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ABSTRACT This paper investigates the identification of a permanent magnet synchronous motor (PMSM)
velocity servo system based on deterministic learning theory. Unlike most of the existing studies, this study
does not identify the system parameters, but rather the system dynamics. System dynamics is the fundamental
knowledge of the PMSM system and contains all the information about the system parameters, various
uncertainties, and the system structure. The accurate modeling of the various uncertainties is important
to improve the control performance of the controller. In this study, the dynamics of the PMSM system
containing various uncertainties are identified based on the system state. Firstly, the system state of the
PMSM ismeasured, and then a suitable RBF neural network is designed based on it. The RBF neural network
is used to construct a state estimator that takes the motor system as input. The weights of the RBF neural
network are updated using the Lyapunov-based weights. As the weights converge, a constant RBF neural
network can be obtained, which contains complete information about the system parameters and the various
uncertainties of themotor system.We use the proposedmethod to identify the simulated and real-time PMSM
velocity servo systems separately, and the identification results show the effectiveness and feasibility of the
proposed method.

INDEX TERMS Deterministic learning, permanent magnet synchronous motor, uncertainties, system
identification.

I. INTRODUCTION
Permanent magnet synchronous motor (PMSM) has become
the mainstream motor in the fields of active aircraft, electric
vehicles and industrial servo drives due to its high torque
density, high power density, and high efficiency. It is a
typical nonlinear complex system with the general proper-
ties of chaotic systems, showing self-similarity, initial value
sensitivity, and signal pseudo-random complexity [1]. Syn-
chronous motors contain both AC and DC types in principle,
and its dynamic model typically can be treated as the univer-
sal model of motors. Therefore, accurate modeling of a per-
manent magnet synchronousmotor has universal significance
for general motion control optimization with fault diagnosis
and also has a strong application background.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinquan Xu .

PMSM is a multivariable and dynamic time-varying sys-
tem. The actual control strategy is affected by the uncer-
tainty of the mathematical model of the motor. The most
common uncertainty is the electrical parameters in the motor
model [2]. In actual control, these variations in electri-
cal parameters will cause inaccurate estimation of various
observers, failure of shaft decoupling, control performance,
the dynamic and static modeling quality reduction, and
even affecting the stability of the motor control system [3].
To accurately identify the parameters of the PMSM to get an
accurate motor model and improve the control performance,
a variety of PMSM parameter identification methods have
appeared, such as model reference adaptive (MRAS) method,
state observer method, intelligent identification method and
so on.

In [4], the authors used the current model in the PMSM
synchronous rotating coordinate system as a reference model

168516 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7888-0576
https://orcid.org/0000-0001-8688-2662
https://orcid.org/0000-0003-3278-9395


W. Yu et al.: Modeling and Identification of PMSM via Deterministic Learning

to construct a quadrature axis observer. Based on the error of
the reference model and the adjustable model, the quadrature
axis current was designed using the Lyapunov stability theory
to be identified parametric resistance, quadrature axis induc-
tance, and magnetic flux adaptive law. References [5], [6]
used the estimated quadrature axis voltage equation as a ref-
erence model and then designed adaptive rules to identify the
stator resistance by Lyapunov stability theory. Although the
MRAS identificationmethod has been successfully applied in
the parameter identification of PMSM [7], [8], the derivation
of the adaptive law is mostly carried out under assumptions.
It is difficult to determine the adaptive law if multiple param-
eters are identified simultaneously. Furthermore, the velocity
of adjustment and change during parameter identification
is slow, which is not suitable for the identification of fast
time-varying parameters. The Kalman filter has been suc-
cessfully applied in the parameter identification of PMSM
[9]–[11], but there are still two main problems. One is that
the algorithm is complex and computationally intensive. The
other is that it requires more assumptions in use and has
significant limitations in practical applications.

With the development of intelligent optimization control,
many intelligent algorithms appeared in PMSM parameter
identification and control, such as Grey wolf optimization
algorithm [12], [13], particle swarm algorithm [14], [15],
genetic algorithm [16], [17], wavelet algorithm and neu-
ral network algorithm [18], [19], etc. For a motor model
with known structure but unknown or partially unknown
parameters, the problem of identifying motor parameters is
transformed into obtaining the optimal solution. Although
the intelligent identification algorithm has high accuracy,
strong robustness, and fast convergence speed, the algorithm
is generally complicated with a large amount of calculation,
poor real-time performance, and requires a higher comput-
ing capacity. These unfavorable factors hinder the practical
application of the intelligent identification algorithm.

Although much research has been done on parameter iden-
tification ofmotor systems, themodel structures used in exist-
ing studies are generally linear, and the number of parameters
to be identified is 3 to 5. It is difficult to accurately model
the nonlinear dynamics in the system, especially the various
uncertainties. It is worth noting that accurate modeling of
uncertainty and its application in controllers can be of great
help in improving control performance [20].

Recently, a new algorithm, deterministic learning theory,
has been proposed for nonlinear system identification, tem-
poral pattern recognition, and intelligent control of nonlinear
systems [21], [22]. The main feature of the deterministic
learning approach, compared to existing system identification
methods, is the achieved accurate identification of the local
true nonlinear system model, which contains information
about the system parameters, various uncertainties, and the
system structure. Furthermore, the obtained knowledge can
be stored and represented by constant RBF neural networks
and can be readily used for another similar control task toward
guaranteed stability and improved control performance.

In this paper, a method is proposed for the identification of
the motor system via deterministic learning. Unlike most of
the existing studies, this study does not identify the system
parameters, but the system dynamics, which is the funda-
mental knowledge of the motor system. The system state of
the motor is first measured, and then a suitable RBF neural
network is designed accordingly. A state estimator is built
using the RBF neural network with the system state of the
motor as input. The weights of the RBF neural network are
updated using Lyapunov-based law. It can be shown that these
parameters all converge to a constant value. Thus, a constant
RBF neural network can be obtained, which is the dynam-
ics underlying the motor system states and can be used for
control, pattern recognition, fault detection, and so on. The
information about all system parameters and the structure is
also contained in this constant RBF neural network.

The major contributions of this paper include: (1) This
method provides accurate identification of the system dynam-
ics of a motor system, rather than the system parameters. Sys-
tem dynamics is the essential characteristic of a motor system
and contains all the information of the system, including
information of system parameters and various uncertainties;
(2) Themethod is of good practicality, requiring only the state
of the system, and is particularly suitable for the identification
of real-time motor systems with various uncertainties; (3)
The modeling result is expressed as a constant radial basis
function (RBF) networks, which can be readily used for
another similar control task toward guaranteed stability and
improved control performance.

The remainder of the paper is organized as follows.
Sections 2 and 3 introduce the dynamic mathematical
model of PMSM and deterministic learning, respectively.
Section 4 gives the details of the identification method pro-
posed in this paper. Section 5 presents the process and results
of the simulation and experimental tests. Section 6 concludes
the paper.

II. DYNAMIC MATHEMATICAL MODEL OF PMSM
PMSM is a multi-variable, strongly coupled non-linear sys-
tem whose electrical parameters affect each other. Therefore,
it is difficult to get an accurate PMSM mathematical model.
In the actual control of PMSM, the state equation in the d-q
two-phase synchronous rotating coordinate system is usually
used as a mathematical model. The dynamic equation of a
PMSM system in a rotating (d-q) coordinate system can be
expressed as follows [23]–[25]:

dω
dt
= −

B
J
ω +

np
J
[(Ld − Lq)id iq +9r iq]−

TL
J

diq
dt
= −

np
Lq
9rω −

R
Lq
iq −

np
Lq
ωidLd +

uq
Lq

did
dt
=

np
Ld
ωiqLq −

R
Ld
id +

ud
Ld

(1)

where ω, J , R, B, np, TL and 9r are rotor angular veloc-
ity, rotor moment of inertia, stator resistance, viscous fric-
tion coefficient, pole pair, load torque, and flux linkage,

VOLUME 8, 2020 168517



W. Yu et al.: Modeling and Identification of PMSM via Deterministic Learning

respectively. id and iq denote d−axis and q-axis currents,
ud and uq represent d-axis and q-axis voltages, Ld and Lq
are d-axis and q-axis inductance, respectively. Under differ-
ent operating conditions, these electrical parameters can be
affected by various factors, where the most important factors
are the uncertainties.

The system state of a motor system is a time-varying
pattern with a recurrent trajectory. It is generated by themotor
system and is the manifestation of information about the sys-
tem parameters, various uncertainties, and system structure,
i.e., the system dynamics. In this study, we will identify the
dynamics of the system based on the system state, which
contains all the information about the system.

III. DETERMINISTIC LEARNING
Deterministic learning theory is a machine learning method
recently proposed for the identification and recognition of
timing-varying patterns [21]. It was principally developed
based on the knowledge of RBF neural networks, adaptive
control, and system identification. For a temporal pattern,
which is defined as a periodic or recurrent orbit generated by
nonlinear dynamical systems, the fundamental knowledge of
the temporal pattern can be accurately identified and stored
as a time-invariant manner [22], [26].

To be more specific, consider the following dynamical
system:

u̇ = G(u; p), u(t0) = u0 (2)

where u = [u1, . . . , un]T ∈ Rn is the system state, G(u; p) =
[g1(u; p), . . . , gn(u; p)]T is a continuous but unknown non-
linear function vector, and p is a constant parameter vector.

In order to accuratelymodel the unknown system dynamics
G(u; p) underlying a dynamical pattern ϕζ (a recurrent orbit),
the following estimator system is applied:

˙̂ui = −di(ûi − ui)+ Ŵ T
i Si(u), (3)

where ui and ûi are states of (2) and (3) respectively, di > 0
is a parameter to be designed, RBF neural networks Ŵ T

i Si(u)
is used to approximate gi(u; p), Ŵi = [wi1, . . . ,wiN ]T ∈ RN

and Si(u) = [si1(‖ u − ξ1 ‖), . . . , siN (‖ u − ξN ‖)]T , ξj are
distinct points in state space, sij(·) is Gaussian function.

Subtract Eq.(2) from Eq.(3), the following equation can be
obtained:

˙̃ui = −diũi + Ŵ T
i Si(u)− gi(u; p)

= −diũi + W̃ T
i Si(u)− ei, (4)

where ũi = ûi − ui is state estimation error, W̃i = Ŵi −

W ∗i , W
∗
i is the ideal constant weight vector, ei = gi(u; p) −

W ∗Ti Si(u) is the ideal approximation error. To update Ŵi, the
following Lyapunov-based learning law was employed:

˙̂Wi = −γiSi(u)ũi − σiγiŴi, (5)

where σi > 0 is a small constant parameter, γi = γ Ti > 0.
It has proved that for almost any temporal pattern (recurrent
orbit) ϕζ , the accurate identification of unknown dynamics

gi(u; p) along the orbit ϕζ can be obtained [21], [22], [26]
and represented as follows:

gi(ϕζ ; p) = Ŵ T
i Si(ϕζ )+ eζ i

= W̄ T
i Si(ϕζ )+ eζ i1, (6)

where W̄i = meant∈[ts,tf ]Ŵi(t), mean is the arithmetic mean,
[ts, tf ] is a span of time after the transient process, eζ i1 =
O(eζ i) = O(ei) is the actual modeling error. It indicates
the dynamics underlying nearly any temporal pattern can be
accurately modeled by applying deterministic learning.

The deterministic learning has shown that for almost every
periodic orbit, there always exists an RBF subvector con-
sisting of RBFs centered in a certain neighborhood of the
orbit such that a partial PE condition is satisfied. With the
satisfaction of the persistent excitation (PE) condition, locally
accurate modeling of nonlinear systemmodels along periodic
or quasi-periodic trajectories was achieved. While existing
nonlinear system identification methods can only guarantee
that the state estimation error converges to a small neighbor-
hood of zero, but they cannot perform a system dynamics
accurate identification (i.e., there is no guarantee that the
weights of the neural networks will converge to their opti-
mal values). This is the main contribution of deterministic
learning. Moreover, the acquired knowledge can be stored
and represented by a constant RBF neural network and can
be readily used for another similar control task.

IV. IDENTIFICATION METHOD
In the section, we will present the method for identifying the
PMSM model. For simplicity of notation we denote

X = [ω, ip, id ]T

is the system state vector, and

p = [R,Ld ,Lq, np,B, 9r , ud , uq]

is the system parameter vector, and
F1(X; p) = −

B
J
ω +

np
J
[(Ld − Lq)id iq +9r iq]−

TL
J

F2(X;P) = −
np
Lq
9rω −

R
Lq
iq −

np
Lq
ωidLd +

uq
Lq

F3(X; p) =
np
Ld
ωiqLq −

R
Ld
id +

ud
Ld

then the motor system (1) can be abbreviated as follows:

Ẋ = F(X; p) (7)

where X = [ω, iq, id ]T is the system state, F(X , p) =
[F1(X; p),F2(X; p),F3(X; p)]T is the nonlinear function vec-
tor, p is the system parameter vector.

To achieve the locally accurate identification of the system
dynamics F1(X; p), F2(X; p) and F3(X; p), we employ the
dynamical models using the RBF neural network as follows:

˙̂ω = −a1(ω̂ − ω)+ Ŵ T
1 S1(X )

˙̂iq = −a2(îq − iq)+ Ŵ T
2 S2(X )

˙̂id = −a3(îd − id )+ Ŵ T
3 S3(X )

(8)
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where ω̂, îq and îd are the estimation of ω, iq, id , respectively,
ai > 0 (i = 1, 2, 3) is constant parameter to be designed,
Ŵ T
i Si(X ) is the RBF neural networks to approximate Fi(X; p)

(i = 1, 2, 3).
From Eqs. (7) and (8), the derivative of the state estimation

errors e1 = ω̂ − ω, e2 = îq − iq and e3 = îd − id satisfy

ė1 = −a1e1 + Ŵ T
1 S1(X )− F1(X; p)

= −a1e1 + W̃ T
1 S1(X )− ε1

ė2 = −a2e2 + Ŵ T
2 S2(X )− F2(X; p)

= −a2e2 + W̃ T
2 S2(X )− ε2

ė3 = −a3e3 + Ŵ T
3 S3(X )− F3(X; p)

= −a3e3 + W̃ T
3 S3(X )− ε3

(9)

where W̃i = Ŵi − W ∗i , Ŵi is the estimation of W ∗i , W
∗
i

is the the optimal value of Ŵi, εi = Fi(X; p) − W ∗Ti Si(X )
(i = 1, 2, 3) are the ideal approximation errors. The weight
estimates Ŵi(i = 1, 2, 3) are updated by the following law:

˙̂Wi =
˙̃W i = −0iSi(X )ei − σi0iŴi (10)

where 0i = 0Ti > 0, and σi > 0 are small values.
It can be indicated from the following theorem that the

accurate identification of Fi(X; p) (i = 1, 2, 3) can be
obtained along a recurrent trajectory of the motor system (1).
Theorem 1: Consider the adaptive system composed by

the motor system (7), the dynamical model (8), and the updat-
ing law (10), the following conclusions can be drawn: (i) all
signals in the adaptive system remain uniformly bounded, the
state estimation error ei (i = 1, 2, 3) converges to a small
neighborhood of zero, and the neural weight estimate Ŵζ i
(as in (16)) converges to a small neighborhood of its optimal
value Ŵ ∗ζ i (i = 1, 2, 3); (ii) locally accurate approximation
of Fi(X; p) (i = 1, 2, 3) can be achieved along the recurrent
trajectory φ(X ) of the motor system (7).

Proof: (i) Consider the following Lyapunov function
candidate:

Vi =
1
2
(ei2 + W̃ T

i 0
−1
i W̃i), i = 1, 2, 3 (11)

Take the derivative of Vi,

V̇i = eiėi + W̃ T
i 0
−1
i
˙̃W i

= −aie2i − eiεi − σiW̃
T
i Ŵi (12)

Let ai = ai1 + ai2 with ai1, ai2 > 0. Because
−ai2e2i − eiεi ≤

ε2i

4ai2
−σiW̃ T

i Ŵi ≤ −σi‖W̃i‖
2
+ σi‖W̃i‖‖W ∗i ‖

≤ −
σi‖W̃i‖

2

2
+
σi‖W̃ ∗i ‖

2

2

(13)

it follows that

V̇i ≤ −ai1e2i −
σi‖W̃i‖

2

2
+
σi‖W̃ ∗i ‖

2

2
+

ε2i

4ai2
(14)

Clearly, V̇i is negative definite when

| ei |>
εi

2
√
ai1ai2

+

√
σi

2ai1
‖W ∗i ‖

or

‖W̃i‖ >
εi

√
2σiai2

+ ‖W ∗i ‖

That is, ei and W̃i are uniformly bounded
| ei | ≤

εi

2
√
ai1ai2

+

√
σi

2ai1
‖W ∗i ‖

‖W̃i‖ ≤
εi

√
2σiai2

+ ‖W ∗i ‖
(15)

Based on the locally properties of RBF neural network,
we describe Eq. (9) and Eq. (10) in the following form:[

ėi
˙̃W ζ i

]
=

[
−ai Sζ i(U )T

−0ζ iSζ i(U ) 0

] [
ei
W̃ζ i

]
+

[
−εζ i

−σi0ζ iŴζ i

]
(16)

and
˙̂Wζ̄ i =

˙̃W ζ̄ i = −0ζ̄ iSζ̄ i − σi0ζ̄ iŴζ̄ i (17)

where (·)ζ , (·)ζ̄ represent the area close to and far away from
the trajectory φ(X ), respectively. Sζ i is a subvector of Si,
Ŵζ i is the corresponding weight subvector. εζ i = O(εi) is
the neural network approximation error along the trajectory
φ(X ). According to the nature of RBF neural networks, any
recurrent trajectory can satisfy a partial persistent excita-
tion (PE) condition of the corresponding RBF subvector.
Since the trajectory φ(X ) generated by the motor model (7) is
recurrent, Sζ i satisfies the PE condition. Based on Lemma 2 in
reference [27], the origin (ei, W̃ζ i) = 0 of the nominal part of
the system (16) is exponentially stable. Since εζ i = O(εi)
and σi0ζ iŴζ i can be made small by choosing a sufficiently
σi, by using Lemma 3 in [27], the state error ei and W̃ζ i both
converge exponentially to some small neighborhoods of zero,
and the size of the neighborhoods being determined by ε∗i and
σi‖0ζ iW ∗ζ i‖, respectively.
(ii) The convergence of Ŵζ i to be in a small neighborhood

of W ∗ζ i means that along the trajectory φ(X ),

Fi(X; p) = W ∗Tζ i Sζ i + εζ i

= Ŵ T
ζ iSζ i − W̃

T
ζ iSζ i + εζ i

= Ŵ T
ζ iSζ i + εζ li (18)

where εζ li = εζ i − W̃
T
ζi
Sζ i = O(εζ i).

Based on the convergence result, a constant vector of neural
weights can be obtained according to the following formula:

W̄ζ i = meant∈[ta,tb]Ŵζ i

where "mean" is the arithmetic mean, and [ta, tb] represents a
piece of time segment after the transient process. So, we have
that

Fi(X; p) = Ŵ T
ζ iSζ i + εζ i1 = W̄ T

ζ iSζ i + εζ i2 (19)

where εζ i2 = O(εζ i1 ) = O(εζ i).
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On the other hand, for neurons far away from the trajectory
φ(X ), | Sζ̄ i | will become very small due to the localization
characteristic of RBFs, so the activation and update of the
neural weights W̄ζ̄ i is very weak. For the initial value Ŵi(0) =
0, both Ŵζ̄ i and Ŵ T

ζ̄ i
Sζ̄ i, as well as W̄ζ̄ i and W̄ T

ζ̄ i
Sζ̄ i will

remain very small (i.e., still in a small neighborhood of zero).
These mean that the entire RBF neural network W T

i Si can
approximate Fi(X; p) along the trajectory φ(X ):

Fi(X; p) = W̄ T
ζ iSζ i + εζ i2

= W̄ T
ζ iSζ i + W̄

T
ζ̄ iSζ̄ i + εζ i2 − W̄

T
ζ̄ iSζ̄ i

= W̄ T
i Si + εie (20)

where εie = εζ i2 − W̄ T
ζ̄ i
Sζ̄ i = O(εζ i2 ) = O(εi). It implies

that accurate identification of the motor system to the desired
error level εi is achieved by using the entire RBF neural
network in a local region along the recurrent trajectory φ(X )
of the motor system.

V. SYSTEM IDENTIFICATION FOR THE DYNAMICS
MATHEMATICAL MODEL
A. SIMULATION AND EXPERIMENTAL PLATFORM
The PMSM first runs under a normal steady-state condition,
and then a pseudo-random binary signal (PRBS) is added to
the PMSM after a prescribed time. The length and period of
the PRBS signal are designed based on the cut-off frequency
of the PMSM. With this input data set, the PMSM is fully
excited, which allows the model to recognize the complete
system behavior. If control id = 0, the PMSM will be
decoupled, and we can control the PMSM as easily as a DC
motor.

Space vector pulse width modulation (SVPWM) is a spe-
cial switching scheme of a 3-phase power converter with
six power transistors. We apply SVPWM to approximate
the reference voltage and combine it with eight basic space
vectors [28]. Modeling details of the SVPWM design can be
found in [29]. The 3-phase inverter consists of three groups
of IGBT power transistors. Every group is composed of upper
and lower two transistors, the six IGBT power transistors are
controlled by the PWM1-PWM6 signals from the SVPWM
module, and the outputs of the inverter connect to the 3-phase
inputs of the motor. The PMSM is driven by a conventional
voltage-source inverter. The two input currents of the PMSM
(ia and ib) are measured by the inverter and sent to the DSP
controller via two analog-to-digital converters (ADCs).

Theoretically, PMSM-driven field-oriented control allows
for independent control of motor torque and magnetic flux,
as in DC motor operation. In other words, torque and mag-
netic flux are decoupled from each other. Rotor position
requires a variable conversion from a stationary reference
frame to a synchronously rotating reference frame. Due to this
conversion (i.e., park transformation), the q-axis current will
control the torque, while the d-axis current is forced to zero.
Therefore, the key module of this system is the rotor position
information from the QEP encoder. The overall flow diagram

of the simulation and experimental platform implementation
is shown in Figure 1.

FIGURE 1. The flow diagram of the simulation and experimental platform
implementation.

FIGURE 2. Experimental Set-up.

The PMSM real-time velocity control experimental plat-
form shown in Figure 2 will be used for accurate identifica-
tion and experimental verification. The PMSM is controlled
by a servo drive and connected to a computer for signal
monitoring using a Joint Test Action Group (JTAG) emulator
interface. The code composer studio (CCS) software tool is
used for online tuning and debugging. The control board
uses a Texas Instruments TMS320F2812 DSP control unit.
The two-phase current signal is sampled from the current
transducer and used as current feedback for closed-loop con-
trol. The speed feedback signal is obtained from the encoder
output as speed closed-loop control.

B. NUMERICAL EXPERIMENTS
The following numerical simulation is conducted to show
the effectiveness and feasibility of the method. Referring to
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Figure 1, if the control id = 0, the PMSM will be decoupled
and can be controlled as easily as a DC motor.

FIGURE 3. The numerical solution of Eq. (7).

The numerical solutions are obtained from the Eq. (7) (as
shown in Figure 3) with the following parameters: np = 4,
9r = 0.892wb, Ld = Lq = 0.003H , J = 0.00251kg · m2,
R = 1.32ohm, B = 0.025, TL = 0.1N · m, and[
ud (t)
uq(t)

]
=

√
2
3

[
cos(8πωt) sin(8πωt)
− sin(8πωt) cos(8πωt)

]

·

1 −
1
2

−
1
2

0

√
3
2

−

√
3
2

·
 220 sin(100π t)
220 sin(100π t−2π/3)
220 sin(100π t+2π/3)


The dynamical model employing RBF neural networks

Eq. (8) are used to identify the unknown system dynamics
Fi(X; p)(i = 2, 3) in Eq. (7). The RBF neural network
Ŵ T
i Si(X )(i = 2, 3) is constructed in a regular lattice, with

nodes N = 408, the centers evenly placed on [−50, 65] ×
[−60, 20], and the width is 5. The weights of the RBF neural
networks are updated online according to Eq. (10). The initial
weights Ŵi(0) = 0. Figure 4 shows the convergence of the
neural network weightsW1 andW2. The NN approximations
of F2(X; p) and F3(X; p) in the time domain are shown in
Figure 5. It can be seen that the accurate identification of
the system dynamics is achieved. From these figures, we can
see that accurate approximation of dynamics F2(X; p) and
F3(X; p) are indeed achieved. The accurate NN approxima-
tions can be considered as partially true system dynamics
F2(X; p) and F3(X; p) stored in constant RBF neural net-
works W̄ T

2 S2(X ) and W̄
T
3 S3(X ). Correspondingly, the accu-

rate identification of the PMSM velocity response can also be
achieved. As an example, the identification results of PMSM
with PRBS is presented.

The PMSM first runs at a normal steady-state condition.
After a prescribed time Ts = 0.2s has elapsed, the PRBS
is sent to the PMSM. The PMSM velocity response with
the input PRBS and its identification results are shown in
Figure 6, where the blue line is the PMSM velocity response
with PRBS, the red line is the identification results. We can

FIGURE 4. The convergence of the neural network weights.

see that the accurate identification of the PMSM velocity
response is indeed achieved.

TABLE 1. Nominal parameters of the PMSM in experiment.

C. EXPERIMENTS ON PLATFORM
1) CUT-OFF FREQUENCY IDENTIFICATION
The PMSMused here is a laboratory-scale three-phasemotor,
the parameters of which are given in Table 1 and were
obtained from the nameplate of the selected motor. Figure 8
shows the experimental curves for the cut-off frequency
experiment. The cutoff frequency experiment was used to
design the period and length of the PRBS signal. Different
motor output velocity can be obtained by inputting different
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FIGURE 5. The identification results of system dynamics.

FIGURE 6. Comparison between simulation data and identification
results.

periods of the voltage square wave ts on the experimental
platform. When the motor speed output is almost zero, the
reciprocal 1/ts of the period of the square wave is the cutoff
frequency of the motor system. Figure 8 shows the real-time
PMSM velocity response of a square-wave input signal with
a voltage amplitude of 310 V and tsM = 0.0125 s period

FIGURE 7. The convergence of the neural networks weights.

FIGURE 8. The experimental signals for cut-off frequency identification.

excitation. Therefore, the velocity response value is close to
zero, and the cutoff frequency fM is 80 Hz.

2) PRBS INPUT SIGNAL SELECTION FOR SYSTEM
IDENTIFICATION
The pseudo-random binary sequence (PRBS) signal is often
used as an input signal for system identification. The PRBS

168522 VOLUME 8, 2020



W. Yu et al.: Modeling and Identification of PMSM via Deterministic Learning

FIGURE 9. The input of PRBS in simulation and experimental set-up.

signal is a step function generated by a series of shift registers
with an XOR operator. The maximum length PRBS signal
has a correlation function similar to the white noise correla-
tion function. This property does not hold for non-maximum
length sequences. Therefore, the PRBS signal used in the
identification process should be the maximum length PRBS
signal. In order to design an effective PRBS test sequence, the
period and length must be selected correctly. The determina-
tion of PRBS with a period of1 and length Np should follow
the rules: 

1 ≤
0.3
fM

Np ∈ [
1.2

fM ·1
,

1.5
fM ·1

]
(21)

where fM is the system cut-off frequency.
Then it is easy to determine the PRBS input signal with

a period of 1 = 0.003s and a length of Np = 127 accord-
ing to Eq. (21). By applying this input PRBS sequence,
the PMSM velocity system can be fully stimulated to
achieve accurate identification of system model behavior.
Figure 9 shows the PRBS input used in the simulation and
experiment.

3) EXPERIMENTAL RESULTS
In this subsection, we will evaluate the proposed method
by using the experimental data from the PMSM platform.
Injecting a PRBS input signal to the motor system from
0.2s (as shown in Figure 9), the velocity response exhibits
periodic characteristics since the nature of the input PRBS is
a periodic signal. The data is sampled by the DSP controller
with a period of 0.0025 seconds as shown in Figure 10.
It can be seen that from the time 0 to 0.2 seconds, the
motor velocity is affected by noise and various uncertainties,
which is different from the situation in the simulation. The
response curve is shown in the blue line in Figure 10, and
the system identification curve is shown in the red line.

FIGURE 10. Comparison between experimental and identification results.

FIGURE 11. The convergence of the neural networks weights.

FIGURE 12. The L1 norm of identification error.

Figure 11 shows the convergence of the neural network
weights.

To demonstrate the advantages of the method, the PRBS
response curve shown in Figure 10 was also identified using
the identification method of [28] under the same experimen-
tal platform. Figure 12 gives the L1 norm of the identifi-
cation error using the methods proposed in this paper and
reference [28], which shows that the approach of this paper
works better.
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VI. CONCLUSION
In this study, a novel method via deterministic learning is
proposed for identifying the PMSM velocity servo system.
It achieves an accurate identification of the PMSM dynamics
only based on system states. It is an advancement to use the
system state for the identification of real PMSM system from
the viewpoint of practical application. The effectiveness and
feasibility of the proposed method are demonstrated from
the numerical simulation and practical experiment. Different
from existing methods in the literature, the identification
result contains information about system parameters, vari-
ous uncertainties, and system structure. Especially, it can be
represented and stored in a constant manner, which makes
it useful for recognizing similar dynamic behaviors for fault
diagnosis or control design.
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