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ABSTRACT In this article, we study the H∞ control problems for stochastic singular systems with
time-varying delays. Firstly, a new Lyapunov-Krasovskii functional is constructed, employing the free
weighting matrix technique and Jensen inequality, the stochastic admissibility criteria in the mean square
for stochastic singular time-varying delay systems are proposed on the basis of the auxiliary vector function.
Secondly, the state feedback controller is designed such that the resulting closed-loop system meets regular,
impulse-free, stochastically stable in the mean square and has H∞ performance γ . In the proof process,
the dual equation is used to derive the conditions of stochastic admissibility in the mean square. Finally,
a practical example of DC motor model is presented to show the validity of our proposed theoretical results.

INDEX TERMS Stochastic singular systems, time-varying delays, H∞ control, stochastic admissibility.

I. INTRODUCTION
In the past few decades, singular systems play an impor-
tant role in many scientific fields, such as biologic systems,
circuit systems and power systems. Therefore, the singular
systems have been investigated by many researchers and a
lot of important results relating to such systems have been
reported (see [1]–[6]). In recent years, a more general model
than singular systems is the stochastic singular systems,
which play a more extensive role in model analysis than
singular systems. As is well known, stochastic singular sys-
tems, also known as generalized stochastic systems, refer
to the generalized dynamic systems under stochastic inter-
ference. It is widely found in many fields such as industry,
social economy, power systems, financial economy systems,
aerospace systems, etc. Due to the complexity of the internal
structure of the stochastic singular systems, especially the
co-existence of the impulse problem and the stochastic distur-
bance factors in the systems, it is difficult to study the theory
of the stochastic singular systems. Therefore, considering
the stochastic characteristics of the systems, many schol-
ars began to pay attention to the study of singular systems
with stochastic characteristics, such as stability analysis
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(see [7]–[11]), filtering problem (see [12]–[14]), controller
design (see [15]–[17]).

On the other hand, time delays inevitably exist in a variety
of practical systems, which can frequently lead to insta-
bility or significantly deteriorated performance, and greatly
increase the difficulty of stability analysis and controller
design (see [18]–[25]). For singular systems, compared with
the previously studied time-invariant delay systems, in recent
years, more and more attention has been paid to the study
of singular time-varying delay systems. It should be noted
that the study of singular systems with time-varying delays
is much more complex than that of normal systems with
time-varying delays, because it requires consideration not
only of stability, but also of regularity, impulse-free or causal-
ity (for discrete time singular systems) under time-varying
delay case. For example, Yue and Han [26] investigated the
delay-dependent robust H∞ controller design for uncertain
singular systems with time-varying discrete and distributed
delays. Xia et al. [27] studied about the problem of fil-
tering for nonlinear singular Markovian jumping systems
with interval time-varying delays. Especially, it increases
the difficulty of stability and related control analysis of the
systems when the singular systems have both time-varying
delays and random disturbance, and gradually attracts more
and more attention. Xing et al. [28] researched the stability
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criteria for stochastic singular systems with time-varying
delays and uncertain parameters. Li et al. [29] studied sta-
bility and stabilisation problems for a series of continuous
stochastic singular systemswithmultiple time-varying delays
via a delay-distribution-dependent Lyapunov functional, and
so on. However, according to the author’s grasp of the sit-
uation, the problem of H∞ control for stochastic singular
systems with time-varying delays has not been fully investi-
gated yet. Therefore, the comprehensive and thorough study
of the control problem of stochastic singular systems with
time-varying delays is of great significance and necessity
both in theory and practice, which motivates us to do this
study.

In this work, we focus on studying the H∞ control prob-
lem for stochastic singular systems with time-varying delays.
In the first part, by constructing a new Lyaponov-Krasovskii
functional, based on the auxiliary vector function, using the
free weighting matrix technique and the improved Jensen
inequality, we propose the stochastic admissibility criteria in
the mean square for the systems consideration. In the second
part, by designing the state feedback controller based on the
stochastic admissibility criteria in the mean square, the cor-
responding closed-loop systems are regular, impulse-free and
stochastically stable in the mean square. In the third part,
in the process of designing the state feedback controller,
the dual equation is adopted to derive the conditions of
stochastic admissibility in the mean square of the result-
ing closed-loop systems. An example of DC motor model
is given to show the effectiveness of the controller design
method.

The main contributions of this study include: 1) We
study the stability and H∞ control for singular systems with
time-varying delays and stochastic disturbances at the same
time. Compared with singular systems [21], stochastic sys-
tems [36], the models we study are more general and have a
wider range of applications. 2) A novel Lyapunov-Krasovskii
functional is built, the stochastic admissibility conditions
in the mean square of stochastic singular systems with
time-varying delays are proposed. 3) We employ an auxiliary
vector function and the new free-weighting-matrix approach
to reduce the conservatism of the solution for the systems.
4) The dual equation is used in the proof process of designing
the state feedback controller, which easily derive the condi-
tions of stochastic admissibility in the mean square of the
systems.

Notations. The following symbols will be used throughout
the work. <n represents the n-dimensional Euclidean space,
and <n×n denotes the set of all n× n real matrices. The sym-
bol * represents transpose terms in a symmetric matrix and
diag{. . .} stands for a block-diagonal matrix. AT is the trans-
pose of matrix A. λmax(A) and λmin(A) are used to denote the
maximum and minimum eigenvalue of A, respectively. E{·}
denotes the expectation operator. I is the identity matrix with
the appropriate dimensions. If the dimensions of matrices are
not explicitly specified, they are assumed to be algebraically
compatible.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the stochastic singular time-varying delay system
defined in a completely probability space (�,F , P̂) as fol-
lows

Edx(t) = (Ax(t)+ Adx(t − h(t))+ Bu(t)+ Bvv(t))dt

+ Jx(t)dω(t),

z(t) = Cx(t),

x(t) = ϕ(t), t ∈ [−h0, 0], (1)

where x(t) ∈ <n is the state vector, u(t) is control input, v(t)
is external input disturbance signal, z(t) ∈ <p is the measure
output vector. The matrix E ∈ <n×n maybe singular and it is
assumed that rank(E) = r ≤ n. A,Ad ,B,Bv, J ,C are known
real constant matrices with appropriate dimensions. ω(t) is
one-dimensional standard Brownian motion defined on the
probability space

(
�,F , {Ft }t≥0, P̂

)
satisfying E{dω(t)} =

0, E{dω(t)2} = dt , ϕ(t) is the initial condition defined on
[−h0, 0], h(t) is time-varying delay, which satisfies for all
t ≥ 0, 0 ≤ h(t) ≤ h0, ḣ(t) ≤ µ ≤ 1, where h0 and µ are
scalars.

Next, the state feedback controller is designed as

u(t) = Kx(t), (2)

where K is the state feedback gain matrix. Then, the closed-
loop system is as follows

Edx(t) = ((A+ BK )x(t)+ Adx(t − h(t))+ Bvv(t))dt

+ Jx(t)dω(t),

z(t) = Cx(t). (3)

Below, introduced some preliminary works, which will be
the basis of the main research results of this article.
Definition 1: [32]
(I) The matrix pair (E,A) is regular, if det(sE − A) is not

identically zero.
(II) The matrix pair (E,A) is impulse-free, if deg(det(sE−

A)) = rank(E).
Definition 2: [33], [34]
(I) For a given scalar h0 > 0 and any time-varying delay

h(t) satisfying 0 ≤ h(t) ≤ h0, if the pairs (E,A) and (E,A+
Ad ) are regular and impulse-free, then the system (1) with
u(t) = 0 and v(t) = 0 is regular and impulse-free.
(II) The system (1) with u(t) = 0 and v(t) = 0 is

stochastically stable in the mean square, for ∀σ > 0, there
exists a δ(σ ) > 0 such that E‖x(t)‖2 < 0, t > 0, when
sup

−h0≤s≤0
E‖φ(s)‖2 < δ(σ ).

Definition 3: If the system (1) is regular, impulse-free and
stochastically stable in the mean square, then the system (1)
is said to be stochastically admissible in the mean square.
Assumption 1: [18] rank([E J ]) = rank(E).
Under Assumption 1, if rank(E) = r , without loss of

generality, we can decompose matrices in the form (1) as
follows

E =
[
I 0
0 0

]
, A =

[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
,
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Ad =
[
Ad11 Ad12
Ad21 Ad22

]
, J =

[
J11 J12
0 0

]
, (4)

and x(t) = [xT1 (t), x
T
2 (t)]

T, A11 ∈ <r×r , Ad11 ∈ <r×r , B1 ∈
<
q×q, J11 ∈ <r×r , x1(t) ∈ <r .
Furthermore, by the expression (4), system (1) with v(t) =

0 is restricted equivalent to the following dynamics decom-
position form

dx1(t) = (A11x1(t)+ A12x2(t)+ Ad11x1(t − h(t))

+Ad12x2(t − h(t))+ B1u(t))dt + (J11x1(t)

+ J12x2(t))dω(t),

0 = (A21x1(t)+ A22x2(t)+ Ad21x1(t − h(t))

+Ad22x2(t − h(t))+ B2u(t))dt,

z(t) = C1x1(t)+ C2x2(t). (5)

and ϕ(t) = [ϕT1 (t) ϕ
T
2 (t)]

T.
Remark 1: Under the above assumption, the Itô stochastic

term does not affect the system structure. So, (E,A) and
(E,A+Ad ) are regular and impulse-free, which can guarantee
the existence and uniqueness of the solution of the system (1).
Lemma 1: [35] (Jensen inequality) For a positive definite

symmetric matrix Z ∈ <r×r and scalars a, b (0 < a < b),
there exists a vector function x(t) satisfying

∫ a

b
xT(t)Zx(t)dt ≥

1
b− a

∫ a

b
xT(t)dtZ

∫ a

b
x(t)dt.

Lemma 2: Consider the stochastic singular system

Edx(t) = Ax(t)dt + Jx(t)dω(t). (6)

Let V (x(t)) = xT(t)ETPEx(t), P is invertible and ETPE ≥
0.

Define an infinitesimal operator L, then, the stochastic
derivative of V (x(t)) is given by

dV (x(t)) = LV (x(t))dt + 2xT(t)ETPJx(t)dω(t), (7)

where

LV (x(t)) = xT(t)(ATPE + ETPA+ JT(E+)T

×ETPEE+J )x(t), (8)

and E+ is the generalized inverse of the matrix E .
Proof: Because V (x(t)) = xT(t)ETPEx(t), by the Itô

differential formula, combining with the Eq. (6), we have

dV (x(t)) = LV (x(t))dt + Vx(x(t))Jx(t)dω(t),

where operator LV (x(t)) is defined as

LV (x(t)) = Vt (x(t))+ Vx(x(t))Ax(t)

+
1
2
tr{xT(t)JTVxx(x(t))Jx(t)},

with

Vt (x(t)) =
∂V (x(t))
∂t

,

Vx(x(t)) = (
∂V (x(t))
∂x1

,
∂V (x(t))
∂x2

, . . .
∂V (x(t))
∂xn

),

Vxx(x(t)) = (
∂2V (x(t))
∂xj∂xk

)n×n,

by the calculation, one gets

LV (x(t)) = 2xT(t)ETPAx(t)+ tr{xT(t)JTETPJx(t)},

so, (8) holds, the proof is completed.

III. MAIN RESULTS
In this section, the stochastic admissibility condition in the
mean square is firstly derived for the system (1). At first,
introduce an auxiliary vector function η0(t).

η0(t) = Ax(t)+ Adx(t − h(t))+ Bu(t)+ Bvv(t). (9)

Using the above formula and system (1), we can get

Edx(t) = η0(t)dt + Jx(t)dω(t). (10)

Then

Ex(t)− Ex(t − h(t)) =
∫ t

t−h(t)
η0(s)ds

+

∫ t

t−h(t)
Jx(s)dω(s). (11)

Theorem 1: For given scalars h0 > 0, γ > 0, the system (1)
is stochastically admissible in the mean square with the H∞
performance index γ , if there exist matrices P > 0,Q >

0,Z > 0, S, S0, S1, S2, S3, Sd such that the following matrix
inequality hold.

31 2̃12 X3 2̃13 S2RT CT (PEE+J )T

∗ 32 X4 X5 S3RT 0 0
∗ ∗ 9 X6 0 0 0
∗ ∗ ∗ 91 0 0 0
∗ ∗ ∗ ∗ 92 0 0
∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −P


< 0, (12)

where

31 = ATPE + ETPA+ Q+ SRTA+ ATRST,

2̃12 = ETPA+ SRTAd + ATRSTd ,

2̃13 = ETPBv − ATRST1 + SR
TBv,

32 = −(1− µ)Q+ SdRTAd + ATdRS
T
d ,

X3 = ATRST0 − SR
T, X4 = ATdRS

T
0 − SdR

T,

X5 = −ATdRS
T
1 + SdR

TBv, X6 = S0RTBv + RST1 ,

9 = h20Z − S0R
T
− RST0 ,

91 = −γ
2I − BTv − S1R

TBv,

92 = −Z − RST3 − S3R
T,

R ∈ <n×(n−r) is an arbitrary column full rank matrix satisfy-
ing ETR = 0.

Proof: Firstly, we prove the system (1) with u(t) = 0 and
v(t) = 0 is regular and impulse-free.
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From rank(E) = r ≤ n, there exist two invertible matrices
G,H ∈ <n×n such that

E = GEH =
[
Ir 0
0 0

]
, A = GAH =

[
A11 A12
A21 A22

]
,

B = GB =
[
B1
B2

]
, Ad = GAdH =

[
Ad11 Ad12
Ad21 Ad22

]
,

P = G−TPG−1 =
[
P11 P12
P21 P22

]
, S = HTS =

[
S11
S21

]
.

It is noted that ETR = 0, set R = G−TR =
[
0
κ

]
. Here,

κ ∈ <(n−r)×(n−r) is a nonsingular matrix, it is obvious that
E
T
R = 0.
From (12), we have

31 < 0. (13)

Because Q > 0, we have

5 = ATPE + ETPA+ ATRST + SRTA < 0. (14)

Before and after multiplying (14) by HT and H, respec-
tively, it has

5̄ = ĀTP̄Ē + ĒTP̄Ā+ ĀTR̄S̄T + S̄R̄TĀ

=

[⊗ ⊗̃
∗ AT22κS

T
21 + S21κ

TA22

]
< 0. (15)

Since
⊗

and
⊗̃

are independent of the results discussed
below, the real expressions of these two irrelevant are omitted.
According to (15), we get AT22κS

T
21+S21κ

TA22 < 0, it is easy
to verify A22 is a nonsingular matrix.
Thus,

det(sE−A))= det(G−1) det(sE − A) det(H−1)

= det(−A22) det(Ir− (A11− A
−1
21 A21)) det(G

−1)

× det(H−1). (16)

According to formula (16), it has det(sE − A) 6= 0,
deg(det(sE − A) = rank(E). Thus, the pair (E,A) is regular
and impulse-free.

Additionally, from (12), we can also obtain the following
matrix inequality [

31 2̃12
∗ 32

]
< 0. (17)

Then, before and after multiplying (17) by [I , I ] and
[I , I ]T, respectively, we can obtain

(A+ Ad )TPE + ETP(A+ Ad )+ (AT + ATd )
TRST

+ SRT(AT + ATd ) < 0.

Using the same approach as above, we have[⊙ ⊙̃
∗ (AT22 + A

T
d22)κS

T
21 + S21κ

T(A22 + Ad22)

]
< 0. (18)

From (18), we can easily see that

(AT22 + A
T
d22)κS

T
21 + S21κ

T(A22 + Ad22) < 0.

This implies that the pair (E,A + Ad ) is regular and
impulse-free. According to Definition 2, the system (1) with
u(t) = 0 and v(t) = 0 is regular and impulse-free.
Next, we prove the system (1) with u(t) = 0 and v(t) = 0

is stochastically stable in the mean square.
Constructing a Lyaponov-Krasovskii functional as follows

V (t) = V1(t)+ V2(t)+ V3(t),

V1(t) = xT(t)ETPEx(t),

V2(t) =
∫ t

t−h(t)
xT(s)Qx(s)ds,

V3(t) = h0

∫ 0

−h0

∫ t

t+θ
ηT0 (s)Zη0(s)dsdθ. (19)

By Lemma 2, computing the stochastic derivative of V (t)
along the trajectory of the system (1), one has

dV (t) = LV (t)dt + 2xT(t)ETPJx(t)dω(t), (20)

where

LV (t) = LV1(t)+ LV2(t)+ LV3(t),

and

LV1(t) = xT(t)(ETPA+ ATPE + JT(E+)TETPEE+J )

× x(t)+ xT(t)ETPAdx(t − h(t))

+ xT(t − h(t))ATdPEx(t),

LV2(t) = xT(t)Qx(t)− (1− ḣ(t))xT(t − h(t))

×Qx(t − h(t))

≤ xT(t)Qx(t)− (1− µ)xT(t − h(t))Qx(t − h(t)),

LV3(t) = h20η0(t)
TZη0(t)− h0

∫ t

t−h(t)
ηT0 (s)Zη0(s)ds

≤ h20η0(t)
TZη0(t)−

∫ t

t−h(t)
ηT0 (s)dsZ

∫ t

t−h(t)
η0(s)ds.

(21)

When u(t) = 0, from (9), one has

2(Ax(t)+ Adx(t − h(t))+ Bvv(t)− η0(t)) = 0.

So, there exist free weighting matrices S, Sd , S0, S1, it has

2(Ax(t)+ Adx(t − h(t))+ Bvv(t)− η0(t))TR

(STx(t)+ STd x(t − h(t))+ S
T
0 η0(t)− S

T
1 v(t))

= xT(t)(ATRST + SRTA)x(t)+ 2xT(t)ATRSTd
× x(t − h(t))+ 2xT(t)ATRST0 η0(t)− 2xT(t)ATRST1 v(t)

+ 2xT(t − h(t))ATdRS
Tx(t)− 2xT(t − h(t))ATdRS

T
1 v(t)

+ xT(t − h(t))(SdRTAd + ATdRS
T
d )x(t − h(t))

+ 2xT(t − h(t))ATdRS
T
0 η0(t)+ 2vT(t)BTvRS

Tx(t)

+ 2vT(t)BTvRS
T
d x(t − h(t))+ 2vTBTvRS

T
0 η0(t)

− vT(t)(BTvRS
T
1 + S1R

TBv)v(t)− 2ηT0 (t)RS
Tx(t)

− 2ηT0 (t)RS
T
d x(t − h(t))− η

T
0 (t)(RS

T
0 + S0R

T)η0(t)

+ 2ηT0 (t)RS
T
1 v(t) = 0. (22)
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Because ETR = 0, from (11), there exist free weighting
matrices S2, S3, we have

2xT(t)ETR(ST2 x(t)− S
T
3

∫ t

t−h(t)
η0(s)ds)

= 2
∫ t

t−h(t)
ηT0 (s)dsRS

T
2 x(t)−

∫ t

t−h(t)
ηT0 (s)ds

× (RST3 + S3R
T)
∫ t

t−h(t)
η0(s)ds

+ 2[
∫ t

t−h(t)
Jx(s)dω(s)]TR(ST2 x(t)− S

T
3

∫ t

t−h(t)
η0(s)ds)

= 0. (23)

From (20), (22) and (23), we obtain

dV (t) = LṼ (t)dt + 2xT(t)ETPJx(t)dω(t)

+ 2[
∫ t

t−h(t)
Jx(s)dω(t)]TR(ST2 x(t)− S

T
3

×

∫ t

t−h(t)
η0(s)ds), (24)

where

LṼ (t) = LV (t)+ 2(Ax(t)+ Adx(t − h(t))+ Bvv(t)

− η0(t))TR(STx(t)+ STd x(t − h(t))

+ ST0 η0(t)− S
T
1 v(t))

+ 2xT(t)ETR(ST2 x(t)− S
T
3

∫ t

t−h(t)
η0(s)ds). (25)

When v(t) = 0, let

ξT(t) = [xT(t) xT(t − h(t)) ηT0 (t)
∫ t

t−h(t)
ηT0 (s)ds].

Then, we have

LṼ (t) < ξT(t)8ξ (t), (26)

where

8 =


3̄1 2̃12 X3 S2RT

∗ 32 X4 S3RT

∗ ∗ 9 0
∗ ∗ ∗ 92

 ,
and

3̄1 = ATPE + ETPA+ Q+ SRTA+ ATRST

+ JT(E+)TETPEE+J .

For the condition (20), by the Schur complement lemma,
we have 8 < 0. Thus,

E{LV (t)} ≤ E{LṼ (t)}
≤ λmax(8)E‖ξ (t)‖2 ≤ λmax(8)E‖x(t)‖2.

Therefore, according to Definition 2, system (1) with
u(t) = 0 and v(t) = 0 is stochastically stable in the mean
square. It follows from Definition 3, we have the system (1)
is stochastically admissible in the mean square.

Next, the system (1) with the performance H∞ index γ is
analyzed.

Set

JT = E{
∫
∞

0
(zT(t)z(t)− γ 2vT(t)v(t))dt}. (27)

Let

ςT(t) = [xT(t) xT(t − h(t)) ηT0 (t) v
T(t)

∫ t

t−h(t)
ηT0 (s)ds].

We have

JT ≤ ςT(t)8̂ς (t), (28)

where

8̂ =


3̄1 2̄12 X3 2̄13 S2RT

∗ 32 X4 X5 S3RT

∗ ∗ 9 X6 0
∗ ∗ ∗ 91 0
∗ ∗ ∗ ∗ 92

 ,
3̃1 = ATPE + ETPA+ Q+ SRTA+ ATRST,

+ JT(E+)TETPEE+J + CTC .

From (12), by Schur complement lemma, one has JT < 0.
Therefore, the system (1) is stochastically admissible in the
mean square and has H∞ performance γ . This completes the
proof.
Remark 2: When J = 0, the system (1) is reduced to the

singular systems discussed by Wu et al. [22], however, they
investigated the time-invariant delay systems. Here, we study
time-varying delay systems. When E = 0, system (1) is
reduced to the stochastic systems with time-varying delays
studied by Xia et al. [36], the model we studied is more
complex and has extensive applications.

Next, we give the state feedback controller design method
of the system (3), in order to analyse conveniently, the closed-
loop system (3) can be written the following equivalent form

Ẽdx̃(t) = (Ãx̃(t)+ Ãd x̃(t − h(t))+ B̃vv(t))dt

+ J̃ x(t)dω(t),

Z (t) = C̃ x̃(t), (29)

among them

Ẽ =
[
E 0
0 0

]
, Ã =

[
0 I

A+ BK −I

]
,

Ãd =
[
0 0
0 Ad

]
, x̃(t) =

[
x(t)
y(t)

]
,

x̃(t − h(t)) =
[

0
x(t − h(t))

]
, B̃v =

[
0
Bv

]
,

C̃ =
[
C 0

]
, J̃ =

[
0 0
J 0

]
. (30)

Therefore, we only need to prove the system (29) is stochasti-
cally admissible in the mean square and has H∞ performance
index γ .
Theorem 2: For given two scalars h0 > 0, γ > 0,

the closed-loop system (29) is stochastically admissible in
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the mean square with H∞ performance index γ . If there
exist positive matrices P > 0,Q > 0,Z > 0, matrices
X ,Y , S, S0, S2, S3, such that the following matrix inequality
holds. [

41 42
∗ 43

]
< 0, (31)

where

41 =

[
ϒ1 ϒ2
∗ ϒ3

]
,

ϒ1 =

[
�1 �2
∗ −X − XT

]
,

ϒ2 =

[
XTATd �3 �4
XTATd RST0 − X −X − XT

]
,

ϒ3 =

−(1− µ)Q AdX AdX
∗ 9 −XT

∗ ∗ −X − XT

 ,

42 =


XTCT S2RT XT Bv JE+EP
XTCT 0 XT 0 0
0 0 0 0 0

XTCT 0 0 0 0
XTCT 0 0 0 0

 ,

43 =


−γ 2I 0 0 0 0
∗ �5 −XT 0 0
∗ ∗ −X − XT 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −P

 ,
�1 = Q+ AX + BY + XTAT + Y T

+ BT,

�2 = EP+ SRT − XT
+ AX + BY ,

�3 = AX + BY − SRT, �4 = AX + BY − XT,

�5 = −Z − S3RT − RST3 ,

9 = h20Z − S0R
T
− RST0 ,

R ∈ <n×(n−r) is an arbitrary column full rank matrix satisfy-
ing ETR = 0.
Then the state feedback control law is given by

u(t) = Kx(t) = YX−1x(t). (32)

Proof: Denote

P̃ =
[
P 0
0 λI

]
, Q̃ =

[
Q 0
0 λI

]
, R̃ =

[
R 0
0 X

]
,

S̃0 =
[
S0 I
0 I

]
, S̃ =

[
S I
0 I

]
, S̃d = S̃1 = 0,

S̃2 =
[
S2 I
0 I

]
, S̃3 =

[
S3 I
0 I

]
, (33)

where X ∈ <n×n is an arbitrary nonsingular matrix. The
P̃, Q̃, R̃, S̃, S̃d , S̃1, S̃2, S̃3, S̃0 in (33) is used to replace the
P,Q,R, S, Sd , S1, S2, S3, S0 in formula (12) of Theorem 1.
By Schur complement lemma, and let λ→ 0, we get[

4̂1 4̂2
∗ 43

]
< 0, (34)

where

4̂1 =

[
ϒ̂1 ϒ̂2

∗ ϒ̂3

]
,

ϒ̂1 =

[
�̄1 �̄2
∗ −X − XT

]
,

ϒ̂2 =

[
XTATd �̄3 �̄4
XTATd RS

T
0 − X −X − X

T

]
,

ϒ̂3 =

−(1− µ)Q ATdX ATdX
∗ 9 −XT

∗ ∗ −X − XT

 ,

4̂2 =


XTBv S2RT XT CT (PEE+J )T

XTBv 0 XT 0 0
0 0 0 0 0

XTBv 0 0 0 0
XTBv 0 0 0 0

 ,
�̄1 = Q+ XT(A+ BK )+ (A+ BK )TX ,

�̄2 = ETP+ SRT − XT
+ (A+ BK )TX ,

�̄3 = (A+ BK )TX − SRT,

�̄4 = (A+ BK )TX − XT,

9 = h20Z − S0R
T
− RST0 .

We know, in terms of the regularity, the absence of impulse
and stochastic stability of the stochastic singular systems,
the system (29) can be written in the following dual equation
form

Ẽdx̃(t) = ((A+ BK )Tx̃(t)+ ÃTd x̃(t − h(t))+ C
Tζ (t))dt

+ J̃Tv x̃(t)dω(t),

Z (t) = B̃Tv x̃(t). (35)

In Eq. (35), we use ẼT, (A + BK )T, ÃTd , B̃
T
v , J̃

T, C̃T

instead of E, (A + BK ),Ad ,Bv, J ,C , respectively, and let
Y = KX , thus we can prove that the closed-loop system (29)
is stochastically admissible in the mean square and has H∞
performance index γ . This completes the proof.

IV. ILLUSTRATIVE EXAMPLES
Let’s give a practical example to demonstrate the effective-
ness of the proposed method.
Example 1: Considering the following DC motor

model [37].

dxi(t) =
bi
Ji
x1(t)+

Kt
Ji
x2(t)dt + Jx(t)dω(t),

u(t) = Kvx1(t)+ R̄x2(t),

where the state vector x1(t) = v(t) stands for speed, and the
state vector x2(t) = i(t) refers to current. Kv, Kt , and R̄ refer
to electromotive force, torque constant, and electric resistor,
respectively. Here, Ji and bi are defined as follows

Ji = Jm +
Jci
n2
,

bi = bm +
bci
n2
.
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FIGURE 1. Stochastic stability of system (3) without external disturbance.

FIGURE 2. Stochastic stability of system (3) with external disturbance.

Set Jm = 0.5kgm, Jc1 = 50kgm, Jc2 = 150kgm, bc1 =
100, bc2 = 240, R̄ = 1�, bm = 1,Kt = 3N · m/A,Kv =
1Vs/rad , and n = 2.

According to the modeling idea in [37], and the time of the
trigger is out of control will cause delay phenomenon in a DC
input and output, then the system parameters are given as

E =
[
1 0
0 0

]
, A =

[
−2 0.2
1 1

]
,

B =
[
0
1

]
, Ad =

[
−0.7 0.1
1 1

]
.

In addition, DC motor often be affected by temperature,
humidity, the complexity and uncertainty of the external envi-
ronment and other factors, there exist stochastic disturbance
ω(t), external input disturbance v(t) in the DC motor model,
the parameters are given as follows

J =
[
0.1 0.2
0 0

]
,

Bv =
[
0.5
0.1

]
.

Design the state feedback controller (2), set h0 = 0.3, µ =
0.1. For any delay 0 ≤ h(t) ≤ 0.3, by solving (31) in
Theorem 2, the corresponding state feedback gain is given
by

K =
[
−1.6245 −2.8310

]
.

When ω(t) = t − 0.3 ∗ sin(t) is considered, we can obtain
the following plot.

Figs. 1 and 2 plot state response x(t) of the closed-loop
system (3), respectively, from which, we can see that the state
x(t) meets stochastic admissibility in the mean square of the
studied system.

V. CONCLUSION
In this work, we discuss the stochastic admissibility in
the mean square for singular systems with stochastic dis-
turbance and time-varying delays. By constructing a new
Lyaponov-Krasovskii functional, depending on the auxiliary
vector function and using the free weighting matrix technique
and the improved Jensen inequality, the stochastic admissi-
bility criteria in the mean square for the systems considera-
tion are proposed. In the process of designing the controller,
the dual equation is adopted to derive the stochastic admissi-
bility conditions in the mean square easily. Finally, an exam-
ple of DC motor model is given to verify the validity of the
theoretical results. Our conclusion can be further extended
to stochastic singular systems with time-varying delays and
parameter uncertainties.
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