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ABSTRACT Human speech in real-world environments is typically degraded by the background noise.
They have a negative impact on perceptual speech quality and intelligibility which causes performance
degradation in various speech-related technological applications, such as hearing aids and automatic speech
recognition systems. It also degrades the original phase of the clean speech and introduces perceptual
disturbance which leads to the negative impacts on the quality of speech. Therefore, speech enhancement
must vigilantly be dealt with in everyday listening environments. In this article, speech enhancement is
performed using supervised learning of spectral masking. Deep neural networks (DNN) and recurrent neural
networks (RNN) are trained to learn the spectral masking from the magnitude spectrograms of the degraded
speech. An iterative procedure is adopted as a post-processing step to deal with the noisy phase. Additionally,
an intelligibility improvement filter is also used to incorporate the critical band importance function weights
where higher weights contribute more towards intelligibility. Systematic experiments demonstrated that the
proposed approaches greatly attenuated the background noise. Also, they led to large improvements of the
perceived speech quality and intelligibility, as well as automatic speech recognition. In experiments, TIMIT
database is used. The STOI is improved by 17.6% over the noisy speech. Also, SDR and PESQ are improved
by 5.22dB and 19% over the noisy speech utterances. These comparisons showed that the proposed speech
enhancement approaches outperformed the related speech enhancement methods.

INDEX TERMS Deep neural network (DNN), recurrent neural network (RNN), speech enhancement,

spectral masking, speech quality, speech intelligibility, supervised learning, background noise.

I. PROBLEM STATEMENT

Speech enhancement aims to improve the intelligibility and
quality of the noisy speech. The conventional unsupervised
speech enhancement method improves the quality but fail
to improve the intelligibility in nonstationary background
noises. Moreover, most of the speech enhancement methods
use the noisy phase during reconstruction of the enhanced
speech. It is vital in the various speech-related applications
to design a robust method that has the ability to improve
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the speech intelligibility and quality as well as deal with the
noisy phase for the better results. This article is based on
the supervised learning of the spectral-masking for speech
enhancement using DNN and RNN frameworks. Since, spec-
tral phase has impacts on speech quality; we have used a
post-processing step to deal with the noisy phase during
time-domain speech recovery for improved quality.

II. INTRODUCTION
The objective of single-channel speech enhancement is to
suppress the background noise components and recover the
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components of clean speech from the noisy version with
improved perceptual quality and intelligibility. The speech
enhancement algorithms are primarily used to improve the
voice quality of a real-time speech communication sys-
tem, pre-recorded multimedia contents, to increase the accu-
racy of automatic speech recognition (ASR) systems and
hearing aids. Previously, many unsupervised speech enhance-
ment methods were suggested such as the spectral sub-
traction [1] and its variants [2], [3], Wiener filtering [2]
and its variants [4], [5], as well as the minimum mean
square error (MMSE) estimator [6] and its variants [7], [8].
Although the aforesaid speech enhancement methods are apt
for many real-time speech-related applications since they
present a small computational complexity, but their perfor-
mance remains poor for many real-world acoustic environ-
ments where they fail to track the power spectral density of
an extremely non-stationary background noise. To surmount
this issue, the supervised learning-based speech enhancement
methods have been opted and trained with a large quan-
tity of the training data in presence of different background
noises [9], [10]. Regression, spectral-mapping and spectral
masking-based deep neural networks are among the most
successful methods in single-channel speech enhancement
tasks [11]-[15].

In a DNN-based speech enhancement task, the rela-
tion between input and target features is not linear; there-
fore, network architecture composed of multiple layers with
non-linear activation functions are more suitable for speech
enhancement [12] rather than shallow neural networks.
In addition, to completely confine the temporal dynamics
of the speech signal, feed-forward DNN and recurrent
neural network structures have been opted. Particularly,
single-channel speech enhancement-based on feedforward
and recurrent neural networks have shown considerable
performance gains compared to shallow neural networks
and conventional unsupervised speech enhancement meth-
ods. Furthermore, network architecture types, training-targets
and associated objective functions are vital concerns for
deep learning-based speech enhancement [16]. The learning
approaches for speech enhancement are grouped into two
groups. In the first group, the training procedure is carried
out in a direct spectral-mapping rule and the output clean
spectral features are mapped from the input noisy spectral
features; however, it is observed that the estimated spectra
have a tendency to be over-smoothed [11], [12]. The second
and successful group is that of spectral-masking. A number of
learning approaches have recently been proposed for estimat-
ing spectral-masks with confirmed notable results [17]-[20].
Few of the recent related work regarding supervised speech
enhancement is available in [21]-[23].

Spectral masking-based learning approaches map from a
noisy speech signal to a time-frequency mask and the gain
parameters are multiplied to the noisy magnitude spectra to
obtain a noise suppressed enhanced speech signal. Spectral
masking usually estimates the ideal binary mask (IBM) [24],
where a time-frequency unit is assigned a binary 1, if the
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signal-to-noise ratio (SNR) within the unit exceeds a local
criterion (0dB), implying speech dominance. Otherwise, a
time-frequency unit is assigned a binary 0, implying noise
dominance. Another popular spectral mask is the ideal ratio
mask (IRM) [25], where a time-frequency unit is assigned a
ratio of clean and noisy speech energies. The spectral magni-
tude mask, called ideal amplitude mask (IAM) is defined on
the short-time Fourier transform magnitudes of clean speech
and noisy speech. Unlike IRM, IAM is not upper-bounded
by 1. To get enhanced speech, we apply the estimate of IAM
to the spectral magnitudes of noisy speech, and resynthesize
the enhanced speech. Gaussian mixture models (GMM) are
used to learn the distribution of speech and noise dominant
time-frequency units and for developing a Bayesian classifier
for IBM estimation [26]. Multilayer perceptron is employed
using one hidden layer to estimate the IBM which showed
encouraging results in reverberant situations [27]. Support
vector machines (SVM) are used to estimate time-frequency
mask which delivered more factual classification results com-
pared to the GMM-based classifiers [28]. For the first time,
GMMs are used to compute posterior probabilities of speech
dominance in time-frequency units and SVMs are trained
with novel features to estimate the IBM [29]. The presented
approach generalized significantly to an ample range of
SNRs. Motivated by the deep hidden structure with several
layers, DNN was used for the binary classification for the first
time to separate a speech from the mixtures [30] and it sig-
nificantly outperformed the earlier speech separation meth-
ods. A number of training-targets were examined and IRM
was suggested to be preferred over IBM while dealing with
speech quality [16]. DNN and RNN frameworks were used to
minimize the reconstruction loss associated with the spectra
of two premixed speakers by lodging IRM into the loss
function [31], [32] and named as signal approximation [32].
The proposed method expressed substantial performance gain
over NMF-based approaches. The signal approximation was
deemed an optimization objective function and suggested
long short-term memory (LSTM) into RNN architecture
which outperformed DNN methods [33]. Signal approxi-
mation is further extended to the phase-sensitive mask and
LSTM is used for speech denoising [33], [34]. Complex
ideal ratio mask (cIRM) is proposed for speech enhancement.
DNN-based cIRM learnt the real and imaginary parts of the
complex spectra together instead of learning the magnitude
spectra only [35]. This method significantly improved per-
ceptual speech quality.

In this article, spectral masking-based learning approaches
are used to construct three time-frequency masks: IRM, IBM
and IAM using DNN and RNN architectures. During the
training procedure, the mask approximation is used as a
loss function. Critical band importance functions are used
during training to further improve the performance of DNN
and RNN architectures in terms of speech intelligibility and
perceptual speech quality. Since background noise degrades
the original phase of clean speech; therefore, it introduces
perceptual disturbance which leads to negative impacts on
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FIGURE 1. The flow diagram of the proposed speech enhancement.

speech. To avoid these degradations, an iterative procedure
is adopted as a post-processing step. Figure 1 shows the flow
diagram of the proposed speech enhancement method. The
main contributions of this study are drawn as:

i. Spectral masking-based learning methods are devel-
oped using DNN and RNN architectures to enhance
speech in noisy backgrounds which notably improve
perceptual quality and intelligibility. In the proposed
methods, we have constructed three time-frequency
masks including IRM, IBM and IAM. In literature,
we can find many DNN-based IRM, IBM and IAM
construction, however; very few studies are avail-
able that have constructed such time-frequency masks
using RNN frameworks.

ii. Critical band importance functions and their weights
are used in the training procedures to further improve
the perceptual quality and intelligibility of the noisy
speech. The weights of the functions are directly
applied to the clean training data using an intelligibil-
ity improvement filter and the testing process revealed
enhanced speech with the filter.

iii. Most speech enhancement methods use the noisy
phase for the reconstruction of the enhanced speech.
We have addressed this vital problem in proposed
method. We have adopted a widely used iterative
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procedure called as Griffin-Lim Algorithm (GLA)
to deal with the noisy phase during time-domain
speech reconstruction. This contribution has notably
improved the performance of speech enhancement
in terms of the perceptual speech quality and
intelligibility.

iv. Less computational complexity and fast convergence
is achieved by the proposed methods as compared to
the baseline feedforward-DNN and RNN frameworks.
The baseline and the proposed feedforward-DNNs
have used same number of layers, quantity of the
neurons in the hidden and visible layers. Similarly
baseline and the proposed RNNs used same LSTM
units. However, we achieved better speech quality
and intelligibility. The reason for fast network conver-
gence (less loss function) is adaptation of critical band
weights which are directly applied to the clean training
data.

v. Automatic speech recognition systems are usually
tested with magnitude-only spectrums. Our proposed
methods with both magnitude and phase process-
ing improved the ASR performance in adverse noisy
conditions.

The remaining paper is organized as follows. Spectral
masking-based speech enhancement and loss functions are
discussed in Section II. Experiments are presented in
Section III. Results and analysis are presented in Section IV.
Finally, the discussion and conclusions are presented in the
Section V.

IIl. SPECTRAL MASKING-BASED SPEECH
ENHANCEMENT AND LOSS FUNCTIONS

Mostly in speech enhancement, the enhancement of noisy
speech z(n) is performed in the time-frequency domain by
applying the short time Fourier transform (STFT). Since the
time-domain speech signal is a real-valued signal, and only
considers X = X (¢, f) € CE*K/2+D) where L and K indicate
the frame number and the size of discrete Fourier transform
(DFT). In time-frequency domain, the magnitude spectrum
of the enhanced speech signal |)A( (t,f)| can be achieved via
following time-frequency masking procedure:

X1, /)] = My(t,£) ® |Z(t, 1) (1)

where, Mx(t, f) denotes the intended time-frequency mask
and |Z(t,f)| = |X(&,f)| + |D(t,f)| denotes the magnitude
of noisy speech which is the sum of the clean speech and
noise signal in ¢-th frame and f-th frequency bin, respectively.
We have used 20 ms with 75% overlapping in the proposed
methods. The foundation for making 20 ms frame length
comes from the quasistationarity assumption. We want the
speech analysis frame to be stationary. As a result, in a
too large analysis frame, the signal will become nonstation-
ary. In supervised spectral masking-based learning tasks, the
loss function is typically formulated to predict the masking
parameters that can effectively restore the components of the
clean speech by suppressing the undesired background noise
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TABLE 1. Various time-frequency masks with dynamic ranges.

Time-Frequency Mask Type Mathematical Formula Dynamic Range

Ideal Amplitude Mask (IAM) M™ @, )= X |21 R2>0

Ideal Ratio Mask (IRM) MM @ fy= (XN /|xX@ ] +pe ) )a [0,1]
I,SNR, , 2k

Ideal Binary Mask (IBM) M P(t, f) = o {0,1}
0,Otherwise

components in all time-frequency units. The time-domain
enhanced speech is then recovered by applying the inverse
STFT (iSTFT), as illustrated in Fig. 2. A different approach,
called the spectral mapping, directly learns the mapping rule
from the spectral features of noisy speech to clean speech.
But, spectral-masking is identified to be more successful
than spectral mapping since the time-frequency mask typi-
cally has a bounded dynamic range; hence, it achieves faster
convergence speed [16]. In deep learning, there exist many
approaches to learn a time-frequency mask depending on the
training-target or the optimization-domain. In mask approx-
imation, the time-frequency mask is estimated such that the
mean square error (MSE) with the predefined time-frequency
mask is minimized, is given as:

1 K—-1 R
MSEya = 2= Y [0 i) @)
t=1

where M, and M, denote the estimated and the prede-
fined reference time-frequency mask, respectively. The time-
frequency mask can be derived in various forms, as given
in Table 1. Signal approximation is an alternative approach
introduced in a study [32]. In this approximation approach,
the time-frequency mask is estimated in such a way that the
estimated speech is closest to the reference clean speech.
Magnitude spectra approximation [32] is a kind of signal
approximation in which the optimization is achieved in the
magnitude spectra domain, given as:

K-1
1 2 9 2
MSEwss = 5 3 [1ZP . ) = B, )] 3)
where e indicates element-wise, Hadamard product.

A. ACOUSTIC FEATURES

A set of acoustic features is extracted from the input speech
at frame level where frame length and frame shift are
set to 20 ms and 10 ms, respectively [16]-[18]. The set
of acoustic features contains 15-D Amplitude Modulation
Spectrogram (AMS), 31-D Mel-Frequency Cepstral Coefti-
cients (MFCC), 13-D Relative Spectral Transformed Percep-
tual Linear Prediction Coefficients (RASTA-PLP) and 64-D
Gammatone Filter-bank Energies (GFE). The GFE features
are extracted from the Cochleagram, a time-frequency repre-
sentation typically used in computational auditory scene anal-
ysis (CASA) [36]. Cochleagram representation describes the
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FIGURE 2. Spectral-masking based deep neural network for
single-channel speech enhancement.

working of the human auditory system. Cochleagram is com-
puted by using a 64-channel gammatone filterbank. Addition-
ally, delta and double-delta feature coefficients are calculated
and appended with all raw acoustic features. Acoustic feature
extraction has been done by using RASTAMAT toolbox.
In spectral-domain, each frame can be represented as a vector,
given as:

x(1) = [X(t, 1), X(1,2), X(,3), ..., X(¢, N)|* “4)

An auto-regressive moving average filter (second order) is
used to flatten the temporal trajectories of acoustic features
as it improves the speech enhancement performance [16].
To include the temporal information, a context window of
two prior and two future frames are used, hence resulting
in 1845-D (369-D x 5 = 1845-D) feature vector. The feature
vector before applying to neural network is given as:

FO) =[xt —d), ooy x(0)y e, Xt + )] (5)

where, d denotes the neighboring frames on each side and

T denotes transpose operator. Zero mean and unit vari-
ance normalization have been applied to all feature vectors
before applying to train neural networks. The acoustic fea-
tures extraction procedure is illustrated in Fig. 3.

B. NETWORK ARCHITECTURES
In this study, feedforward-DNN and RNN networks are
used as spectral-masking learning approaches. Afterward,
feedforward-DNN will be denoted by DNN. The network
architectures of both networks are described in this section.
DNNs are selective learning machines and have shown
to perform exceptionally well in the speech enhancement
task [37]-[41]. The DNN architecture consists of five lay-
ers; an input layer, three hidden layers, and an output layer.
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The size of the input layer is 1845 units, that is, 246*5 =
1230, including 246-D acoustic features and features window
of 5 frames. Each hidden layer consists of 1024 hidden units
and the output layer contains 257 visible units. From the input
layer to output layer, the proposed DNN has 5 x 246, 1024,
1024, 1024 and 257 units, respectively. Backpropagation and
dropout regularization [42], [43] are used in training. The
adaptive gradient descent algorithm [44] with a momentum
parameter y is used to optimize DNN. 512 samples batch size
is used. The scaling factor for adaptive gradient descent is set
to 0.0010 and the learning rate is reduced linearly from 0.06
to 0.002. 100 epochs are used during the process. For the first
few epochs, the y is fixed at 0.5 and the rate is increased to
0.8 for remaining epochs. The MSE loss function using mask
approximation is used. The loss optimization curves at 100
epochs are shown in Fig. 4. The rectified linear unit (ReLU)
activation converts a weighted sum of the inputs to a model
neuron to the neuron’s output. Recent practice shows that a
moderately deep MLP with ReLU can be effectively trained
with the large training data without unsupervised pretraining.
Therefore, ReLLU is used as activation function in all hidden
layers and sigmoid activation function is used in the output
layer. The reason for selecting the sigmoid as output activa-
tion function is the dynamic range [0 1]. It is used for models
where to predict output probabilities, since probability exists
between 0 and 1. Also, the dynamic range of T-F masks exists
between 0 and 1. This function is differentiable and a slope
of sigmoid curve is obtainable at any two pints. The sigmoid
function is monotonic but its derivative is not. The functions
are:

RelLU : f(k) = max(0, k)

Sigmoid : f(k) = (6)

1+ ek
On the other hand, the RNN architecture contains an input
layer, three LSTM layers consists of 256 hidden units, and
a fully connected output layer with 64 sigmoid units. The
Adaptive Gradient Descent (AGD) algorithm is adopted for
network training. The learning rate, epochs and batch-size
are set to 0.001, 100 and 1024, respectively. The AGD is
adopted to minimize loss function. From the input layer to
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FIGURE 5. RNN and DNN training architectures.

output layer, the proposed RNN has 5 x 246, 256, 256,
256 and 257 units, respectively. The training procedures for
feedforward-DNN and RNN are illustrated in Fig. 5. Both
learning approaches are used in this study to estimate three
masks: IRM, IBM, and IAM respectively.

C. INTELLIGIBILITY IMPROVEMENT FILTER BASED ON
THE CRITICAL BAND IMPORTANCE FUNCTIONS

Critical band importance functions refer to the American
National Standards Institute (ANSI) S3.5 standard [45].
They indicate that the higher weights of band importance
functions contribute more towards improving the speech
intelligibility of the noisy speech. There are 21 frequency
bands, given in Table 2. The values of the band importance
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TABLE 2. Critical band importance functions (CBIF) in various frequency

bands.

Frequency Bands | 100-200 200-300 300-400
CBIF Weights 0.010 0.026 0.041
Frequency Bands | 400-510 510-630 630-770
CBIF Weights 0.057 0.057 0.057
Frequency Bands | 770-920 | 1480-1720 | 1720-2000
CBIF Weights 0.057 0.057 0.057
Frequency Bands | 2000-2320 | 2320-2700 | 4400-5300
CBIF Weights 0.057 0.057 0.046
Frequency Bands | 5300-6400 | 6400-7700 | 7700-9500
CBIF Weights 0.034 0.023 0.011

functions for the frequency bands indicate their impacts
on intelligibility. Based on critical band importance func-
tions, an intelligibility-improvement filter (IIF) formulated
and applied to the clean training waveforms. The weights are
multiplied to the training data in order to further improve the
intelligibility given as:

XF(t.f) = IIF (Xf (. f)) (7)
T F
> XX @ )?
F _ t=1 f F
IIF (X, . f)) = | == aXF (. f)
Q;wwﬁmmz
=

®)

where, X7 (¢, f) show filtered speech waveform, T is total
number of speech frames and «(¢) shows filter coefficients:

a(t) = AM | when 1 € [fL(M), f(IM)] &)
where fL(M), fISM) denotes lower and higher bounds whereas
AM) represents the weights in M-th frequency band. The IIF
filter is directly applied to the clean waveforms and the
filtered waveforms are used as training data. In testing, the

neural networks generate the enhanced speech waveforms by
incorporating the effects of IIF filter.

D. ITERATIVE TIME-DOMAIN SPEECH RECOVERY
After generating the estimate of magnitude spectra by the
neural networks, time-domain speech signals are recovered
by using inverse STFT (iSTFT). One approach to recover
the time-domain signals is to apply iSTFT using estimated
magnitude of neural network and the phase of time-domain
noisy speech waveforms. However, background noise also
degrades the phase of the clean speech, and this degradation
typically produces perceptual disturbances and has negative
impacts associated to the speech quality. Moreover, Fourier
transforms of overlapping speech frames are concatenated
and then STFT is computed which is a redundant version
of the time-domain signal. The magnitude spectrograms of
the recovered time-domain speech signal perhaps different
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Algorithm 1 Iterative Time-Domain Speech Recovering

Input: Output DNN/RNN Magnitude X%and Noisy Phase ¢°
and Number of iterations K
Output: Time-domain Speech Signal X

X <—)A(O,¢ <« ¢k <1
: While £k < Kdo

.3k — iSTFT(X, ¢)

(XK, ¢%) < STFTGEF)
‘X <« X0

TP <~ ¢0

k< k+1

: end While

(3« 3K

O 00 1O\ B~ W~

from the intended recovered signal [46], [47]. This difference
is considered for neural network estimated magnitudes. To
reduce mismatch between the magnitude and phase from
which we prefer to recover a time-domain speech signal,
an iterative procedure is adopted [46] in order to recover
the time-domain speech signal, given as Algorithm 1. In this
algorithm the phase is updated iteratively at every step and
replaces it with phase of STFT of its iSTFT, whereas the esti-
mated magnitude of neural network output always remains
the fixed. The algorithm acquires as input is the estimated
magnitudes from DNN/RNN outputs that need to be recon-
structed. The phases are not known and need to be solved
for reconstructing the estimate of the original signal. The
iterations identify the closest achievable magnitude spectro-
gram consistent with given magnitude spectrogram. GLA is
an accepted phase recovery algorithm which is based on the
spectrogram consistency [43]. It recovers a complex-valued
spectrogram, which remains consistent and also retains given
magnitude by a projection procedure. The GLA is obtained
for an optimization problem [46].

IV. EXPERIMENTS

A. DATASET

The experiments are performed on a speech dataset that is
produced from the TIMIT database [48]. In order to access
the performance of processing methods in various noisy
backgrounds, 15 different noise types are selected from the
NOISEX-92 [49] and Aurora-4 [50] databases, as given in
Table 3. To create noisy speech signals, three signal-to-noise
(SNR) levels are used that ranged from -3dB to 3dB with a
3dB step size. For training, 2000 speech utterances from 100
different speakers of both genders are reproduced for each
time-frequency mask (three times) for each SNR level, and
mixed with the 15 noise types. Hence, a total of 18000 speech
utterances (about 15 hours training data) are used during
training. Moreover, 800 speech utterances from 30 different
speakers are used for the testing purpose. To evaluate the
processing methods, 150 speech utterances from 16 speakers
of both genders are used at random. All noise sources are used
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TABLE 3. Background noise types (N1-N15).

N1: Babble Noise, N2: Airport Noise, N3: Factory Noise
N4: Car Noise, N5: Destroyerengine Noise, N6: F16
N7: Buccaneer, N8: Destroyerops Noise, N9: Café Noise
N10: Street Noise, N11: Pink Noise, N12: Volvo Noise
N13: White Noise, N14: HF Channel Noise, N15: Hall

TABLE 4. Neural networks architecture settings.

T-F Hidden | Visible Post
Networks Mask Loss | Units/ Units/ Processin
ReLU | Sigmoid &
RNN-IAM IAM | Lyse 1536 512 Speech
RNN-IRM IRM | Lyse 1536 512 Recovery
RNN-IBM IBM | Luse 1536 512 And CBIF
DNN-IAM IAM | Lyse | 3072 257 Speech
DNN-IRM IRM | Luse 3072 257 Recovery
DNN-IBM | IBM | Lysz | 3072 257 | And CBIF
RNNg-IAM | TAM | Lyse 1536 512 No Speech
RNNg-IRM | IRM | Lysg | 1536 512 Recovery
RNN-IBM | IBM | Lysg | 1536 512 And CBIF
DNNg-IAM | IAM | Lysg | 3072 257 No Speech
DNNg-IRM | IRM | Lysg | 3072 257 Recovery
DNN-IBM | IBM | Lyse | 3072 257 | And CBIF

in training and testing. The results are averaged over 15 noise
types.

B. EVALUATION METRICS AND PARAMETERS

We quantitatively evaluated various spectral masking-based
speech enhancement methods by four objective measures.
Short-time objective intelligibility (STOI) and the extended
STOI (ESTOI) are used as intelligibility indicators whereas
perceptual evaluation of speech quality (PESQ) and signal-
to-distortion ratio (SDR) are used as the quality indicators,
respectively. PESQ [51], an ITU-T P.862 recommendation
predicts the perceptual quality of the enhanced speech by giv-
ing an output value ranged from 0.5 to 4.5, where a high value
implies better speech quality. SDR [52] measures the speech
quality. STOI [53] predicts the intelligibility of the enhanced
speech by providing an output value ranged from O to 1 and
a high value implies better speech intelligibility. The STOI
values are based on the correlation between clean and the
enhanced speech signals in short-time overlapped segments.
ESTOI [54] predicts intelligibility of enhanced speech by
providing an output value ranged from O to 1.

C. SYSTEM REPRESENTATION

Based on the time-frequency masks and learning meth-
ods, various deep spectral masking-based speech enhance-
ment methods are realized, given in Table 4. To express
all the speech enhancement methods, an interpretation is
followed: (< Neural Network >-< Mask Type >-< Post
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Processing >). A speech enhancement method “DNN-IRM”
indicates that the feedforward DNN is used with IRM as
a time-frequency mask and used no iterative time-domain
speech recovery and IIF filter. Also, a speech enhancement
method “RNN-IBM” indicates that recurrent neural network
is used with IBM as a time-frequency mask and used no
iterative time-domain speech recovery and IIF filter. Simi-
larly, a speech enhancement method “DNN-IRM-iSR” indi-
cates that the feedforward DNN is used with IRM as a
time-frequency mask and used iterative time-domain speech
recovery and IIF filter. Finally, a speech enhancement method
“RNN-IBM-iSR” indicates that recurrent neural network is
used with IBM as a time-frequency mask and used iterative
time-domain speech recovery and IIF filter. The baseline
deep networks are represented as DNNp and RNNp, respec-
tively. All neural networks are trained with same training
dataset. Intel Core 17-3210M 3.2GHz processor and Nvidia
GTX 950 GPU are used to conduct all the experiments.

V. RESULTS AND ANALYSIS

In this section, we discussed the main findings of this study.
We first subjectively compared spectral-masking methods
with time-frequency masks without iterative time-domain
speech recovery algorithm and intelligibility improvement
filter. Secondly, we compared the proposed RNN, DNN and
related speech enhancement methods. Thirdly, we evaluated
the speech recognition performance of the proposed method.
We finally conducted subjective listening tests to further
evaluate the proposed method in terms of the speech quality
and intelligibility.

A. OBJECTIVE EVALUATION

We report the detailed comparison results for three noise
types on the TIMIT database of both genders in Table 5 and
Table 6 respectively, where mask approximation was used
as the training loss function of all neural network mod-
els. From the Tables, we observed that the spectral
masking-based methods with iterative time-domain speech
recovery and the intelligibility improvement filter performed
better when applied with RNN and DNN frameworks. The
time-frequency masks with the speech recovery and IIF
filter improved the speech quality and intelligibility over
their counterparts and unprocessed noisy speech. Explic-
itly, RNN-based learning spectral masking outperformed
DNN-based spectral masking. For example in Table 5 at
—3dB babble noise, RNN-IRM-iSR improved the STOI
by 17.6% over the noisy speech and by 1.25% over the
RNN-IRM counterpart, respectively. Similarly, at —3dB fac-
tory noise, RNN-IAM-iSR improved the STOI by 22.38%
over the noisy speech and by 1.08% over RNN-IAM.
In addition, RNN-IBM-iSR improved the ESTOI and SDR
by 1.58% and 3.85% over RNN-IBM at —3dB factory
noise. In the same way, RNN-IRM-iSR, RNN-IBM-iSR and
RNN-IAM-iSR improved the PESQ at —3dB white noise
by factors 0.85, 0.81 and 0.86 over the noisy speech sig-
nal whereas improved the PESQ by 2%, 2.04% and 1.01%
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TABLE 5. Performance evaluation of RNN frameworks for three SNR levels using TIMIT corpus in three example noisy backgrounds.

Babble Noise Factory Noise White Noise
Methods -3dB -3dB -3dB
STOI | ESTOI SDR | PESQ | STOI | ESTOI SDR | PESQ | STOI | ESTOI SDR PESQ
Noisy 61.9 26.3 -2.81 1.29 61.2 25.5 -2.77 1.27 69.9 33.66 -2.73 1.19
RNN-IRM-iSR 72.8 45.0 4.09 1.64 75.31 46.01 543 1.67 82.1 57.71 10.27 2.04
RNN-IBM-iSR 72.3 44.8 4.05 1.61 74.81 45.71 5.52 1.64 81.2 57.00 9.63 2.00
RNN-IAM-iSR 73.5 46.1 4.02 1.60 74.91 45.11 5.40 1.60 82.0 57.48 10.30 2.05
RNN;g-IRM 71.9 43.5 3.93 1.58 74.21 44.61 5.34 1.61 80.9 56.49 9.05 2.00
RNN;-IBM 71.8 44.1 3.90 1.57 74.01 45.21 5.44 1.58 80.0 55.78 8.41 1.96
RNNg-IAM 72.9 45.2 3.92 1.54 74.11 43.21 5.27 1.52 80.8 56.26 9.08 1.98
Methods 0dB 0dB 0dB
STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR PESQ
Noisy 68.9 345 0.13 1.51 68.0 34.0 0.15 1.49 74.6 40.1 0.19 1.29
RNN-IRM-iSR 81.7 57.6 6.58 2.00 82.3 56.6 7.68 1.99 86.6 65.9 12.2 2.33
RNN-IBM-iSR 80.9 56.8 6.41 1.97 81.4 56.7 8.44 1.96 86.2 65.1 12.1 2.28
RNN-IAM-iSR 81.6 57.4 6.46 1.94 82.4 56.0 7.57 1.97 86.6 65.5 12.2 2.30
RNNjg-IRM 80.5 56.4 5.36 1.94 81.1 55.3 6.46 1.91 85.4 64.7 11.0 2.29
RNNg-IBM 79.7 55.6 5.18 1.88 80.2 55.5 7.22 1.87 85.0 63.8 10.9 2.21
RNNg-IAM 80.4 56.1 5.24 1.87 81.1 54.8 6.35 1.90 85.3 64.3 10.9 2.22
Methods 3dB 3dB 3dB
STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR PESQ
Noisy 75.9 43.6 3.09 1.86 78.8 433 3.11 1.65 79.0 46.6 3.13 1.45
RNN-IRM-iSR 87.9 68.1 8.94 231 87.7 66.5 9.91 2.23 90.4 73.13 14.2 2.58
RNN-IBM-iSR 87.1 66.6 8.71 2.14 87.0 66.1 9.87 2.11 90.0 71.63 14.1 2.46
RNN-IAM-iSR 87.7 67.4 8.89 2.32 87.7 66.3 9.9 2.20 90.3 72.83 14.1 2.51
RNNjg-IRM 86.7 66.9 7.72 2.22 86.5 65.3 8.69 2.18 89.2 71.93 13.0 2.52
RNN;g-IBM 85.9 65.4 7.49 2.10 85.8 64.9 8.65 2.07 88.8 70.43 12.9 2.40
RNNg-IAM 86.5 66.2 7.67 2.24 86.5 65.1 8.68 2.16 89.1 71.63 12.9 2.47
over RNN-IRM, RNN-IBM and RNN-IAM, respectively. STOI ESTOI
The STOI, ESTOI, SDR and PESQ performance gains are - '2_ - =
higher in the nonvocal noisy backgrounds, i.e. factory, and é ‘Z‘ é Gl
white noise than vocal babble noise. On the other hand, o | 2%
DNN-based spectral masking after incorporating the IIF filter g ol | g 0f
and time-domain speech recovery performed better compare E 4 | E st
to the counterparts. For example in Table 6 at 0dB babble ol | 0
noise, DNN-IRM-iSR improved the STOI, SDR and PESQ IRM IBM IAM IRM IBM IAM
by 16.83%, 5.22dB and 19% over noisy speech utterances. PESQ
Similarly, DNN-IRM-iSR, DNN-IBM-iSR and DNN-IAM- " -
iSR improved STOI and PESQ by 1.51%, 1.52% and 1.51% E 8 | E 06!
over DNN-IRM, DNN-IBM and DNN-IAM counterparts, 5 of 1 5.
respectively. The average improvements in values of the 8 4 { §0“'
STOI, ESTOI, SDR and PESQ are given in Figure 6. E’ 21 | _go 2
We separately compared the performance gains between G "
IRM IBM A IRM IBM

time-frequency masks generated by neural networks-based
spectral masking methods. The results of the comparative
study processed by three time-frequency mask based on
RNN and DNN are given in Table 7. In terms of the
STOI and ESTOI, IAM-iSR performed better than IRM-
iSR and IBM-iSR. Similarly, in terms of the SDR and
PESQ, IRM-iSR performed better than IAM-iSR and IBM-
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FIGURE 6. STOI, ESTOI, SDR and PESQ improvements.

iSR. For example, RNN-IAM-iSR improved the STOI by
16.40% over noisy speech as compare to RNN-IRM-iSR
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TABLE 6. Performance evaluation of DNN frameworks for three SNR Levels using TIMIT corpus in three example noisy backgrounds.

Babble Noise Factory Noise White Noise
Methods -3dB -3dB -3dB
STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR PESQ
Noisy 61.9 26.3 -2.81 1.29 61.2 25.5 -2.77 1.27 69.9 33.66 -2.73 1.19
DNN-IRM-iSR 71.6 43.8 2.88 1.45 74.1 44.8 4.22 1.48 80.9 56.50 9.06 1.85
DNN-IBM-iSR 71.1 43.6 2.84 1.42 73.6 44.5 431 1.45 80.0 55.79 8.42 1.81
DNN-IAM-iSR 72.3 44.9 2.81 1.41 73.7 43.9 4.19 1.41 80.8 56.27 9.09 1.86
DNNg-IRM 70.7 423 2.72 1.39 73.0 434 4.13 1.42 79.7 55.28 7.84 1.81
DNN3-IBM 70.6 42.9 2.69 1.38 72.8 44.0 4.23 1.39 78.8 54.57 7.20 1.77
DNNg-IAM 71.7 44.0 2.71 1.35 72.9 42.0 4.06 1.33 79.6 55.05 7.87 1.79
Methods 0dB 0dB 0dB
STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR PESQ
Noisy 68.9 34.5 0.13 1.51 68.0 34.0 0.15 1.49 74.6 40.1 0.191 1.29
DNN-IRM-iSR 80.5 56.4 5.35 1.81 81.1 55.4 6.45 1.80 85.4 64.7 11.00 2.14
DNN-IBM-iSR 79.7 55.6 5.17 1.78 80.2 55.5 7.21 1.77 85.0 63.9 10.86 2.09
DNN-IAM-iSR 80.4 56.2 5.23 1.75 81.2 54.8 6.34 1.78 85.4 64.3 10.93 2.11
DNN;g-IRM 79.3 55.2 4.13 1.75 79.9 54.1 5.23 1.72 84.2 63.5 9.78 2.10
DNN;-IBM 78.5 54.4 3.95 1.69 79.0 54.3 5.99 1.68 83.8 62.6 9.64 2.02
DNN3-IAM 79.2 54.9 4.01 1.68 79.9 53.6 5.12 1.71 84.1 63.1 9.71 2.03
Methods 3dB 3dB 3dB
STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR PESQ
Noisy 75.9 43.6 3.09 1.86 78.8 433 3.11 1.65 79.0 46.6 3.132 1.45
DNN-IRM-iSR 86.7 66.9 7.71 2.12 86.5 65.3 8.68 2.04 89.2 71.9 13.01 2.39
DNN-IBM-iSR 85.9 65.4 7.48 1.95 85.8 64.9 8.64 1.92 88.8 70.4 12.84 227
DNN-IAM-iSR 86.5 66.2 7.66 2.13 86.5 65.1 8.67 2.01 89.1 71.6 12.88 232
DNNg-IRM 85.5 65.7 6.49 2.03 85.3 64.1 7.46 1.99 88.0 70.7 11.79 2.33
DNN;-IBM 84.7 64.2 6.26 1.91 84.6 63.7 7.42 1.88 87.6 69.2 11.62 221
DNN;g-IAM 85.3 65.0 6.44 2.05 85.3 63.9 7.45 1.97 87.9 70.4 11.66 2.28

TABLE 7. Average comparison performance evaluation at all noise types and three SNR levels using TIMIT Corpus for both Genders.

Methods RNN DNN

STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR | PESQ
Noisy 7127 | 3639 | 0.17 | 144 | 71.27 | 3639 | 0.17 | 1.44
IRM-iSR | 8295 | 59.61 | 881 | 2.09 | 81.77 | 5841 | 7.60 | 1.90
IBM-iSR | 82.32 | 5893 | 7.69 | 2.02 | 81.12 | 57.73 | 740 | 1.83
IAM-iSR | 82.96 | 59.34 | 8.76 | 2.05 | 81.76 | 58.14 | 7.53 1.86

and RNN-IBM-iSR that improved the STOI by 16.38%
and 15.5% over noisy speech, respectively. In addition,
DNN-IRM-iSR improved the PESQ by a factor 0.46
over noisy speech as compare to RNN-IBM-iSR and
RNN-IAM-iSR structures that improved the PESQ values by
the factor 0.39 and 0.42, respectively. Time-varying spectro-
gram graphically shows and analyzes the important speech
patterns over the time at various frequency bands. To visualize
and compare the performance of the speech enhancement for
both RNN and DNN, spectrograms of the clean and noisy
speech samples as well as for enhanced speech signal are
plotted in Fig. 7. For clear understandings, STOI, SDR and
PESQ values of the speech utterances are mentioned over the
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spectrograms. It is evident that both RNN-iSR and DNN-iSR
successfully reduced the background noise components, and
RNN-iSR provides a better recovered speech signal compare
to RNN.

Also, DNN-iSR provides a better recovered speech
signal than DNN. To visualize impacts of the phase
recovery and IIF in the proposed speech enhancement,
spectrograms of the clean and noisy speech samples as
well as for the phase recovered-only, RNN output with
phase recovery and RNN output with IIF filter effects
are plotted in Fig. 8. Phase recovery and integration of
IIF filter significantly improved the speech quality and
indelibility.
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TABLE 8. Average performance evaluation at all noise types and three SNR levels using TIMIT corpus for both genders against various competing speech
enhancement methods.

Processing -3dB 0dB 3dB
Methods STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR | PESQ | STOI | ESTOI | SDR | PESQ
Noisy 64.3 28.5 -2.7 1.25 70.5 36.2 0.16 1.43 77.9 44.5 3.11 1.65
RNN-iSR 76.5 49.4 6.52 1.76 83.3 59.7 8.84 | 2.08 88.4 74.6 109 | 232
DNN-iSR 75.3 48.2 5.31 1.57 82.1 58.3 7.61 1.89 87.2 67.5 9.73 | 2.13
RNNjg 75.6 48.2 6.03 1.71 82.0 58.5 7.62 2.01 87.3 67.5 9.74 | 2.26
DNNpg 74.4 47.1 4.82 1.52 80.9 573 6.40 1.82 86.0 66.3 8.51 2.07
NMF 67.0 30.6 2.76 1.39 72.5 36.8 3.93 1.48 76.6 40.5 5.82 1.56
NNDS 68.5 36.5 2.53 1.32 74.4 48.9 4.55 1.64 80.6 60.1 7.12 1.95
NRPCA 66.8 34.0 2.32 1.37 73.3 46.9 3.88 1.61 77.2 50.2 6.73 1.91
LMMSE 67.2 38.6 2.39 1.41 73.6 47.0 3.92 1.67 79.0 523 6.77 1.97
DDAE 73.1 45.2 4.21 1.49 78.7 56.2 6.03 1.79 83.1 63.2 7.98 | 2.01
TABLE 9. Output SNR, A SNR and SSNR performance at three input SNRs.

Processing -3dB 0dB 3dB

Methods SNRo | ASNR | SSNR | SNRp | ASNR | SSNR | SNRp | ASNR | SSNR

Noisy -0.92 | 2.08 0.97 0.79 0.79 1.58 341 0.41 2.52

RNN-iSR 6.04 9.04 4.22 7.51 7.51 5.09 9.39 6.39 6.33

DNN-iSR | 4.89 7.89 3.70 6.44 6.44 4.59 8.66 5.66 5.88

RNNjg 5.82 8.82 3.91 7.16 7.16 4.83 9.02 6.02 6.10

DNNjg 5.76 8.76 3.66 6.23 6.23 4.34 8.17 5.17 5.54

NMF 0.13 3.13 0.43 3.11 3.11 2.92 5.12 2.12 3.10

NNDS 1.74 4.74 1.48 4.32 4.32 4.07 6.51 3.51 4.77

NRPCA 1.64 4.64 1.31 4.13 4.13 3.98 6.22 3.22 4.33

LMMSE 1.13 4.13 0.98 3.89 3.89 3.44 5.76 2.76 4.01

DDAE 5.76 8.76 3.11 6.92 6.92 4.11 8.59 5.59 5.22

TABLE 10. Time complexity of DNN and RNN training.

Operation Proposed Networks
O(NyN, (U, + N, +2N}, + N, N, ))
DNN=[1230 1024 1024 1024 257]
RNN=[1230 256 256 256 257]

DNN=0.0951 (Approx)

RNN=0.0366 (Approx)

Forward-Backward Propagation

Network Architectures

Average MSE at 100 Epochs

B. COMPARISON WITH RELATED METHODS

Additionally, the spectral-masking learning methods are
compared to various state-of-the-art speech enhancement
methods including deep neural network (DNN) [16], recur-
rent neural network (RNN) [31], non-negative matrix
factorization (NMF) [10], non-negative dynamical sys-
tem (NNDS) [55], robust principle component analysis
(RPCA) [56], log-minimum mean square error (LMMSE) [7]
and deep denoising autoencoder (DDAE) [57] in order to
confirm the performance of the proposed speech enhance-
ment method. It is evident that both learning methods have
attained a significant improvement over the competing meth-
ods, with improved PESQ, STOI, ESTOI and SDR values.

160590

The intelligibility and quality values of NNDS are consis-
tently greater than NMF and RPCA-based methods. The
results in Table 8 demonstrated that proposed RNN-iSR
and DNN-iSR outscored their counterparts, RNN and DNN,
as well as other competing methods, NMF, NNDS, RPCA,
LMMSE, and DDAE with reasonable margins. For exam-
ple, the STOI values are improved from 67% with NMF at
—3dB noise to 76.5% with RNN-iSR and improved STOI
by 14.18%. Similarly, the PESQ values are improved from
1.64 with NNDS at 0dB noise to 1.89 with DNN-iSR and
improved the PESQ by 15.24%. Likewise, The SDR values
are improved from the 6.73 with RPCA at 0dB noise to 10.90
with RNN-iSR and improved the SDR by 4.17 dB.

Table 9 shows the results in terms of the output SNR
(SNRp), improvement in overall SNR (ASNR), and Seg-
mental SNR (SSNR), respectively. The SSNR is used to
measure the residual noise in the enhanced speech signals.
The proposed speech enhancement methods, RNN-iSR and
DNN-iSR significantly improved the SNRo and achieved a
significant gain in SNRg. The overall ASNRs for RNN-iSR
and DNN-iSR are higher than the competing state-of-the-art
methods. Similarly, the consistent SSNR values indicate that
proposed speech enhancement methods significantly reduced
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FIGURE 7. Sample spectro-temporal analysis of the processing methods.
Speech utterance degraded by babble noise at 0dB SNR. The
spectrograms belong to IRM time-frequency making.

the residual noise which is confirmed from Fig. 6 (time-
varying spectrograms).

C. COMPLEXITY AND NETWORK CONVERGENCE

The complexity to train DNN/RNN depends on the net-
work parameters and forward-backward propagation for net-
work tuning. In the proposed speech enhancement methods,
we have randomly initialized the parameters of networks.
The complexity also depends upon quantity of neurons in
the hidden layers and weights. Higher the number of neurons
more will be the complexity of network. Observe Table 4, all
DNNs/RNNs are trained with same number of layers, quan-
tity of neurons in hidden and visible layers, LSTM units, but
the proposed deep networks performed better and converged
faster. The reason for fast network convergence (less loss
function) is adaptation of critical band weights which are
directly applied to the clean training data. The input data is
pre-processed with CBIF weights which certainly improved
the network performance. With equal quantity of neurons, the
proposed methods provided lower values of loss functions,
and this fact can be observed in Fig. 3 where all proposed
methods converged at epoch > 35. Based on the conver-
gence results, we have fixed the epoch’s number to 50 in the
proposed speech enhancement methods. The complexity of
DNN/RNN is given in Table 10, represented by “O”. The
forward and backpropagation propagation depends on Ur:
dimension of the input acoustic features, Np: training data
point’s numbers, Ngy. number of hidden neurons in layers,
No: number of the output neurons, Ng: epochs for parameters
tuning.

D. ROBUST SPEECH RECOGNITION
The above evaluations showed that DNN and RNN-based
spectral masking significantly attenuated the background
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FIGURE 8. Sample spectro-temporal analysis. Top (Clean and Noisy speech spectrograms). Bottom (Left): Phase Recovery-only,
(Middle) RNN output with phase recovery and (Right): RNN output with IIF Filtering.
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TABLE 11. WERs for different processing approaches.

WERs in % Clean Speech | Noisy Speech | RNN-iSR | RNNg | DNN-iSR | DNNpg
’ 0.0% 48.12% 12.90% | 16.13% | 19.22% | 21.58%
TABLE 12. Biographical data from the listeners tested.
Listeners | L1 | L2 | L3 | L4 | LS| L6 |L7 | L8| L9 |LI10 | LIl |L12|LI13

Age 30 | 28 | 35 | 38 | 38 | 40

40 | 42 | 45| 45 | 48 | 50 | 53

Gender | M| M| F | M| F F

noise and produced fine estimates of the magnitude spectro-
gram of the clean speech. Since automatic speech recogni-
tion methods only utilize magnitude spectrogram, one would
expect DNN and RNN approaches to improve ASR perfor-
mance in background noisy environments. To perform the
automatic speech recognition, DNN and RNN-based spec-
tral masking approaches are treated as front-end to enhance
all speech utterances. We used Google ASR [58] in the
experiments to evaluate ASR performance in terms of the
word error rates (WERs). We provided average WERSs results
across all background noises and SNR levels. As shown
in Table 11, both RNN-iSR and DNN-iSR achieved lower
WERs than DNN and RNN in background noisy conditions.
RNN-iSR and DNN-iSR-based speech enhancement consid-
erably boosted the ASR performance, where the improve-
ments are 28.29% (absolute) for the DNN-iSR and 35.22%
for the RNN-iSR over noisy speech utterances. The ASR
advantage gradually decreases as the SNR increases, partly
because the noise becomes smaller. The ASR experiments
aim to show the potential of RNNs and DNNs rather than to
achieve the state-of-the-art results.

E. SUBJECTIVE EVALUATION

In addition to the objective evaluation, subjective listening
tests are also performed to evaluate the perceptual quality and
speech intelligibility of the enhanced speech. Speech utter-
ances with an input SNR of —3dB, 0dB and 3dB are randomly
selected from three noise sources (babble, factory, and white
noise). In total 100 speech utterances are used to compare
DNN-iSR and RNN-iSR. A total of 06 participants are asked
to select the correctly perceived words in order to measure
the speech intelligibility in terms of the word recognition
rate (WRR). In experiments none of speech utterances are
repeated. The tests are performed in isolated room using high
quality headphones.

Figure 9 demonstrates the subjective listening results in
terms of the subjective intelligibility (WRR). From Fig. 9,
we can observe that RNN-iSR achieved better results at all
input SNRs. DNN-iSR significantly improved the results at
—3dB and 0dB. The results indicate the advantages of the
iterative speech recovery and IIF filter in the proposed speech
enhancement methods. In order to investigate the statistical
significance, we performed analysis of variance (ANOVA)
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FIGURE 9. Subjective listening tests in terms of the speech intelligibility
(WRR).

for the achieved WRR scores. The critical value of F is
349 at p <0.05 (95% confidence level) probability. The
ANOVA results for WRR at —3dB and 0dB are [F (4, 13)
= 2398, p <0.0003] and [F (4, 13) = 17.84, p <0.0001]
which indicates statistical significance. But, ANOVA results
for WRR at 3dB is [F (4, 13) = 3.86, p <0.0111] which
indicates slight statistical significance. The reason for the
slight statistical significance is the favorable SNR.

To measure the speech quality of the enhanced speech
subjectively, a total of 13 participants are asked to select the
speech utterance that they preferred in terms of the mean
opinion score (MOS). The biographical data of the listeners
participated in the subjective listening tests for the speech
quality is given in Table 12. A total of 200 speech utter-
ances are randomly selected which are mixed with the three
noise sources (babble, factory, and white noise) at —3dB,
0dB and 3dB SNR. The processed speech utterances are
used to compare the performance of proposed DNN-iSR
and RNN-iSR. In experiments none of speech utterances are
repeated. Training sessions are organized to disseminate the
listeners about the procedure. The tests are performed in an
isolated room using high quality headphones. Figure 9-10
demonstrates the subjective listening tests in terms of MOS
for speech quality. Both DNN-iSR and RNN-iSR showed
better performance. The average MOS scores at negative
SNRs is higher than 2.75 (MOS>2.75 at —3dB) which shows
significant improvement. But at SNR>0dB, the average MOS
score surpassed 3 (MOS>3.0 at 0dB and 3dB). The individual
MOS scores for all listeners in the tests is also depicted in
Fig. 9-10. The ANOVA for MOS at —3dB, 0dB and 3dB are
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all participants at —3dB, 0db and 3dB SNR.

[F (4, 13) =330.61, p < 0.0001], [F (4, 13)=164.93,p <
0.0001] and [F (4, 13)=89.12, p < 0.0001] which indicates
statistical significance of achieved MOS scores.

VI. DISCUSSION AND CONCLUSION

We have proposed supervised spectral masking-based learn-
ing approaches to perform the single-channel speech
enhancement. RNNs and DNNs are trained to learn the spec-
tral masking between the degraded and clean speech signals.
Our study trained the RNNs and DNNs without unsupervised
pretraining to address single-channel speech enhancement.
The presented study used the intelligibility improvement fil-
ter and an iterative reconstruction method to improve the
outputs of neural networks and produced better recovered
speech. In this study, all acoustic features are concatenation of
the raw acoustic features in a window, since temporal dynam-
ics gives more valuable information for the speech signals.
A more elemental concept to exploit the temporal informa-
tion is use of the RNN architecture, which is a fundamental
extension of a feedforward network. The RNN architecture
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aims to grab the long-term temporal dynamics utilizing the
time-delayed self-connections and is trained sequentially.
We have trained RNN architectures for the spectral masking,
and yielded 4.76%, 12.59%, 2.75dB and 8.67% improve-
ments in terms of the STOI, ESTOI, SDR and PESQ. These
improvements are worth significant. In our study, we also
trained the DNN architectures. To test the generalization of
RNNs and DNNs, we used the TIMIT database that included
both male and female speakers. The overall ASNRs and
SSNR for RNN-iSR and DNN-iSR are higher than the com-
peting state-of-the-art methods. The listening tests indicate
that RNN-iSR approach achieved better results at all input
SNRs. DNN-iSR improved the results at —3dB and 0dB
significantly. In addition, ASR experiments were conducted,
which showed that the proposed speech enhancement method
is robust to the automatic speech recognition task. It is
important to mention that we first recovered the time-domain
speech signals from RNNs and DNNs outputs and then per-
formed automatic speech recognition task which is based on
the processed speech signals. We achieved less computational
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complexity and fast convergence as compare to the base-
line DNN/RNN speech enhancement methods. According
to our experiments, the iterative speech recovery and IIF
filter improved the predicted speech intelligibility and quality
values as well as significantly improvement the ASR. Com-
paring Fig. 6(c) with Fig. 6(e), the spectrogram of RNN-iSR
output is better than the spectrogram of RNN recovered sig-

nal,

suggesting the benefits of iterative speech recovery and

IIF filter. As RNN-iSR and DNN-iSR outputs show the better
spectral representation, they yielded better ASR performance.
In summary, we have proposed to use RNNs and DNNs to
learn the spectral-masking from degraded speech to clean
speech for single-channel speech enhancement task. The
proposed supervised learning approaches are conceptually
uncomplicated and have improved the performance in terms
of the predicted speech intelligibility and quality, and boosted
the ASR results in various noisy conditions.
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