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ABSTRACT In this article, a novel digital predistortion (DPD) model based on complex-valued pipelined
Chebyshev functional link recurrent neural network (CPCFLRNN) for joint compensation of wideband
transmitter distortions and impairments is proposed. The functional link neural network (FLNN) model has
attracted much attention from scholars, and many improved models using this structure, such as Chebyshev
FLNN, have been applied in the DPD of power amplifiers (PAs). However, these existing neural network
models cannot deal with complex-valued input signals simultaneously, and the real-valued model structure
will introduce cumbersome training algorithm and result in a long training time. The pipelined recurrent
neural network (PRNN) has been successfully applied to nonlinear signal prediction because of its excellent
ability for dealing with nonlinear nonstationary signals. Therefore, the PRNN model containing Chebyshev
structure is extended to complex domain for the first time to obtain the CPCFLRNN model for DPD
application. Considering the strong correlation of in-phase and quadrature phase (I/Q) components of the
transmitter signal, the real time recurrent learning (RTRL) algorithm based on fully complex activation
function is selected and extended to complex domain to obtain the complex-valued RTRL (CRTRL)
algorithm for CPCFLRNN model training. A GaN PA was employed to verify the effectiveness of the
proposed models. And the input signal is a 30MHz LTE signals which consists of I/Q imbalance and dc
offsets. The experimental results show that the proposed CPCFLRNN model have more accurate modeling
effect and better linearization performance compared with the conventional DPD models.

INDEX TERMS Digital predistortion (DPD), complex-valued pipelined Chebyshev functional link recurrent
neural network (CPCFLRNN), I/Q imbalance, dc offset, power amplifier (PA).

I. INTRODUCTION
In 4G and 5Gmobile communication systems, the demand for
spectrum resources is increasing rapidly. Quadrature Ampli-
tude Modulation (QAM) and Orthogonal frequency division
multiplexing (OFDM)modulation are widely used in modern
communication systems for improving spectrum efficiency.
Such modulation techniques will make it more difficult to
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design power amplifier (PA), which play a crucial role in
RF front-end components, and will also result in spectrum
regeneration. At the same time, this kind of modulation sig-
nals also have the higher peak-to-average power ratio (PAPR)
characteristics, which is sensitive to the nonlinear distortion
of the RF PA. In addition, due to the difference between
the I/Q channels, for example, the phase shifter is not the
ideal 90 degrees, and the amplitude and phase response of
the filter are not exactly the same, which will lead to I/Q
imbalance of transmitter. This imbalance will result in the
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serious interactive distortion of the main signals, and will
reduce the dynamic range of the communication system [1].

Digital predistortion (DPD) has become the mainstream
technology of PA linearization because of its advantages of
low cost, good linearization performance and high flexibil-
ity [2]. The basic principle of DPD is to insert a predistorter
before the PA, and the predistorter is inverse to the nonlinear
characteristic of the PA, so as to obtain the linearly amplified
output at the end of the transmitter [3]. Early digital predis-
tortion usually adopted a look-up table (LUT) [4], [5], but the
LUT requires a large storage space and the convergence speed
is slow. In order to reduce the requirement of memory space
and to jointly compensation for PA and I/Q impairments,
the conjugate memory polynomial (CMP) model is proposed
in [6].

On the other hand, artificial neural network (ANN)
is a nonlinear system with powerful intelligent informa-
tion processing function, strong robustness, memory ability
and self-learning ability, and can map complex nonlinear
relations. The combination of neural network and PA pre-
distortion benefits from the powerful approximation effect
of neural network in nonlinear system modeling [7], [8].
The neural network models used for PA behavioral mod-
eling mainly include bidirectional long short-term memory
(BiLSTM) neural network [9], radial basis function (RBF)
neural network [10] and time delay neural network
(TDNN) [8]. However, there are few DPD models to jointly
compensate I/Q imbalance and PA nonlinearities [11]–[13].

The functional link neural network (FLNN) models using
orthonormal functions for functional expansion has been
used to identify nonlinear system. The Chebyshev FLNN
using orthogonal Chebyshev polynomial expansion has been
applied in [14], and shows better fitting ability and faster
convergence speed compared to traditional neural network
models. The combination of Chebyshev polynomial and
recurrent neural network (RNN) is also proved to be effective
for nonlinear adaptive filter [15]. The complex-Chebyshev
FLNN has been successfully applied to power amplifier
behavioral modeling [16].

Meanwhile, the complex-valued domain signal process-
ing have been introduced into current data analysis, and
many learning algorithms have been extended for parameter
extraction. Therefore, the real-valued the real time recurrent
learning (RTRL) should be extended to complex domain for
complex-valued parameter extraction. In complex domain,
the nonlinear activation functions have the two neces-
sary properties: bounded and differentiable everywhere.
According to Liouville’s theorem, the only such function in
complex domain is the constant function [17]. Whereas a
bounded function or an analytic function must be selected,
but if the activation function is analytic, then it must be
unbounded, and if it is bounded, then it should be nonan-
alytic. In order to overcome this conflict, two concepts are
proposed: split complex activation function and the fully
complex activation function. Due to the strong correlation

between I/Q signals, the performance of the split complex
activation function is poor for transmitter modeling [18].

Based on the characteristics of the traditional PA model,
a new model structure aiming at joint compensation for non-
linear memory effects of PA and I/Q impairments is proposed.
The proposed model can directly process the complex-valued
signals, which can provide a new research idea for the trans-
mitter behavioral modeling. For easy reading, Table 1 gives a
list of important abbreviations. In order to evaluate the model
performance, the CMPmodel, the CPRNNmodel, the Cheby-
shev functional link fully connected recurrent neural network
(CFL-FCRNN), and the proposed CPCFLRNN model were
used to compare the performance of transmitter modeling and
nonlinear compensation. Various graphical and numerical
results show that the proposed CPCFLRNN model based
on the CRTRL algorithm can give improved performance
compared to traditional models.

TABLE 1. A list of important abbreviations.

This article is organized as follows: In Section II, the
CFL-FCRNN structure is firstly proposed, and then the
CPCFLRNN structure is proposed based on this structure.
In Section III, the CRTRL learning algorithm of the two struc-
tures is derived, and the weight update equation is obtained.
Section IV introduces the optimal model parameters and sim-
ulation results of the four models, and then the experimental
results are given. The full paper is summarized in section V.

II. BEHAVIORAL MODEL FOR PAS
A. CFL-FCRNN MODEL FOR PAS
The precondition that the PA model can be constructed is
that the amplitude and phase information can be extracted
from the complex-valued waveform. The most common solu-
tion is to introduce dual-input and dual-output neural network
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structure [19]. During the training process, the coefficients of
two networks are determined independently by the amplitude
and phase of the input and output signals. The basic network
structure shown in Fig. 1, which can be used for PAmodeling
with high nonlinear degree by using the I/Q components. This
kind of topological structure can be used tomodel the PAwith
high degree of nonlinearity. For PA with a strong memory
effect, the modeling effect will be poor. In addition, as the
two neural networks are trained separately, asynchronous
convergence may occur [8].

FIGURE 1. Basic neural network structure for PA.

Considering the effect of PA nonlinear memory, TDNN
model shown in Fig. 2 was used for PA modeling. Due to
the memory effect of the system, the output of the ampli-
fier depends on the input values at the current and previ-
ous moments. Therefore, the delay lines should be added to
extract information from the current and past inputs, and the

FIGURE 2. RVTDNN model for PA.

topological structure of input with in-phase and quadrature
information is adopted [8]. Although this network topology
takes memory effect into account through input delay, it does
not actually take into account the feedback delay of the
network output, which will cause the delay effect of this
incomplete structure, and also increase the complexity and
instability of the system. Based on the TDNN model, a new
PA model structure, the real-valued focused time-delay neu-
ral network (RVFTDNN), was proposed in [7]. This model
considers the output feedback delay by introducing tap delay
line (TDL). However, when the input signal is complex, this
structure will inevitably encounter the problem of overtrain-
ing or undertraining.

The application of CFLNN in the recognition of non-
linear systems has been proved to have greater advantages
than traditional neural network models such as multilayer
perceptron (MLP) and RNN [20], [21]. Since the baseband
input and output data of PA are complex signals, the most
suitable method is to use complex neural network structure
and the complex training algorithm [16]. In complex-valued
neural networks, the inputs, the weights, and the outputs
are all complex-valued, and the training algorithm directly
extends to the complex domain. Fig. 3 shows CFL-FCRNN
model, consisting of N neurons with P external inputs and
N feedback connections. The ‘‘FE’’ is the function extension
to increase the dimension of the input pattern, so it is easier
to identify complex nonlinear dynamic systems. The neuron
input and its expansion using Chebyshev polynomial are
given

S(k) = [s(k − 1), s(k − 2), . . . , s(k − p)]T

= Sr (k)+ jS i(k) (1)

SFE (k) = FE (s(k − 1), s(k − 2), . . . , s(k − p))

= [SFE,1(k), SFE,2(k), . . . , SFE,p(k)]T

= Sr
FE
(k)+ jS i

FE
(k) (2)

FIGURE 3. CFL-FCRNN model for PA.
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The approximate formula of Chebyshev polynomial of any
order is [16]

Cb(ω) =
[b/2]∑
m=0

(−1)m
(
b
2m

)
ωb−2m(1− ω2)m (3)

where [b/2] is the integer part of (b/2), and b is the order of
Chebyshev polynomial expansion. The Chebyshev expansion
is given as

C0(ω) = 1
C1(ω) = ω
C2(ω) = 2ω2

− 1
C3(ω) = 4ω3

− 3ω
. . .

 (4)

Chebyshev polynomials are used to expand the input signal
into any order, and the enhanced input is [14]

SFE,b(k)

= Cb(S(k))

= [1 |C1(s(k − 1)) ,C1(s(k − 2)), . . . ,C1(s(k − p)) |

× |C1(s(k − 1)) C1(s(k − 2)), . . . ,

C1(s(k − (p− 1)))C1(s(k − p)) |,

|C2(s(k − 1)) ,C2(s(k − 2)), . . . ,C2(s(k − p)) |,

. . .

|Cb(s(k− 1)) ,Cb(s(k− 2)), . . . , Cb(s(k − p))|]T (5)

To simplify the calculation, take b = 3 to get the third-order
function expansion input

SFE,3(k) = [1,C1(S(k)),C1(S(k)),C1(S(k − 1)),

C2(S(k)),C3(S(k))]T

= [1, s(k − 1), s(k − 2), . . . , s(k − p),

s(k − 1)s(k − 2), . . . , s(k − (p− 1))s(k − p),

2s2(k − 1)− 1, . . . , 2s2(k − p)− 1,

4s3(k − 1)− 3s(k − 1), . . . ,

4s3(k − p)− 3s(k − p)]T (6)

The application of neural network for PA modeling also
needs to take into account the nonlinearity of PA, which
is reflected in the conversion of AM/AM and AM/PM.
Therefore, it is necessary to apply appropriate conjugate
transformation to the above equation [16], so that the non-
linearity of passband can be expressed under the baseband as
follows

SFE (k) = [1, s(k − 1), s(k − 2), . . . , s(k − p),

s(k − 1)|s(k − 2)|, . . . , s(k − (p− 1))|s(k − p)|,

2s(k − 1)|s(k − 1)| − 1, . . . ,

2s(k − p)|s(k − p)| − 1,

4s(k − 1)|s2(k − 1)| − 3s(k − 1), . . . ,

4s(k − p)|s2(k − p)| − 3s(k − p)]T (7)

The entire network is a two-layer structure, which includes
the external delay input layer and output feedback layer.

The external complex-valued input is delayed and then
extended by Chebyshev function, the bias input is the 1 + j,
and the complex output of each neuron is represented by
yl(k). The total input of the whole network is composed of
Chebyshev functional expansion input, bias and feedback,
expressed as follows

X (k) = [SFE (k), 1+ j, y1(k− 1), y2(k− 1), . . . , yN (k− 1)]T

= X rn (k)+ jX
i
n(k), n = 1, . . . , p+ N + 1 (8)

The output of the lth neuron can be written as:

yl(k) = ψ r (url (k))+ jψ
i(uil(k))

= yrl (k)+ jy
i
l(k), l = 1, . . . ,N (9)

ul(k) =
p+N+1∑
n=1

wl,n(k)Xn(k) (10)

ψ represents the complex-valued nonlinear activation func-
tion of the neuron, and (10) is the input of the activation
function at time k , that is, the linear sum of all the inputs of
node after the weights are applied. The weight matrix of the
whole neural network is

W = [w1, . . . ,wN ] (11)

where the weight vector of the lth neuron is

wl = [wl,1, . . . ,wl,p+N+1]T (12)

The length of the whole weight matrix is (p+ N + 1) ∗ N .

B. CPCFLRNN MODEL FOR PAS
A nonlinear adaptive prediction model called pipelined recur-
rent neural network (PRNN), which deals with real-valued
non-stationary signals, has been successfully applied to non-
linear systems and has achieved remarkable effects [22]. Due
to its spatial representation of time and feedback connection
within the structure, the PRNN structure can better deal with
the gradient vanishing problem, and has strong robust neural
network prediction ability. The advantage of PRNN is that it
is composed of M neural networks with the same structure,
and can reduce the computational complexity.
It has been proved through analysis that CFL-FCRNN has

better modeling performance than RVFTDNN. In this article,
the complex-valued PRNN is introduced as an extension of
real-valued PRNN, and each module adopts CFL-FCRNN
structure shown in Fig. 4. Each module is designed as a
CFL-FCRNN with N neuron, in which the previous M − 1
module is a non-fully connected CFL-FCRNN. The N − 1
outputs of its output neurons are used to feed back to the input,
and the output of the remaining neurons (i.e. the output of the
first neuron) is passed directly to the next module. The last
module is a fully connected CFL-FCRNN, where the output
of all neurons is fed back to the input. In the CPCFLRNN
structure, all modules use the same complex-valued weight
matrix

W (k) = [w1(k), . . . ,wl(k), . . . ,wN (k)] (13)
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FIGURE 4. CPCFLRNN model for PA.

Refer to (9), the mathematical expression of CPCFLRNN is

yt,l(k) = ψ r (url (k))+ jψ
i(uil(k))

= yrt,l(k)+ jy
i
t,l(k), t = 1, 2, . . . ,M (14)

yt,l(k) represents the output of the lth neuron of module t
at time k . The input expression of each module is given as
follows

XTt (k) = [SFE,t (k), 1+ j, yt+1,1(k − 1), yt,2(k − 1), . . . ,

yt,N (k − 1)] (15)

XTM (k) = [SFE,M (k), 1+ j, yM ,1(k − 1), yM ,2(k − 1), . . . ,

yM ,N (k − 1)] (16)

where XTt (k) represents the input vector by the module t
at time k . XTM (k) is input vector of the Mth module. It can
be easily seen that the input of the ahead M − 1 modules
contains the output yt+1,l(k − 1) of the latter module and
replaces the feedback delay of the first output of this module.
Since the last moduleM has no input from the latter module,
the input retains the feedback delay of all the output of this
module. Therefore, the final output signal of CPCFLRNN
is represented by the output of the first neuron of the first
module

yout (k) = y1,1(k) (17)

III. COMPLEX-VALUED RTRL ALGORITHM
After deriving the output expression of the neuron, the opti-
mal weight parameters should be obtained according to the
learning process. Since the CPCFLRNN structure contains
CFL-FCRNN structure, the CRTRL algorithm applicable to
CFL-FCRNN is firstly deduced in this section, and then the
CRTRL algorithm for CPCFLRNN is derived in the similar
way.

A. CRTRL ALGOTITHM FOR CFL-FCRNN
Define the output of each neuron in the CFL-FCRNN is yl(k).
The error signal can be obtained by subtracting the output of

the model from the reference signal provided by the external
information source [23]. The error signal at time k is given as
follows

εl(k) = d(k)− yl(k)

= d r (k)− yrl (k)+ d
i(k)− yil(k) (18)

d r (k) and d i(k) are the real and imaginary parts of the actual
output, respectively, and the cost function can be defined as

J (k) =
1
2

N∑
l=1

|εl(k)|2

=
1
2

N∑
l=1

εl(k)ε∗l (k)

=
1
2

N∑
l=1

[(εrl )
2
+ (εil)

2] (19)

the CRTRL algorithm extracts the weight coefficients based
on the gradient descent algorithm recursively. It can be seen
that J (k) is a non-constant function, and it is need to calculate
its complex-valued reciprocal, so its gradient to weight w can
be calculated as

∇wl,nJ (k) =
∂J (k)
∂wrl,n

+ j
∂J (k)

∂wil,n
(20)

Then the real and imaginary parts can be separated as

∂J (k)
∂wrl,n(k)

=
∂J
∂yrl

(
∂yrl (k)

∂wrl,n(k)

)
+
∂J

∂yil

(
∂yil(k)

∂wrl,n(k)

)
(21)

∂J (k)

∂wil,n(k)
=
∂J
∂yrl

(
∂yrl (k)

∂wil,n(k)

)
+
∂J

∂yil

(
∂yil(k)

∂wil,n(k)

)
(22)

The above expression with sensitivity can be defined as

3rr
l,n(k) =

∂yrl (k)

∂wrl,n(k)
= ψ ′r (ul(k))

∂url (k)

∂wrl (k)
(23)

3ir
l,n(k) =

∂yil(k)

∂wrl,n(k)
= ψ ′i(ul(k))

∂uil(k)

∂wrl (k)
(24)

3ri
l,n(k) =

∂yrl (k)

∂wil,n(k)
= ψ ′r (ul(k))

∂url (k)

∂wil(k)
(25)

3ii
l,n(k) =

∂yil(k)

∂wil,n(k)
= ψ ′i(ul(k))

∂uil(k)

∂wil(k)
(26)

To calculate the gradient in the complex domain, a complex
activation function is required to be resolved in the complex
domain to satisfy the Cauchy-Riemann equation. Therefore,
the partial derivative along the real and imaginary axes, that
is the sensitivity, must be the same

3t
l,n(k) = 3

t,rr
l,n (k)+ j3

t,ir
l,n (k) = 3

t,ii
l,n (k)− j3

t,ri
l,n (k) (27)

3
t,rr
l,n (k) = 3

t,ii
l,n (k)

3
t,ir
l,n (k) = −3

t,ri
l,n (k) (28)
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Bring formula (21)-(28) into (20), and (20) becomes

∇wl,nJ (k) = 3rr
l,n(k)

∂J
∂yrl
+3ir

l,n(k)
∂J

∂yil

+ j3ri
l,n(k)

∂J
∂yrl
+ j3ii

l,n(k)
∂J

∂yil

=

(
∂J
∂yrl
+ j

∂J

∂yil

)(
3rr
l,n(k)+ j3

ri
l,n(k)

)
= −

N∑
l=1

εl(k)(3rr
l,n(k)− j3

ir
l,n(k))

= −

N∑
l=1

εl(k)
(
3l,n(k)

)∗ (29)

(
3l,n(k)

)∗
=

[
3rr
l,n(k) 3ri

l,n(k)

3ir
l,n(k) 3ii

l,n(k)

]

=


∂yrl (k)

∂wrl,n(k)

∂yrl (k)

∂wil,n(k)
∂yil(k)

∂wrl,n(k)

∂yil(k)

∂wil,n(k)

 (30)

where (30) is called sensitive function. Expand it to get(
3l,n(k)

)∗
=

[
ψ ′r (k) 0
0 ψ ′i(k)

]
×


∂url (k)

∂wrl,n(k)

∂url (k)

∂wil,n(k)
∂uil(k)

∂wrl,n(k)

∂uil(k)

∂wil,n(k)

 (31)

[
3rr
l.n(k) 3ri

l.n(k)
3ir
l.n(k) 3ii

l.n(k)

]
=

[
ψ ′r (k − 1) 0
0 ψ ′i(k − 1)

]

×


N∑
α=1


[
wrl,α+p+1(k − 1) −wil,α+p+1(k − 1)
wrl,α+p+1(k − 1) wil,α+p+1(k − 1)

]

×

[
3
α,rr
l.n (k − 1) 3

α,ri
l.n (k − 1)

3
α,ir
l.n (k − 1) 3

α,ii
l.n (k − 1)

]


+

[
δlnX rn (k − 1) −δlnX in(k − 1)
δlnX in(k − 1) δlnX rn (k − 1)

]}
(32)

By extending the method in [24] from real-value to complex-
value, the updating formula of complex sensitive function can
be given as (32). Its simple expression form can be written as

(3l,n(k))∗=
{
ψ∗(k)

}′
×

[
N∑
α=1

w∗l,α+p+1(k)
(
3αl,n(k−1)

)∗
+ δlnX∗n (k)

]
(33)

where

δln =

{
1, l = n
0, l 6= n

(34)

is the Kronecker delta [15]. The weight update equation is

wl,n(k + 1) = wl,n(k)+1wl,n(k) (35)

1wl,n(k) = η
N∑
l=1

εl(k)
(
3l,n(k)

)∗ (36)

The weight update of CFL-FCRNN is finally shown in the
following formula

wl,n(k + 1) = wl,n(k)+ η
N∑
l=1

{
εl(k)×

{
ψ∗(k)

}′
×

N∑
α=1

w∗l,α+p+1(k)
(
3αl,n(k − 1)

)∗
+ δlnX∗n (k)

}
(37)

B. CRTRL ALGORITHM FOR CPCFLRNN
According to the above method, the CRTRL learning algo-
rithm for CPCFLRNN can be derived. Let yt,1(k) be the
output of module t , and the error of this module at time k
can be obtained by subtracting the model output signals from
the PA output signals

εt (k) = d(k − t + 1)− yt,1(k) = εrt (k)+ jε
i
t (k) (38)

εrt (k) = d r (k − t + 1)− yrt,1(k)

εit (k) = d i(k − t + 1)− yit,1(k) (39)

Since the baseband output signal is complex, the cost function
should be extended to complex domain, which is given as
follows

J (k) =
M∑
t=1

γ t−1(k)|εt (k)|2

=

M∑
t=1

γ t−1(k)[εt (k)ε∗t (k)]

=

M∑
t=1

γ t−1(k)[(εrt )
2
+ (εit )

2] (40)

where γ (k)(0 < γ ≤ 1) is a forgetting factor for determine
the weight of the individual modules. Updating the weight in
the steepest descent direction

1wl,n(k) = −η
∂

∂wl,n(k)

(
M∑
t=1

γ t−1(k)|εt (k)|2
)

(41)

With reference to (23)-(26), the expression of sensitive func-
tion at the time k of each module in CPCFLRNN can be given
as

[
3
rr,j
l,n,t (k) 3

ri,j
l,n,t (k)

3
ir,j
l,n,t (k) 3

ii,j
l,n,t (k)

]
=


∂yrt,j(k)

∂wrl,n(k)

∂yrt,j(k)

∂wil,n(k)
∂yit,j(k)

∂wrl,n(k)

∂yit,j(k)

∂wil,n(k)

 (42)

The element in the sensitive function matrix represents the
degree of change of the output of lth neuron relative to the
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weight at time k . Referring to (32), the update equation of
sensitive functions of each module is[
3rr
l.n,t (k) 3ri

l.n,t (k)
3ir
l.n(k) 3ii

l.n(k)

]
=

[
ψ ′r (k − 1) 0
0 ψ ′i(k − 1)

]

×


N∑
α=1


[
wrl,α+p+1(k − 1) −wil,α+p+1(k − 1)
wrl,α+p+1(k − 1) wil,α+p+1(k − 1)

]

×

[
3
rr,α
l.n,t (k − 1) 3

ri,α
l.n,t (k − 1)

3
ir,α
l.n,t (k − 1) 3

ii,α
l.n,t (k − 1)

]


+

[
δlnX rn (k − 1) −δlnX in(k − 1)
δlnX in(k − 1) δlnX rn (k − 1)

]}
(43)

Simplify it to:

(3t
l,n(k))

∗
=
{
ψ∗(k)

}′
×

[
N∑
α=1

w∗l,α+p+1(k)
(
3
t,α
l,n (k − 1)

)∗
+ δlnX∗t,n(k)

]
(44)

Finally, the weight update equation of CPCFLRNN can be
given as

wl,n(k + 1)

= wl,n(k)

+ η


M∑
t=1

λt−1(k)et (k){ψ∗(ut,l(k))}′

×

[
N∑
α=1

w∗1,α+p+1(k)
(
3
t,α
l,n (k − 1)

)∗
+δlnX∗t,n(k)

]

(45)

C. COMPLEXITY ANALYSIS
On the other hand, the CRTRL algorithm also has some
certain limitations. When the number of total neurons is N ,
its computational complexity increases as O(N 4). As the
total number of neurons increases, so does the complexity
increases too. Therefore, the structure of the selected neu-
ral network needs to reduce the complexity of the learning
algorithm. For the total number of MN neurons in complex
PRNN (CPRNN) model using the CRTRL, it needs O(MN 4)
arithmetic operations. By contrast, the computational require-
ment of conventional fully connected recurrent neural net-
work (FCRNN) with the CRTRL algorithm isO(M4N 4) [23].
Therefore, the modular and recursive structure of CPRNN
keeps the memory size from increasing with the length of the
training sequence, which is suitable for real time processing.
According to (44) and (45), the calculation requirement of
the proposed model can be calculated as O(M4N 4

+ 3MP+
7M + 3). Although the computational complexity is slightly
increased, the model can provide the better compensation
performance.

IV. SIMULATION AND EXPERIMENTAL RESULTS
In order to verify the modeling performance of the above neu-
ral network and the appropriate model parameters, the first

step is to carry out forward modeling for PA. Forward model-
ing also called the behavioral model of the PA, which refers
to using the input signal and the measured PA output signal
to conduct the model under the same sampling rate of the
system [7]. Under the condition that the model is sufficiently
accurate, the calculated model output signal will

NMSEdB = 10× log10

1
10

N∑
j=1
|yest (n)− yrea(n)|2

1
10

N∑
j=1
|yrea(n)|2

(46)

approach the actual output of the PAwith aminor error. As the
popular metrics, the normalized mean square error (NMSE)
between the expected signal and the estimated signal is
adopted to evaluate the model accuracy [16]. The NMSE
is defined as (46). The CMP model, the CPRNN model,
the CFL-FCRNNmodel and CPCFLRNNmodel are selected
for PA model performance comparison. The sample signal
comes from the actual measured GaN Class-F PA signals,
with a total of 20000 data. The signal is a dual carrier LTE
signal with 30MHz bandwidth, where the peak-to-average
power radio (PAPR) of the signal is 9.91 dB. Both the I/Q
imbalance, dc-offset and PA nonlinear distortions are pre-
sented in the transmitter. The amplitude imbalance is 2 dB,
as well as the I /Q phase imbalance is 3o. And the dc-offset
values of 3% and 5% are set for the I and Q channel, respec-
tively. In the model process, 10000 data from the sample
signals are used for transmitter modeling, another 4000 data
are used to verify the model performance of different models.

A. SETTING AND SIMULATION
The neural network model has good approximation ability
for nonlinear system by introducing activation function with
nonlinear factors. Therefore, how to determine the activation
function is the first step. In order to process the complex PA
signals, the complex form of log sig, which is commonly used
in neural networks, together with the elementary transcen-
dental function (ETF) tanh, which is provided by [18], are
compared as activation functions.

log sig(z) =
1

1+ e−z
(47)

tanh(z) =
ez − e−z

ez + e−z
(48)

The model was trained in MATLAB environment, and the
performance of the model was compared and observed.
The number of input neurons and output neurons in the
CFL-FCRNN is 4, the forgetting factor γ = 0.5, and
the learning rate η = 0.05. The CPCFLRNN contains M
CFL-FCRNN modules, and the structure and parameter set-
tings of each module are the same. In order to achieve the
optimal modeling effect, the appropriate values of M need
to be selected. Here, the range of M value is set to 2-6, and
the simulation results are shown in Table 2. According to
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TABLE 2. Performance of different parameters.

the simulation results, as the value of M increases, the mod-
eling effect of CPCFLRNN will be moderately better, but
the increasing number of modules will increase the computa-
tional complexity of the model, thus increasing the modeling
run time. But the modeling performance will actually only
be slightly improved. After comprehensive consideration,
the value of M is set to 4. In addition, the simulation results
also prove that it has better performance to use the elementary
transcendental function, which can satisfy the requirements
for dealing with the signal with I/Q imbalance using the fully
complex activation function. Therefore, the complex value
form of tanh function is selected as the activation function.

The M, N parameters is (3, 7) for CMP, which is deter-
mined by the optimization process. The CPRNN model
parameter settings are the same as CPCFLRNN model.
The NMSE value of the four models is shown in Table 3.
Compared with the CMP model, the CPRNN and
CFL-FCRNN model can give 2 dB improvement of NMSE.
And the CPCFLRNN model has more accurate and better
modeling effect, can give 4 dB improvement of NMSE.

TABLE 3. Performance of different models.

The notable characteristic of PA in the transmitter is the
nonlinear with memory effects. Under the influence of
the nonlinear characteristic, the amplitude and phase of the

transmitter output signals do not change linearly with the
amplitude of the input signal, which will take on nonlinear
distortions. Therefore, the the dynamic AM/AM and AM/PM
curves are intuitively used to describe the characteristics
of the transmitter, which are given in Fig. 5 and Fig. 6.
As can be seen from the figures, the nonlinear character-
istics of the transmitter are reflected in the following fea-
tures. That is to say, when the amplitude of input signal
is small, the amplitude of output signal increases linearly.
And when the amplitude of the input signal increases to a
certain extent, the amplitude of the output signal no longer
grows linearly, and the slope of the curve is reduced. At the
same time, the signal enters the nonlinear area of the PA.
Finally, the amplitude of the output signal stops growing,
and it enters the saturation area of the PA. The memory
effect of PAs is reflected in the divergence of the AM/AM
and AM/PM curves. As the signal amplitude increases, the
divergence degree decreases, which appears a compression
trend. This phenomenon is called ‘‘gain compression’’ [25].
It can be seen that the CPCFLRNN model can not only well
describe the nonlinear memory effects of the PA, but also
prove that the I/Q imbalance and dc offset have the influence

FIGURE 5. The dynamic AM/AM characteristics of the transmitter system
from the measurement output and model output.

FIGURE 6. The dynamic AM/PM characteristics of the transmitter system
from the measurement output and model output.
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on the gain and phase of transmitter. In order to observe
the accuracy of the model more directly, the model results
can also be described by the power spectrum density (PSD)
of the signals. The CPCFLRNN model prediction outputs,
the measurement outputs and error signals between the model
and the measurement output for the two-carrier LTE signals
are given in Fig. 7. It can be seen that the PSD can be well
matched in both in-band channels and alternate channels, and
the PSD of the error signals are below −50dBm /Hz.

FIGURE 7. The measured and modeled PSD of the transmitter output
using CPCFLRNN model.

The modeling performance of CMP degrades to a certain
extent. The CPRNN model can deal with complex-valued
signals, which do not have Chebyshev polynomial struc-
ture and cannot map the nonlinear relation of input signal,
so the performance is slightly better. The CFL-FCRNN
and CPCFLRNN models, which has the ability to process
complex-valued signals, and can better represent the nonlin-
ear memory effects of the transmitter. Moreover, the CRTRL
algorithm using the fully complex activation function can
process the I/Q signal concurrently, which can give optimal
performance.

B. EXPERIMENTAL MEASUREMENT RESULTS
The feasibility of the CPCFLRNN model in transmitter
behavioral modeling has been verified by the simulation
results. Theoretically, the higher the accuracy of the model,
the better the DPD linearization effect. However, the behav-
ioral model is only an abstract model that is close to the
transmitter, and it does not prove that the DPD can work
well. In order to verify the performance of the model in the
DPD system, the proposed model is applied to a complete
DPD experimental system. The experimental system includes
RF PAs, computer, vector signal generator (VSG), vector
signal analyzer (VSA). The single-device GaN Class-F PA
worked at 2.1GHz was used in the experimental validation.
Two-carrier LTE signal with 30MHz bandwidth can be gener-
ated through ADS2017, which is further downloaded to VSG

FIGURE 8. DPD comparison of different models for LTE signal.

and modulated to the RF frequency. Meanwhile, the different
I/Q imbalance value can be set in the VSG to mimic the
real modulator. Then, the RF signals pass through the target
PA to obtain the output signals, which are attenuated by the
attenuator to enable the VSA (N9010A) to collect the signal
for conducting DPD model. The Matlab can perform the
inverse model according to the input and output signals of
the transmitter. The signal is processed through the inverse
model to get the DPD signal. Then, the DPD output signals
pass through the PA according to the above process, so as to
get the output data of the PA after the DPD.

In order to compare the linearization performance of the
different models, the same LTE signals are used for the
predistortion verification using the CMP model, the CPRNN
model, the CFL-FCRNN model and the CPCFLRNN model,
respectively. Fig. 8 shows the compensation effect of four
models for the transmitter with I/Q imbalance and dc offset.
It can be seen from that all four models have the ability
to compensate the transmitter distortions and impairments.
The output signals of transmitter without linear compen-
sation have the high out-of-band distortion compared with
the input signal. The CMP model presents the worst com-
pensation effect. The compensation results of the CPRNN
and the CFL-FCRNN model almost coincide, and the cor-
rection ability is similar, while the compensation curve of
the proposed CPCFLRNN model is the closest to the input
signal, and the compensation effect is the best. These conclu-
sions are also consistent with those obtained by simulation.
As can be seen from Table 4, the CMP model gives the
worst effect, which can only give the adjacent channel power
ratio (ACPR) improvement about 15 dB. And the CPRNN
and the CFL-FCRNN models can give the similar ACPR
improvement of 16 dB. The proposed CPCFLRNN model
can give the best compensation effect, where the ACPR can
be improvement about 19 dB. Both the graphical and quan-
titative results prove that the CPCFLRNN model has satis-
factory compensation effects for transmitter with nonlinear
distortions and impairments.
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TABLE 4. ACPR performance of different models.

V. CONCLUSION
The CPCFLRNNmodel including theM -order CFL-FCRNN
module is proposed in this article, and the CRTRL learning
algorithm for the model parameter extraction is derived in
detaill. The Chebyshev structure is used to fit the nonlin-
earity of the transmitter input, and the PRNN structure is
used to process the complex-valued signals. The simulation
and experiment results prove that the proposed CPCFLRNN
structure can achieve the obvious advantages compared with
the other models. The optimal model order M and the best
fully complex activation function of the CPCFLRNN model
can be obtained through simulations. To verify the lineariza-
tion ability of the proposed model, the class-F PA driven
by the 30MHz LTE signals including I/Q imbalance and dc
offset is used for the experimental verication. Experimental
results show that the CPCFLRNN DPD model can not only
process complex-valued signals including I/Q imbalance and
dc-offset, but also achieve better linearization compensation
for the transmitter compared with the other models.
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