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ABSTRACT One of the most important security challenges in remote computing (e.g., cloud computing)
is protecting users’ applications running on the service platform from malicious attacks. Because remote
users have little control over the platform, a malicious platform manager or platform-sharing guest acting as
an adversary can easily create an untrustworthy execution environment. Prior studies have leveraged trusted
third party (TTP)-based and trusted execution environment (TEE)-based approaches tomitigate such security
issues, but these approaches still provide little transparency from the user’s perspective. To address this
challenge, we present a remote auditing approach based on an identified trust chain (RAitc) to analyze
the correctness of remotely loaded applications. The chain is constructed with two goals: the first is to
identify the remote platform to ensure that the user has a designated service system; the second is to build
a trust chain from the user to the designated platform via verifiable computing-based module measurements
and kernel-based application auditing. RAitc achieves a higher guarantee of safety in securely monitoring
and verifying the integrity of remote applications executed by users. In addition, RAitc is both easier and
more flexible for the extension of the trust base. Our implementation of RAitc protects users’ remote
execution environments while requiring an acceptable overhead on the target system in application auditing.
We rigorously and comprehensively evaluated the effectiveness and performance of RAitc. The results show
that RAitc performs effectively and has acceptable resource consumption.

INDEX TERMS Auditing, trust chain, identification, verifiable computing.

I. INTRODUCTION
Network computing nodes, such as the cloud, are intended
for transfer of computational tasks from a computationally
weaker client (i.e., a mobile device) to a remote power-
ful worker (i.e., a remote workstation or cloud server that
provides services). This approach effectively improves the
utilization ratio of computational resources and the quality
of client services. However, the clients, who have less con-
trol over remote computing processing, may be suspicious
of the results from a remote worker. A malicious platform-
sharing attacker or a compromised worker can manipulate the
computing result by attacking the remote computing platform
[1], [2]. These compromising situations are reflected in the
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following aspects: the user’s designated benign system might
be replaced by a system with reduced performance or by a
malicious system, and the user’s designated applicationmight
be altered by malware.

To avoid such malicious remote services, users can either
passively trust the platform, supported by security-enhanced
workers [3]–[5], or actively seek to validate the remote
service environment [6], [7]. To enhance cloud comput-
ing security, providers such as IBM and Huawei have pro-
posed a series of security rules based on existing protection
protectionmechanism—e.g., a network intrusion detection
system (NIDS) [8] and distributed antivirus software [9].
However, such security mechanisms are deployed at the ker-
nel level in the remote target system, which may already
be compromised by untrusted platform providers. Because
the users have little ability to audit the correctness of the
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security mechanisms in the target system, providers have
higher privileges regarding direct target systemmanipulation.

Thus, users seek assistance from trusted third parties
(TTPs) and trusted execution environment (TEE) technolo-
gies so that they can actively assess the trustworthiness of
remote services. For example, Zhang and Lee [10] pro-
posed a new way to ensure module safety in an untrusted
entity by introducing a TTP for data integrity verification
and service validation. The basic TEE approaches generally
use hardware or hypervisor protection to construct isolated
environments to protect sensitive computing. Popular hard-
ware features are introduced into commercial machines as
transparent and trusted computing bases due to the secure
and isolated execution environment—e.g., Intel Manage-
ment Mode (IME) [11], Intel System Management Mode
(SMM) [12], and TrustZone [13]. However, the hardware-
assisted approaches [14] present the problem of addressing
the semantic gap between hardware and software, which
requires cooperative technology [15] to construct a secure
channel between the TEE and the target system to help
transfer and analyze the software data in the TEE without
leaking sensitive data. Hypervisor-based approaches provide
a virtual TEE with high privileges and isolation from the
target virtual machine (VM) system. However, the virtual
trust bases are extremely large, which causes more complex
vulnerabilities [16].

In most remote outsourced computing situations, users
expect a correct computing result from a designated plat-
form with QoS assurance [17]. Therefore, researchers have
developed verifiable computing (VC) approaches to verify
the correctness of remote service results that do not attest
to the security of the entire remote execution environment
[18], [19]. This approach reduces the excessive over-
head required for TEE maintenance. However, the existing
VC approaches function effectively only for simple com-
putations (i.e., single functions) and exhibit reduced perfor-
mance with respect to executing general user applications.
Additionally, VC (especially the noninteractive zero
knowledge-based VC mechanism [20]) cannot solve the
remote platform identification issue because the verifier gen-
erally possesses little information on the target device [21].

To address the above challenges, we trust part of the
hardware existing in the target devices (Intel SMM on the
x86 platform in our paper) to identify a designated system
through identity cross-checking [22]. Note that Intel SMM,
as the isolated execution environment, can elucidate the entire
target application but requires a system switching which will
halt the target host. Additionally, SMM-based target checking
cannot effectively and synchronously implement dynamic
checking. Fortunately, VC approaches are only one solution
to dynamic checking of runtime function in remote devices
even without TEE support. Thus, we propose a prototype
system, RAitc, that uses an SMM-based module to identify
the remote computational environment and implements a
trust auditing chain between the user and identified system

to ultimately check the loaded application. Our contributions
are as follows:
• We propose a trusted remote application auditing system
to verify the correctness of users’ remote services that
does not require trusting the remote OS.

• We leverage the Intel SMM in the target machine to
assist with target device identification, which ensures
that services are executed in the user-designated system.

• We leverage the VC mechanism to create a remote trust
chain to verify the integrity of the auditing module in the
target kernel, which protects the auditing function from
malicious changes.

• We propose the RAitc prototype, along with practical
experiments to examine the system’s performance and
effectiveness. The results show that RAitc effectively
improves the ability of users to verify remote services.

The paper is organized as follows.We introduce the related
works in section II. We discuss the covered technologies in
section III, and illustrate the threat model and assumptions
in section IV. Then we describe the overview of RAitc by
introducing each component and the functions in section V.
In addition, we implement the details in section VI to describe
the key technologies and workflow of RAitc operation.
We analyze the security of RAitc in section VII and evaluate
the prototype in section VIII. Finally, we wrap up with the
conclusion in section IX.

II. RELATED WORK
In this section, we describe the related work of RAitc. The
topic of this work is related to several research areas and we
illustrate as follows.
Trusted Execution Environment. Response to the secu-

rity concern on computer computation, hardware manufac-
tures, software providers, and researchers seek to design a
trusted execution environment for the users. It commonly
includes hardware-supported and virtualization-based TEE.
The hardware-supported TEEs [23]–[25] directly build a
physical isolated platform for secure-sensitive code execu-
tion. Such TEEs use existing hardware properties like Intel
SGX, SMM, IME, and ARM TrustZone [26] to avoid extra
hardware. Virtualization-based TEEs are suitable for cloud
and other network computing, where the user’s system is
created based on the hypervisor and container [27], [28].
The former is more secure due to the physical isolation
between the trusted and untrusted parties, but the vulnerabil-
ities existing in its firmware and user interfaces will weaken
the isolation. The latter is more flexible to develop in differ-
ent platforms without considering the hardware difference.
However, the large trust base on virtualization-based TEEs
causes more bugs and overhead. Therefore, some researches
proposed enhanced methods like vTZ [29] by joining the
advantages of above two mechanisms.
Remote-assisted Malware Detection. Kernel-based mal-

ware detection is commonly used to protect enterprises and
users’ application [30], [31]. User applications generally call
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kernel-based functions when executing, thus, kernel func-
tion based monitoring (e.g., system call interposition) can
verify the runtime application. During a software execu-
tion, the corresponding events like thread creating, memory
reading/writing, can be intercepted and checked. Unfortu-
nately, kernel-level or higher-level attacks [32], [33] can
bypass and compromise the above-mentioned detection,
which means kernel-based detection itself should be pro-
tected as well. However, only local TEE-based protection
may not completely trustworthy because a remote user has
little control over the service platform.

Remote-assisted protection is necessary for enhancing the
security of kernel-based detection. Previous researches gen-
erally use the memory snapshot [34] or other side-channel
methods [35] to fetch memory data and analyze it in a remote
trust server. It is only staticmalware analysis that cannotmon-
itor the target’s behavior [36]. Also, the semantic gap existing
in binary code can reduce the accuracy of detection [37], [38].
Thus, an effective way to protect the target’s detection is
to remotely monitor the kernel-level detection module but
not only binary analyzing. The fully homomorphic encryp-
tion [39] is the closest approach to achieve the goal but
far from practical. Some researches like Pinocchio [40] can
verify the correctness of simply remote function, but hard to
handle complexity software. However, we can leverage the
advantages of both local TEE and remote attestation to create
a flexible and trusted kernel-based malware detection.
Mechanism of Cleanroom Secure Service. The cleanroom

model [41] is an ideal model, where the goal is to maintain
a trusted execution environment for remote users. It defined
such a network service model: the service store, denoted as
SS, provides designated applications for the user’s execution
environment (UEE), including the remote server platform
(SP) and local terminal (UT ). It designed a cleanroom pro-
tocol to guarantee trusted collaborative computing between
SP and UT if the protocol satisfies:
• SS is a trusted party and provides trust applications for
both SP and UT , and

• computational resources dynamically deployed in SP
can not be tampered by the dishonest SP manager, and

• computational resources dynamically deployed in UT
can not be tampered by the malicious user, and

• users achieve trusted service through executing the legal
application on the designated system.

Here both SP and UT are untrusted. If an application
loaded from NON − SS to UEE , it betrays the cleanroom
protocol. To support such a protocol, the solution is to create
a secure container along the untrusted platform with stronger
isolation [26], [42]. Besides, the communication between
each party goes through the secure channel [15], [43], [44].
However, this model is ideal and hard to implement in real
computation due to existing hardware and software vulnera-
bilities [39], [45], [46]. Fortunately, we can build a practical
model to perform approximate effect by trusting part of hard-
ware components. That means we can use the TEE to identify
the applications’ execution environment [26], [27], [47], and

the application is further checked by the remote attestation
mechanism.

III. TECHNOLOGIES
In this section, we cover the background of trust-chain-based
verification and the technologies involved in our design,
including Intel SMM and remote VC.

A. TRUST CHAIN-BASED VERIFICATION
The trust chain was introduced by the Trusted Computing
Group (TCG) [48] and first proposed to safeguard OS boot-
strapping. The main operations of the trust chain gradually
verify the correctness of the loaded module at each system
level. It leverages the local hardware module [46] or hypervi-
sor [49] as the root of trust (RoT). That is, a trust base exists
at each step of trusted service attestation, and each node in
the chain can be verified as trustworthy with the support of
prior trust node.

The local trust chainworks at high speed and has only small
overhead due to hardening technologies but still exhibits
many limitations. One factor is security: for example, the trust
platform module (TPM) hardware-assisted trust chain, which
generally functions as a BIOS guard during OS load check-
ing, depending on a static workflow to verify and load the
next OS module. The executed program is also coded and
stored in firmware; thus, it can be blocked by malicious
BIOS tampering or bootkits [50]. Furthermore, if the local
hardware or hypervisor RoTs are under attack, then the base
of chain might be compromised [51], leading to verifica-
tion errors. Another factor is flexibility: to ensure trustwor-
thiness, users have fewer interfaces for accessing the trust
base. Thus, for complex application executions, the conven-
tional trust chain cannot meet the strong dynamic verifica-
tion requirements. Some researchers have extended the local
trust chain-based verification to remote services [52]. Remote
verification can then effectively mitigate the verification
error caused by the compromised local chains. Furthermore,
the user, acting as the verifier, can audit the remote computing
platform.

B. SYSTEM MANAGEMENT MODE
SMM [53] is a special-purpose operating mode on Intel
x86 platforms for which execution is similar to the available
real and protected modes. SMM was designed to handle
system-wide functions such as power management, system
hardware control, or proprietary OEM-designed code. SMM
is a hardware-guaranteed isolated environment that runs in
protected mode including runtime user conveying systems.
Compared with TPM-based trust attestation mechanisms,
users can implement more complex and dynamic verify-
ing mechanisms in SMM to check the target OS. Because
SMM and the host share the same CPU cores, a checker
can more easily obtain the host runtime information needed
to solve the semantic gap between the memory and appli-
cation state, which is a difficult issue for other hardware
TEE-based approaches. Another advantage of SMM-based
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security approaches is that they can retain the consistency
of the host runtime state despite short pauses. In our paper,
we leverage SMM to fetch the CPU identification in a trusted
manner to enable further trust-chain construction.

C. REMOTE VERIFIABLE COMPUTING
In contrast to constructing a TEE for users, VC-based remote
attestations focus only on guaranteeing the correctness of
the outsourced computation. However, VC is more flexible
with respect to verifying additional content in the service
requirements of different users. Typical VC approaches, such
as Zaatar [54], Pantry [55] and zkSNARKs [56], all construct
circuit primitives for complex computations. These primitives
allow an external entity (the verifier) to obtain assurance that
an arbitrary segment of code, called by the target system,
can be executed without tampering by any malware that may
be present on an external computing device. In addition,
primitive computing operations have achieved mathematical
proof of execution completeness and correctness.

Most VC-based attestation approaches face difficulties
when processing complex applications while also providing
acceptable performance overhead. However, some studies
(e.g.,Pinocchio [40]) have proposed a practical VCmode that
can effectively verify small signal functions, including math-
ematical formulas and hash algorithms. However, designing
the corresponding logical analog circuit equations for further
attestation on complex software is difficult.

In this paper, we leverage local trusted hardware (Intel
SMM) and remoteVC to construct a user-designated practical
trust chain that can effectively audit users’ remote applica-
tions in a trustworthy manner.

FIGURE 1. How can we trust a remote computing?.

IV. THREAT MODEL AND ASSUMPTIONS
A user who seeks to acquire correct computation services
from a remote platform has little control over the remote
devices or even over the OS. Figure 1 shows a model that
users are unable to identify whether the right application is
running on the correct platform and where the application—
or even the platform—might be compromised by malicious
managers or platform-sharing malevolent attackers [1], [2].
Therefore, in remote computing services, there are two main
challenges: 1) how to ensure that the computing platform
is the one that was designated and 2) how to ensure the
correctness of application execution.

To simplify the model, we assume that applications loaded
from the application store are trusted.We also assume that the
communication channel used to load the application is safe

by using extra secure technology, such as TLS [44]. Beyond
that, we assume that the hardware and software providers do
not implement collusion attacks because we trust parts of the
hardware-supported components (using SMM) on the remote
device.

In our threat model, an adversary is capable of attacking the
target system, including the user’s application and OS kernel;
even worse, the adversary can relay the service execution
to a malicious platform. Thus, the adversary can insert a
malicious process and compromise the user’s normal appli-
cation process. We assume that the attacker cannot destroy
the hardware system but that it can gain full control over the
platform’s software by exploiting kernel-level vulnerabilities.
Thus, the user service results might be compromised, which
requires appropriate actions.

V. SYSTEM ARCHITECTURE
The goal of RAitc is to effectively audit remote applications
in a trustworthy manner to provide clean services for remote
users. Figure 2 shows an overview of the auditing mech-
anism. To securely audit remote services, we construct an
identified trust chain from the user to the target system. This
construction process involves two key technologies: target
identification and verifiable remote attestation. The former
identifies whether the target machine is the user’s designated
platform, while the latter works to build an attestation chain
from the user to the auditing module in the designated target
system. Based on the identified trust chain, RAitc can trusty
audit the runtime application. We illustrate each component
and its specific functions below.

FIGURE 2. The overview of RAitc system’s architecture.

A. SYSTEM COMPONENTS
In our approach, we assume that the user (verifier) is fully
trusted, and RAitc also regards the Intel SMM in the tar-
get device as trustworthy. By using these tow trust bases,
it cooperatively constructs the identified trust chain for user
application auditing.
Verifier. We assume that each user owns a trustworthy

and secure device for checking a remote target system
(e.g., a mobile phone or personal laptop), denoted as verifier.
We also assume that physically secure mechanisms and legal
systems exist to protect the verifier from outside attacks.
The verifier consists of three parts: an identification unit,
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an attestation unit, and a decision unit. The identification
unit is designed to contact both the SMM process and the
user’s runtime system in the target machine to obtain and
cross-compare the identities from two isolated methods. The
attestation unit is designed to execute the verification proto-
col. Combined with VC approaches, the verifier challenges
the correctness of the measurement module execution and
the integrity of the auditing module. The verification result is
then returned to the user for further analyzing. The decision
unit implements the signing process for the clean service
protocol between the remote service provider and the users,
and it stipulates the rules regarding what software are allowed
to run in the users’ computational systems: neither the service
provider nor the users can change this software during exe-
cution, which maintains a clean runtime state for the remote
users.
Target. The target system resides on a powerful machine

that provides extra computational resources to other users;
the target system might be a workstation or personal com-
puter with a high-performance configuration. We trust its
assembled hardware components, which are developed by
an upscale manufacturer with closed technology. We use
Intel SMM in our system, which is isolated from the host
system. In addition, we assume that no collusion attacks are
generated by the service provider or by hardware vendors.
In our design, we trust SMM but regard the entire operating
system as an attack risk. We develop a Trust IDmodule that is
inserted into the SMMhandler; this module provides a trusted
target identity for the users. A kernel-based auditing module
is employed to detect system interruptions and verify the
integrity of the loaded application. A measurement module
is developed based on verifiable computation. The security is
ensured by constructing a trust chain from the verifier to the
target; in contrast, previous researchers constructed a chain
only from the local hardware chip (regarded as the TPM) to
the OS. We design a software-based attestation mechanism
to verify the functions in the target system. RAitc imple-
ments a small kernel-based auditing module and a VC-based
measurement module to create a trusted chain to verify the
auditing module.
Assistance. Some entities provide assistance to support

remote services. One example involves applications loaded
from a trusted application store. In addition, abstract infor-
mation is first sent to the verifier.

B. EXECUTION WORKFLOW
Secure system initialization is an essential requirement of
RAitc. Before system execution, we first deploy the necessary
trusted modules to the verifier and target machine under
the assumption that no attacks occur during the initiation
stage. Below, we describe the workflowwith respect to secure
auditing operations for remote applications. The details of
each step are shown in Figure 2.
• First, a user and a service provider both sign a clean
application protocol. The requested application is loaded

from a trusted application store, which can be checked
by both the verifier and the target system. Note that we
first consider the consistency of the application from
the application store but not whether the application is
malicious.

• Second, the verifier identifies the remote system by
cross-checking identification attributes of the target
system (step 1). By cross-comparing the identity
obtained from the SMM and the extracted host identity
(steps 2 & 3), the user can ensure that the designated
platform is loaded for remote service rather than a fake
platform.

• Third, the verifier executes the VC session to check the
integrity of the auditing module using trusted remote
memory access and hash computing. The security is
checked using mathematical proofs of verifiable com-
putation. Using these (steps 2 & 3) operations, users
can deploy a secure auditing module in the target
system.

• Fourth, the loaded application is checked (step 4) by the
auditing module, and the result is returned to the verifier
for further analysis (step 5). Based on the verification
result and any new user requirements, the users can
dynamically update (step 6) the application execution
protocol.

In RAitc, the trusted parties include the verifier device
and the SMM in the target device. We assume that network
communications between the verifier and target are secure
by using the TLS protocol. The identification and trust chain
constructed of trusted parties can then provide secure auditing
services for remote user application execution.

VI. IMPLEMENTATION
In this section, we describe the implementation of RAitc.
We focus on the design of each component and the details
of the key technologies employed in our system.

A. CLEAN REMOTE SERVICE PROTOCOL
We define ‘‘Clean’’ as a pure application running on a spe-
cific system. We first request a remote platform CSPr for
remote computation, and verify that device CSPc is cre-
ated as requested. We whitelist the designated applications
A = {A1,A2, . . . ,An}, where H = {H1,H2, . . . ,Hn} is a
corresponding identifier for each application, and n is the
maximum number of applications. A is identified by the
users. The verifier calculates the application’s identity Hi =
hash(α1i , α

1
i , α

2
i , . . . , α

k
i ), where α

j
i, j ∈ [0, k] represent the

information features from Ai, and k is the maximum number
of application features.

To maintain correct protocol execution, we implement the
identification operation to ensure that the protocol is deployed
on the right platform; then, we build the trust chain to verify
whether the executed application satisfies the signed appli-
cation protocol. The details are provided in the following
section.
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B. HARDWARE-ASSISTED IDENTIFICATION
The quality of the computation platform is a key fac-
tor in ensuring the QoS of computing services. However,
a malicious provider can change the user-designated plat-
form when remote services are applied and executed via a
cuckoo orMIMT attack [57]. One example involves replacing
a high-cost platform with a lower-cost hardware and software
configuration.

Suppose that a remote computer offers two execution envi-
ronments: an SMM-based trustedmode (ST ) and an untrusted
mode (UT ). ST is generally constructed with less hardware
and software, constituting a small trusted computing base
(TCB) that we trust in current model. UT is the system
used to execute the user’s remote task, while UT d is the
predesignated remote computation system. UT f is a forged
remote computation system. Therefore, before application
execution by UT , users should first ensure that the remote
system is the one configured by the users. SMM is a trusted
model based on isolated memory that cannot be accessed by
the host system. We assumed that the process of running in
SMM is trusted. Furthermore, we preconfigure the network
interface register to ensure that SMM can be automatically
triggered through a specific network package [58].
Identity Extraction. We insert the Trust ID module into

SMM to identify the host OS. The program is designed to
read the hardware identity in ST , including the CPU ID
and NIC ID. The hardware identity running in ST has two
features: (1) the identities are difficult for an adversary to
change, and (2) the extraction program can remain trusted
because it cannot be compromised by an adversary from
UT . This identity information is sent to the verifier. The
verifier generates a random number to SMRAM and then
copies it to host memory, after which number is used to calcu-
late the host identification with the host-extracting hardware
identity.

Algorithm 1 illustrates the identity cross-checking work-
flow. The unique hardware ID is configured by the hard-
ware vendors and compared to the ID securely fetched from
the remote platform. In summary, the verifier can identify
(1) which device was provided for the user and (2) whether
the services provided by the designated OS will be executed
on the corresponding hardware platform. Evaluating the time
required for SMM-based identity extraction and host-based
identity extraction is the key to determining whether a relay
attack exists in the identification operation.
Time Verification. If an adversary fakes the extraction pro-

cess but provides a matching hardware ID, then the random
number is also redirected to the adversary’s computer to cal-
culate the final identification: this requires yet another time
interval Ta, which causes a delay sufficiently different for
the verifier to detect. However, the host-extracted timestamp
T2 can also be changed by an adversary. This change can
be verified by using the total time required for the entire
identification stage.

Algorithm 1 Hardware-Assisted Identification
1: % trigger SMM on Target
2: generate random number r
3: send a trigger command (cmd, r)
4: % switch to SMM on Target
5: if cmd ← true then
6: get id(smm)
7: relay r to host via memory
8: calculate T1 = smm_time()
9: return id(smm) and T1 to verifier
10: resume
11: %return to host on Target
12: if r not NULL then
13: get host_core_id
14: calculate id(host) = hash(host_core_id, r)
15: calculate T2 = host_time()
16: return id(host) and T2 to verifier
17: if equal(id(smm), id(host), r) is true then
18: identification successful
19: else
20: session failed

FIGURE 3. The workflow of the trust chain.

C. TRUST CHAIN FOR APPLICATION ATTESTATION
After identifying the user’s designated system, the verifier
then deploys the trust chain for the application auditing mod-
ule (AM ). Figure 3 shows each step of the chain construction.
The measurement module in the target machine includes
two types of functions F = {Fsc,Fac}, where Fsc is a
hash computing function that remotely checks the integrity
of functions in the auditing module (step 1). Here we use
sha1 and this can be switch to any other hash functions
for different security requirements. Fac represents the data
accessing functions, which are used to read function text
in the auditing module (step 2). AM consists of the follow-
ing four functions: func_hook , addr_locate, app_audit , and
result_report , we define C i

M , i ∈ [1, n] to represent the
memory segment M of the ith function’s text code. F and
M are publicly loaded to target UT . Then, we verify C i

M
through proof-based verifiable computation (step 3). If the
final attestation of the measure module function is correct,
then it must satisfy the hash value check H (Mi) = H (C i

M ).
Based on the trust application auditing module, we finally
audit the loaded application in step 4.
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1) CONSTRAINS FOR MEASUREMENT
MODULE VERIFICATION
We build a chain to gradually verify the correctness of func-
tions’ execution in the measurement module. We first verify
the hash computing functions based on the Zaatar. Then
we verify the data fetching functions based on the Pantry.
We implement a trust remote attestation mechanism by con-
structing special constrains on verifiable computing.

Design Constrains 1. Suppose to construct QAP
(Quadratic Arithmetic Program) for hash computing. Func-
tion Fsc has n1 input elements of field F, where QAP Q over
F contains three sets ofm+1 polynomials V = {vk (x)},W =
{wk (x)},Y = {yk (x)}, for k ∈ 0 . . .m, and a target polynomial
tx . Meanwhile,F has n2.F totally hasN = n1+n2 elements.
If and only if there exist coefficients (pN+1, . . . , pm),

ensuring the (p1, . . . , pN ) ∈ FN is valid for entire I/O ele-
ments configuration. In other words, there must exist some
polynomial h(x) such that h(x) · t(x) = p(x). While, in our
designed system, the hashF is developed based on the Zaatar
project.

Design Constrains 2. Suppose that Fsc is the data access-
ing function which read data from random access memory
(RAM). We need to fetch the contents of C i

M in memory for
further attesting AM . By leveraging theGetBlock mechanism
provided by Pantry, we verify whether the output of RAM
block accessing equals to the input. Then, the constrains
should satisfy such condition: if and only if the return value
is the hash of the applied name.

We fetch the memory data of the AM code as the input
parameters, we call the Load interface. According to the
primitives: block = GetBlock(name) shown in algorithm 2,
where if correct execution, H (block) = name, H denote a
collision-resistant hash functions (CRHF).

Algorithm 2 Verifiable Data Block Primitive
1: GetBlock(name n):
2: S : name→ block∪ ⊥
3: block ← read block with name n in block store S
4: assert n == H (block)
5: return block

Then, we design block = memory_block(C i
M ), and the H

is also implemented with simple hash algorithm to improve
the effectiveness comparing using the SHA-2 algorithm.
By leveraging theMerkel-tree searching, the verifier supplies
a digest as part of the input to the target computation. Oneway
to bootstrap this operation is to create a small amount of state
locally, then compute the digest directly. After that, target
sends the output to the verifier, which uses the verification
machinery to track the changes.

We now describe the constraints that enforce the
model.The code b = GetBlock(n) compiles to constraints
CH−1 , where the input variable X represents the name,
the output variable Y represents the block contents; and CH−1
(X = n,Y = b) is satisfiable if and only if b ∈ H−1(n)
(i.e., (H(b) = n). The finally corresponding constraints are:

FIGURE 4. The attestation for AM based on trust chain.

C = {Y − B − X1 = 0} ∪ CH−1(X = X2,Y = B). Where
the notation X = X2 and Y = B means that, in CH−1 above,
the appearances of X are relabeled X2 and the appearances of
Y are relabeledB. Notice that variableB is unbound in C(X1 =
x1,X2 = x2,Y = y). To assign B = b in a way that satisfies
the constraints, P must identify a concrete b. Presumably
from storage, such that H (b) = x2. From Pantry’s random
memory accessing operations, the verifiable blocks provide
the required names-are-hashes referencing scheme, and the
GetBlock invocations compile to constraints that force target
to exhibit a witness-path. Thus, using Cload to denote the
constraints, CLoad (X = (a, d),Y = v) can be satisfied only if
the digest d is consistent with address addr holding value v,
which is the guarantee that Load is supposed to be providing.

With the above constraints, the functions in measurement
module can be compiled to arithmetic circuit computation,
and verified by existing verifiable computing approaches.
More proof details can be referred in Pepper project.

2) VERIFICATION FOR APPLICATION AUDITING MODULE
To protect the AM from being compromised, we check
the integrity of the functions in AM . We implement the
workflow of the remote attestation, defined as RATB =
(KenGen,Compute,Verify). Figure 4 shows the process of
the RAitc’s proof-based verifiable computing, and the follow
describes the details of each operation.
• Sent (F)→ (Target):F is developed by the verifier and
load to target system. Besides, the M is initialized in
target system. Those two modules are constructed to be
the base of attestation. Before attestation,F andM both
compile to kernel functions and C i

M deploy in an fixed
memory address addr which forward to the verifier in
advance.

• Compiler(Fac,Fsc): Target compiles the Fac and Fsc to
circuit computations, which can be executed by existing
verifiable computing approaches.

• Load(addr, digest): The target executes the load oper-
ation based on the Constrains 2, and access the special
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memory block which is the function’s text segment in
AM . In our design, this block will not send to the verifier
immediately.

• KenGen(Fsc, r1): Verifier generates a random security
parameter r1, and the ECC-based randomized key gen-
eration algorithm [55] generates a public key Pk that
encodes the parameters. It also computes a matching
secret key Sk , which is kept security by the verifier.

• Compute Pk (block): Using the public key Pk from the
verifier, the target computes an encoded version of the
function’s output y = F(x) with the block from Load
operations.

• Verify Sk (digest, πy, y): Using the secret key Sk and the
the digest of name of verified functions, the verification
algorithm converts the target’s encoded output πy into
the output of the function, e.g., y = F(x) or outputs π
indicating that y does not represent the valid output of F
on digest .

• Proof : This randomly checks the verifiable computa-
tion. The verified result can be accepted or rejected by
the verifier. Here, if y 6= Fsc(block) and the verifier
reject the result in the possibility Pr > 1 − ε, where
ε is very small, we regard the attestation is in a trusted
state.

The security proof of this attestation system is determined
by the ratio of erroneous results accepted by the verifier. The
adversary may succeed in producing an output that convinces
the verification algorithm to accept the wrong output value.
We design a random selection method to verify F . It selects
multiple x from software lists as the input values, where some
of the selections never run in the target. The result returned
by the auditing module check should be correct even if the
verifier does not know whether the target system is safe, e.g.,
it might contain other malicious added code. This scheme
has been proved to be protected through a static file integrity
verification scheme and memory analysis.

3) AUDITING FOR DESIGNATED APPLICATION
With the above verification steps, the measurement module
is developed as a trust base for the target system. In addition,
the measurement module enables to check the integrity of
host kernel function, which protect the auditing module from
attack. Therefore, we have created a trust chain from the
verifier to local AM , which guarantees the remote loaded
application out of integrity damaged.

We depend on auditing module to hook application, locate
the corresponding memory space, check the integrity of text
code, and provide the digital certificate for applications. In the
implementation, we directly create a system call intercepted
module and place it into the OS kernel. We build the auditing
module through modular fashion mechanism [59], which cre-
ates little association with other system kernel module except
specific self-defined functions. After the auditing module is
initialized, the target system attempts to load some software
that belong or beyond the clean service protocol. That soft-
ware installation would triggers corresponding system calls,

then the monitor running in the kernel hook the system call
information from system table like System Services Descrip-
tor Table (SCT in Linux kernel). The message from system
call instructions are analyzed to address what software is
running in OS, we get the store path of software executive
file.

Algorithm 3Workflow of Auditing firefox
1: % detect the f (firefox) in Target.
2: calculate size(f )
3: set mem_addr is the memory base f code.
4: initialize remote_attestation_access()
5: set input is the Data(mem_addr, size)
6: if input not NULL then
7: calculate input with verifiable computing
8: verify the output1.
9: % additional detect dynamic changing.
10: switch to SMM
11: if mem_addr not NULL then
12: calculate Data(mem_addr, size)
13: calculate T4 = smm_time()
14: return output2 and T4 to the verifier
15: resume
16: if equal(output1, output2,T4) is true then
17: firefox is trusted

The algorithm 3 describe an example (firefox execution
file) about auditing load application. We assume an adversary
can modify the memory to replace the legal application’s
normal process, e.g., using Address Translation Redirection
Attack. To protect against that, we leverage SMM to check
the integrity of memory operation functions in the meantime.
Also, we check the PMU register to counter the assemble
instructions from the SMM side. The final cross-checking
ensures the applications running in safety status.

In summary, we build a trust chain for the target starting
from the verifier, and we use the remote attestation mecha-
nism to check whether the auditing module is broken or is
performing incorrect computing operations. The verifier can
verifiesAM timed or randomly. The entire workflow of RAitc
can be summarized by the following two stages:

Preparation: create an association between the user and
the application. A user is assigned a protocol with a manager
to limit the software that can execute. The methods might
function via network access or human visits. The necessary
preparation work, which includes user authentication, control
of access privileges, and logging, should be completed before
auditing. The system will then acquire a user identity U =
(username, id, S.level, · · · ), where S.level indicates the user’s
security level requirement.

Auditing: compute the application identity. Each proce-
dure (including applications and OSes) in an application
pool needs a unique identity v for integrity attestation. Here,
we directly hash the execution code of the application for
further auditing. Generally, function code is unchangeable in
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memory space. Before confirming v as an identity, the service
needs to be compared to an original hash value vo from the
application store. When v = vo, we store S and v in the
software database in an association table.

VII. SECURITY ANALYSIS
In this section, we evaluate the security of the system. For a
trust chain from the verifier to the target machine, the security
of each node and the communication between every pair of
nodes should be proved. We independently analyze the iden-
tification and the verifiable computation used in our system.
We then evaluate the security of the entire chain and consider
attack possibilities.

A. SECURITY FOR IDENTIFICATION
Suppose that SMM is the trust base in an x86 target machine,
then the data fetched via SMM is regarded as trustworthy.
Since the SMM and host system run with the same CPU,
RAitc can then achieve same CPU features for identifying the
current device. Otherwise, the identities are different. From
the Algorithm 1, we defined follow parameters: the network
channel between the verifier and the target’s SMM, denoted
as L1; the network channel from the verifier to the target’s
host, denoted as L2. The identification extraction in SMMand
host are O1 and O2 respectively. Thus, the trust identification
is defined Sidentify = (s(L1), s(O1), s(L2), s(O2)), where s
represents secure proof.

To prove the security guarantee s, we analyze each stage of
identification. First, the verifier is a trusted platform owned
by the users, we trust the verifier’s program. Besides, L1 and
L2 using TLS protocol against the data tampering attack from
the network. We mentioned that network message attacks
are out of our scope. Thus, we regard the communication
channels between the verifier and target are trusted, that
means (s(L1), s(L2)) is true. Second, O1 in SMM is an iso-
lated and secure operation. We add an independent network
driver into the SMI handler, which builds a separate com-
munication channel between the verifier and target’s SMM.
Thus, (s(L1), s(O1), s(L2)) is acceptable. To ensure trust O2,
target system runs simple HMAC algorithm with the random
number r . After computing outputs = hash(r, identity) inO2,
its outputs are checked by the verifier to verify whether the
identity is from the target.
However, the hash() function may be forwarded to a forged

system through malicious fetching the r and target’s identity.
To detect such an attack, we monitor the time interval of
identification. We firstly measure the necessary time cost of
identification T = sum(TL1+L2 ,TO1 ,Ts2h,TO2 ), where Ts2h
is the system switching time between SMM and host. While
TL1+L2 is the network handshake and communication time
which depends on network conditions, here we reasonably
assume it is a constant value. If a relay attack is in target
host, the O2 and the hash function might be executed in
forged system, which introduce the delay time cost Trelay =
sum(Tfetch + Treturn), where Tfetch is the time to fetch the
random number r and forward it to the forged system, Treturn

is the time to send the result of hash function to the target.

We define a ratio threshold λ, where (
Trelay
T

> λ) is signifi-
cant in the test. Therefore, Trelay is a detectable value by using
the introspecting approaches [60], and the identity extrac-
tion was proven to be trusted. By comparing the identities
extracted from the SMM and host, the result trusty identifies
the designated target machine.

B. SECURITY FOR TRUST CHAIN
The verifier is another key trust base for RAitc. The verifica-
tion of the trust chain from the verifier to the measurement
module is developing with existing verifiable computation
mechanisms. In our design, Fsc is a hash module, and Fac
is a memory accessing module based on the Pantry’s com-
ponent. That means, the proof of completeness similar to the
Pantry. The following steps show the corresponding security
analysis.

First, the verifiable computing should satisfy: the function
Fsc calculates the data set D, to achieve the hash value
set G, it should exist a valid transcript γ = {x, y}, where
the data is the input x ∈ D, the hash value is the output
variable which set to y ∈ H. Previous verifiable computing,
like Geppetto [61], proven that γ is unique. That means,
given an input data block, Fsc returns a unique hash value,
the execution of this function is deterministic. That’s similar
to function Fac. Given an input digest, memory accessing of
Fac returns a corresponding memory data block, the hash of
such data block equals to the digest.

Second, the verifier compiles functions with constraints
of C. Given the input digest and multi-round of proof-
ing, the verifier obtains a list y′ calculated by the tar-
get. For all y′ 6= y, the possibility of attestation result
Pr{(verifier, target)(C, x, y′) = 1} ≤ ε. That because the
used hash algorithm H in our based Zaatar project is a
collision-resistance, that is means, an adversarial A cannot
produce a collision in H with the succeed probability ≥ ε.
Therefore, we can promise that constraints C can lead to the
correct result. Also, there is a sequence of memory accessing
operations existing in target, the attestation succeeds proba-
bility still≤ε, the proof can also refer the Pantry’s proof [55].
In addition, to construct a collision-resistance hash function
H , the verifiable computing algorithm needs to satisfy the
proof-of knowledge (PoK) property. With the above analy-
sis, we know that the measurement module can provide the
correct attestation function.

In summary, with the device identification and security
proof of the attestation chain, we finally create a trust chain
from the user to the target AM . Then, we audit the loaded
application by checking whether the application is legal on
the designated system.

C. SECURITY DISCUSSION
Memory or cache attacks on the target system caused by
higher-privilege malware can dynamically change code at
runtime, which will block the normal workflow of RAitc.
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This type of attack can be detected by RAitc because the
target sends either an error or no result. Note that our system
does not focus on safeguarding the target system but instead
on elucidating whether a loaded application is compromised.
If the target system is broken, thenwe rely on assisted security
policies to recover or update the system. Moreover, we can
join other SMM-based introspection approaches [12] to
co-detect those attacks. In addition, we assume that the net-
work condition is sufficiently stable to support an accept-
able communication interval. Other risks, such as transient
attacks and DoS attacks, also exist and threaten current
security mechanisms. We can mitigate them by implement-
ing random round attestation to make interval prediction
by attackers more difficult. However, such risks cannot be
comprehensively removed; thus, they remain issues for future
consideration.

VIII. EVALUATION
In this section, we evaluate the performance of our system.
The security system underwent rigorous testing and evalu-
ation that included both validating the effectiveness of its
protection and measuring its impact on system performance.

A. EXPERIMENTAL SETUP
All experiments were performed in a laboratory environ-
ment with two computers equipped with Intel x86 200 series
chipsets. Both the verifier and target machine had Intel
i7 cores with 8 GB of memory and ran Ubuntu 16.04, the VC
software based on Zaatar and the Pepper project. Addition-
ally, we developed SMM-based and host-kernel-based secure
modules.

B. EFFECTIVENESS
RAitc was evaluated in two phases. First, we set up an execu-
tion environment involving the executable modules waiting
to be deployed, which included the Trust ID module, mea-
surement module, and auditing module. To identify the target
platform, we preinserted the Trust ID module into the SMM
handler. To verify the correctness of the loaded applications,
we deployed the chain built by the attestation module in both
the user’s device and the target device. We used Coreboot
and SeaBIOS for the target BIOS to boot the users’ remote
computation systems.

The remote attestation algorithm was developed based
on Zaatar and extended to form the measurement module.
We developed an LKM-based hooking and analyzing module
as the auditing module. Both the measurement and auditing
modules were deployed in the target system.When deploying
a trusted system, the goal was to monitor whether the loaded
application was legal with respect to the current runtime
stage or user requirements.

First, the remote attestation approach might be relayed to
another malicious machine. Therefore, target identification
is necessary for trust chain construction. To evaluate the
target identification operation, we fetched the CPU identities
(e.g., EA060900FFFB8B0F for CPU0 in our testbed) in both

SMM and the target host system. To ensure a correct target
platform for users, the CPU identities should be the same for
one platform. Our experimental results show the effectiveness
of CPU identity fetching and comparison. The machine and
the OS system can be identified by SMM-based identification
approaches. Even a malicious attack must forge a trusted
auditing module on the runtime system; therefore, it cannot
simulate a user-designated remote platform.

Some attacks may bypass the auditing module through
compromising the auditing functions themselves. For exam-
ple, kernel-level attacks (e.g., amark [62]) can change the
auditing function instructions in kernel memory. However,
by using the security-proven VC mechanism, we can verify
the integrity of auditing functions. Thus, we set the appli-
cation auditing module to a fixed kernel memory space at
system loading stage. The functions in each module shown
in Table 1, were audited after being developed. The identity
of the application and its attached attributes, such as name
and size, were stored by the verifier for ongoing attestation
purposes. Through the proven VC mechanism, we verified
the integrity of each function in the auditingmodule via mem-
ory extraction and hash computing. The experimental results
in Table 1 show that the integrity of all auditing functions can
be verified by RAitc.

TABLE 1. Functions exist in auditing module.

Finally, by deep-going verifying the correctness of the
identified trust chain, the next step is to verify the effec-
tiveness of RAitc. We choose 4 system commands and
7 applications for our evaluation experiments. The system
commands are allowed to run in OS because those proce-
dures are common functions that is default setting with clean
service protocol. 4 out of the applications are authorized in
our proposed application protocol, and the rest are unau-
thorized. Furthermore, a self-defined the program represents
the unknown (malware) software. The expected result is that
the legal application runs normally while the unauthorized
software and malware are stopped by our auditing system.
The experiment result shows that all applications are audited
by RAitc, the illegal and malicious software are blocked.
In some situations, the benign application might be attacked
and change to be a malicious one. To simulate such scenarios,
we change some code in benign functions in the test. For
example, the application firefox normally runs in an autho-
rized state but it is stopped in a compromised state, as shown
in Table 2. Additionally, the user requirement is dynamically
changed and the manager needs to update its protocol lists in
more complex situations.
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TABLE 2. The auditing result based on RAitc.

In summary, our system constructs a useful trust chain for
remotely attesting to the security of the user’s platform, which
can effectively monitor the loaded application status and
detect malicious behaviors in the user’s remote computing
environment.

C. EFFICIENCY
We analyzed the performance at each stage and calculated the
total overhead to evaluate the system performance.

1) IDENTIFICATION
The identification operation works in both SMM and pro-
tected mode. Because SMM suspends the host OS, it tem-
porarily halts the user’s runtime system. We evaluated the
time overhead of the identification process, and the results
are shown in Table 3. From steps 1 to 5, the operations
work in SMM, which requires 57µs. This is a very short and
acceptable time to validate the user’s service. Note that we do
not consider ‘‘network package missing’’ errors on the SMM
side since we regard the network communication as stable.

TABLE 3. Identification overhead in each stage.

By verifying the target system’s identification, we build
a trusted chain from the verifier to the designated target.
The attestation on the trust chain requires time and system
resources (CPU and memory) for checking computations.
Before the application runs on the user’s remote platform,
we must spend time and memory on attesting to the initial
software. The overhead costs on two operations: auditing
module checking and application auditing. The two opera-
tions can be executed synchronously, and the overhead of
auditing module checking shows in Table 4.

2) MEASURING
The platform resource overhead for the auditing module
checking is high due to the p_compute process running in

TABLE 4. Time overhead of trust chain attestation.

FIGURE 5. CPU overhead on attestation of hash computing function.

FIGURE 6. Memory overhead on attestation of hash computing function.

FIGURE 7. CPU Overhead on attestation of memory accessing function.

the target. During the auditing module checking, we record
the system overhead through sampling and analyzing the
CPU and memory consumption. Figures 5 and 6 show the
CPU and memory usage ratio, respectively, once those out-
source verification executions have occurred. It takes nearly
10s to verify whether the hash function outputs match, and
two of four cores are fully used for the remote checking
computation. The remaining two cores can be used to exe-
cute normal processes in the target system. Thus, our trust
chain construction imposes considerable overhead, but its
advantages are that RAitc will not halt other executing system
operations. The memory occupation ratio is also high due to
the number of QAP computations. Similarly, Figures 7 and 8
show the overhead required to verify the normal process’s

VOLUME 8, 2020 163055



L. Zhou et al.: RAitc: Securely Auditing the Remotely Executed Applications

FIGURE 8. Memory Overhead on attestation of memory accessing
function.

FIGURE 9. CPU benchmark test during application auditing.

memory data access. Note that this test result is for accessing
less 10MB memory and the overhead depends on the size of
involved memory blocks. Moreover, the overhead required
for checking data accessing is larger than that required for
hash computing due to the additional memory block fetches
and digest computing operations. On our testbed, the audit-
ing module checks cost nearly half the CPU and memory
resources, but this is acceptable because it takes only seconds
and does not block normal system operations.

3) AUDITING
Application checking by the auditing module will delay
the application execution. We tested the corresponding time
overhead for the hooking, locating, auditing, and reporting
stages. We directly examined the hooking fork and execve
system calls and located the memory space for the target
application.We evaluated the overhead based on the sysbench
benchmark [63] through CPU and memory testing, it is
reasonable to use CPU and memory overhead to evaluate
the performance of our RAitc because no IO other latency
added in our application auditing module. In the experiments,
we tested the benchmark evaluation of CPU operation and
memory access under different concurrent thread conditions.
For example, for a kernel executable module case with a size
of 1.9KB, RAitc generally takes 91ms to perform application
execution event hooking and system call analysis, 1.83ms
to perform memory addressing, and 1.61ms to check the
integrity of the application code. The overhead of the locating
and auditing operations depends on the size of the applica-
tion: a large application requires more time for these two
stages.We test sysbenchwith an increasing number of threads
(from 1 to 5) to simulate normal service environment, and the
Figure 9 shows few additional changes in CPU consumption
while the auditing module executes, it generally adds less

FIGURE 10. Memory benchmark test during application auditing.

than 2.37% latency, and Figure 10 shows similar memory
overhead increases due to the auditing function execution
and application memory accesses, it generally adds less than
2.05% latency. Compared with the total system resources,
the auditing process occupied only a small ratio, and exerted
little effect on normal user computation.

We did not show the network performance because the
actual performance is affected by the network communication
conditions. In addition, the sessions caused by identification,
VC and application auditing occupy less than 3% of the
total network flow based on package monitoring with the
Wireshark tools, which is negligible in a practical execution
environment.

4) COMPARISON
To compare various approaches, we built an execution envi-
ronment to simulate ring 3 to ring -2 scenarios. The vir-
tualization execution environment is built with QEMU and
KVM, where QEMU also simulate the SMM execution
(similar to KShot [64]). Then we respectively deploy the test
approaches, where the domain 0 and VM both use Ubuntu
16.04 and kernel 4.15. Note that ring-3 based Nighthawk
is installing on the same platform and does the same
introspection work [11]. Thus, we install the Kernel- [8],
Hypervisor- [65] and SMM-based defender [66], and use
the mpstate to monitor each CPU utilization. Here we test
the CPU consumption with and without installing defend-
ers. We developed the shell script to orderly install and
uninstall some applications from Table 2 (i.e., ls, firefox,
KMPlayer, etc).

FIGURE 11. The comparison between different level defenders.

Figure 11 shows the consumption ratio in the system,
where the result shows that our approach gets a kernel-based
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defender approximated performance, which is better than
hypervisor-based approaches. The SMM-based approachwill
cause a temporary pause on the current system (100% CPU
utilization), because the system will switch to SMM during
the checking. In addition, there is a semantic gap existing in
the latter two approaches which needs extra time and com-
putation to extract the application information. Nighthawk is
a co-processor based approach that computation is executed
on another core which will not affect the host system, that is
the reason that Nighthawk only creates some shared memory
accessing consumption.

The key point of RAitc is focusing on the security for a
remote user who cannot directly access the execution plat-
form. We compared those approaches in security aspects
shown in Table 5. Simply, the lower level approaches have
higher security protection due to the isolation and smaller
TCB, but similarly, need more work to solve the semantic
gap issue. Since we can remotely verify the correctness of
functions execution, our approaches give a chance by using
trustchain to audit the remote application with an acceptable
consumption, with effectively increase the user’s trustworthi-
ness for remote execution.

TABLE 5. Comparing with other similar approaches.

RAitc audits the applications in OS-level and mitigates
the semantic gap problem, which exhibits greater flexibil-
ity for extension of the application auditing functionality.
In addition, the time overhead of the auditing process is a
short interval for application initialization, which is necessary
and acceptable for users’ security requirements. Note that,
the time and resource overhead of trust chain building is not
covered in this comparison, because even such operations
synchronizing with auditing but not interfere with each other.

IX. CONCLUSION
In this paper, we presented RAitc, a trusted remote applica-
tion auditing system, that provides identification of remote
target platforms and attestation for loaded applications.
We assumed that a security module could depend only on
the target kernel, might be bypassed by a relay attack or by
rootkits, or might be compromised by malware with higher
privileges. To address this issue, we first trust the part of
the hardware features on the target platform (i.e., SMM) that
assists in fetching the CPU identity but assume it might be
subject to a relay attack. Based on this definite platform,
we then leverage VC approaches to create a chain of trust

from the user to the remote target system. Therefore, we can
correctly verify the integrity of the auditing module in the tar-
get system’s kernel. The auditing module consists of general
kernel hooks, memory access checks, and hash computing
functions with protection from RAitc. Thus, RAitc combines
hardware-assisted trusted computing and remote VC mech-
anisms to co-construct the trust chain for an application.
We developed a prototype version of RAitc to implement
the attestation functions and tested its effectiveness and per-
formance in a real experimental environment. The results
show that RAitc effectively protects the user’s remote service
environment with an acceptable level of overhead.
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