w1, w2, w3}} is determined according
to DZ. The corresponding pseudo-BPA is Zm(w1)=2.1,
Zm(w2)=2.05, Zm(w3)=1.5, Zm({w2, w3})=0.57, Zm({w1,
w3})=0.65, Zm({w1,w2})=0.3, Zm({w1,w2,w3})=0.9. Nor-
malizing Zm yields the first group of BPA:m1(w1)=0.2599,
m1(w2)=0.2540, m1(w3)=0.1859, m1({w2, w3})=0.0706,
m1({w1, w3})=0.0805, m1({w1, w2})=0.0372, m1({w1, w2,
w3})=0.1115.
The target attribute data of the second stage data are

received. Rule subset RC2 in rule set RC1′ containing A11
and A33 is searched:

A11 ∧ A33 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

41

⇒ w1(0.72, 0.18)

A11 ∧ A33 ∧ A42 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

42

⇒ w2(0.8, 0.1)

A11 ∧ A33 ∧ A41 ∧ A63 ∧ A71 ∧ A′22 ∧ A
′

33 ∧ A
′′

42

⇒ w2(0.6, 0.3)

A11 ∧ A33 ∧ A43 ∧ A63 ∧ A71 ∧ A′21 ∧ A
′

33 ∧ A
′′

43

⇒ w1(0.61, 0.29)

A11 ∧ A33 ∧ A41 ∧ A63 ∧ A71 ∧ A′21 ∧ A
′

32 ∧ A
′′

42

⇒ w2(0.65, 0.25)

RC2 and the target attribute data of the second stage are
used as the input of Algorithm 3, and the second group
of BPA can be obtained as m2(w1)=0.24, m2(w2)=0.3761,
m2({w2, w3})=0.0862, m2({w1, w3})=0.1193, m2({w1,
w2})=0.1743.
(3) Combining the above two groups of BPAyields

m(w1)=0.3552, m(w2)=0.4501, m(w3)=0.0843, m({w2,
w3})=0.0284, m({w1, w3})=0.0385, m({w1, w2})=0.0435.
(4) Similarly, the third group of BPAcan be obtained

by acquiring the target attribute data of the third stage:

m3(w1)=0.212, m3(w2)=0.4236, m3({w2, w3})=0.0605,
m3({w1, w3})=0.1212, m3({w1, w2})=0.1827;
(5) Combining the two groups of BPAin (4) and (3) yields

m(w1)=0.3549, m(w2)=0.5859, m(w3)=0.0354, m({w2,
w3})=0.0028, m({w1, w3})=0.0078, m({w1, w2})=0.0132.
(6) Similarly, the target attribute data of the fourth stage

are received, and the fourth group of BPA can be obtained
as m4(w1)=0.35, m3(w2)=0.4, m3({w2, w3})=0.1, m3({w1,
w3})=0.05, m3({w1, w2})=0.1.
(7) Combining the two groups of BPAin (6) and (5)

yields m(w1)=0.329, m(w2)=0.657, m(w3)=0.01, m({w1,
w2})=0.004. The BPA determination process for target x1 is
shown in Table 2.

TABLE 2. BPA determination process for target x1.

According to equations (14) and (15), the threshold values
are set to δ1 = 0.3 and δ2 = 0.1 and the threat level of
the first batch of targets, x1, is medium at w2, with degree of
support 0.657, denoted by w2 (0.657). It is worth mentioning
that before continuing to determine BPA in later stages, if the
combined BPA has alreadymet the decision criteria in a stage,
the BPA in later stages no longer must be determined, thereby
saving calculation time.

Using the same method, for the second batch of
targets x2, we get m(w1)=0.8521, m(w2)=0.12, and
m({w1w2})=0.0279. x2 is determined as a major threat at
w1, with degree of support 0.8521, denoted by w1 (0.8521).
For the third batch of targets x3, we get m(w1)=0.0258,
m(w2)=0.3102, m(w3)=0.643, and m({w1, w3})=0.021. x3
is determined as a minor threat at w3, with degree of support
0.643, denoted byw3 (0.643). The results of threat assessment
are shown in Table 3. The threats for the three batches of tar-
gets shown in Table 1 are x2 � x1 � x3. Therefore, to destroy
the second batch of targets can be considered the priority.

160566 VOLUME 8, 2020



Y. Lu et al.: Approximate Reasoning Based on IFRS and DS Theory

In addition, if different batches of targets are determined to
be at the same threat level, one can comprehensively consider
the degree of support of the targets at that threat level and the
degree of support to other threat levels through ranking the
degrees of support.

As shown in Table 2, with the gradual acquisition of data
in stages, the distribution of BPA gradually focused, and the
ranking of threat degree gradually became clear. For target x1,
after the acquiring the data in the first stage, the BPA obtained
is relatively dispersed, mainly because the information pro-
vided by the data in the first stage is limited. After the
acquiring the data in the second stage, BPA focuses on w2,
and thereafter, the degree of support for w2 from the data in
the stages gradually increases and meets the requirements of
the decision criteria, thus obtaining the decision result.

In order to test the efficiency of proposed methods
and compare it with intuitionistic fuzzy reasoning based
threat assessment [5], the attribute data of the four stages
in Table 1 are combined to obtain the complete target attribute
data. According to the method in [5], we get the threat degree
of target x1 is 0.526, the threat degree of target x2 is 0.971,
the threat degree of target x3 is 0.214, where the threat degree
corresponds to the threat level. According to the threat degree
of each target, the threats for the three batches of targets by
intuitionistic fuzzy reasoning [5] are x2 � x1 � x3. It can
be seen that the results obtained by using the method in [5]
are consistent with that in this paper, which demonstrates the
effectiveness of our models and algorithms. However, real
threat assessment requires the determination of threat level
based on continuously received information that is incom-
plete, inaccurate, or uncertain. The method based on intu-
itionistic fuzzy reasoning [5] cannot deal with the problem
of threat assessment under the condition of incomplete data.
In Table 1, the attribute data of the four stages of x1 and x2
does not cover all items in the attribute set Red(C)={A1, A3,
A4, A6, A7, A8, A9, A15}, which is quite common in reality,
because of the existence of various uncertainties in the oper-
ational process, not all the data needed for threat assessment
can be obtained. Compared to a threat assessment method
based solely on intuitionistic fuzzy reasoning or D-S evidence
theory, the advantage of IFRS knowledge acquisition makes
the selection of threat assessment elements and determination
of BPA more objective and calculates the threat degree of the
air raid target under uncertain environment. The calculation
results in Table 3 can provide better decision support to the
threat judgment of the commander.

TABLE 3. Results of threat assessment.

V. CONCLUSION
We established a threat assessment model based on IFRS
and D-S evidence theory to deal with the threat assessment
from multi-stage data with uncertainty caused by the bat-
tlefield environment and detection equipment. We studied
a threat element extraction algorithm based on IFRS. This
algorithm uses heuristic search for reduction solutions. The
overall degree of dependency and attribute importance of
the intuitionistic fuzzy information system are used as the
heuristic function, which reduces the search space in the
attribute reduction process. We proposed a rule extraction
algorithm for threat assessment that can generate assessment
rules with degrees of belief and disbelief. On that basis,
we studied a BPA determination algorithm based on intu-
itionistic fuzzy rules. The algorithm obtains assessment rules
corresponding to the attribute data of each stage. Based on the
threat assessment knowledge base and using the intuitionistic
fuzzy semantics of degree of belief in the rule conclusion,
this algorithm determines the focal elements corresponding
to respective aggregated rules. In addition, the algorithm
obtains the degree of support of the multi-stage data to each
threat level, and produces a final threat assessment by iter-
ative evidence combination. We experimentally verified the
effectiveness of our models and algorithms by calculating
the threat levels of three batches of targets whose attribute
data were obtained in four stages. Our method combines the
advantages of expert knowledge combination inD-S evidence
theory and knowledge reduction of IFRS. Compared to the
threat assessment method based on D-S evidence theory
or intuitionistic fuzzy reasoning alone, our method is less
dependent on domain experts and is strong in objectivity of
the results. However, our method increases the amount of
computation for assessment reasoning especially when the
number of conditional attributes and intuitionistic fuzzy lin-
guistic values of conditional attributes are largeWe hope next
to study more efficient and more general heuristic reduction
algorithms to improve the efficiency of the algorithms to
extract threat elements and rules.
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