
Received August 14, 2020, accepted August 26, 2020, date of publication September 1, 2020, date of current version September 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3020795

Feature Selection Optimization
in Software Product Lines
UZMA AFZAL1, TARIQ MAHMOOD2, AYAZ H. KHAN3, SADEEQ JAN 4, RAIHAN UR RASOOL 5,
ALI MUSTAFA QAMAR 6,7,8, (Member, IEEE), AND REHAN ULLAH KHAN 9,10
1Computer Science Department, Federal Urdu University of Arts Science and Technology, Karachi 75300, Pakistan
2Computer Science Department, Institute of Business Administration, Karachi 75270, Pakistan
3Computer Science Department, Dhanani School of Science and Engineering, Habib University, Karachi 75290, Pakistan
4Department of Computer Science and IT, University of Engineering and Technology, Peshawar 25000, Pakistan
5Centre for Applied Informatics (CAI), Institute for Sustainable Industries & Liveable Cities, Engineering and Science, Victoria University, Melbourne, VIC
3011, Australia
6Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia
7Department of Computing, School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan
8BIND Research Group, College of Computer, Qassim University, Buraydah, Saudi Arabia
9Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia
10Intelligent Analytics Group, College of Computer, Qassim University, Buraydah, Saudi Arabia

Corresponding author: Ali Mustafa Qamar (al.khan@qu.edu.sa)

This work was supported by a national doctoral research grant from the Higher Education Commission (HEC), Pakistan under the
Indigenous PhD Fellowship Program.

ABSTRACT Feature modeling is a common approach for configuring and capturing commonalities and
variations among different Software Product Lines (SPL) products. This process is carried out by a set of
SPL design teams, each working on a different configuration of the desired product. The integration of these
configurations leads to inconsistencies in the final product design. The typical solution involves extensive
deliberation and unnecessary resource usage, which makes SPL inconsistency resolution an expensive and
unoptimized process. We present the first comprehensive evaluation of swarm intelligence (using Particle
Swarm Optimization) to the problem of resolving inconsistencies in a configured integrated SPL product.
We call it o-SPLIT (optimization-based Software Product LIne Tool) and validate o-SPLIT with standard
ERP, SPLOT (Software Product Lines Online Tools), and BeTTy (BEnchmarking and TesTing on the
analYsis) product configurations along with diverse feature set sizes. The results show that Particle Swarm
Optimization can successfully optimize SPL product configurations. Finally, we implement o-SPLIT as a
decision-support tool in a real, local SPL setting and acquire subjective feedback from SPL designers which
shows that the teams are convinced of the usability and high-level decision support provided by o-SPLIT.

INDEX TERMS Software product line, inconsistencies, optimization, feature models, particle swarm
optimization.

I. INTRODUCTION
A Software Product Line (SPL) is a collection of
software-intensive information systems for configuring simi-
lar software products, which share common features to satisfy
the need of a particular business market [1], [2]. The success
of an SPL is highly dependent on how well the problem
domain is modeled along with its commonalities and vari-
ations. A well-known approach to model the SPL is Feature
Model (FM) which captures and models the commonalities
and differences among SPL products.

SPL product configuration is a labor-intensive and
time-consuming process [3] and requires high interaction
between the developers and users to identify and select the

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa M. Fouda .

FM compliant feature set, which also fulfills the user require-
ments. Not complying with the requirements of FM leads to
inconsistent product configuration.

The product configuration problems such as product com-
plexity and product inconsistency are highlighted in dif-
ferent case studies and reported by various SPL industries
[1], [4]–[7]. General Motors has discussed the challenges and
issues of the product line engineering and has highlighted FM
inconsistency, product complexity, and variation richness as
major problems of their SPL configurations [8]. Moreover,
White et al. [9] consider a consistent product configuration as
a primary goal of developers. Hubaux [3] discusses the incon-
sistency in the context of contradictory choice of features.

To solve the inconsistency issue, researchers proposed
different solutions such as description logic [10], abduc-
tive reasoning [11], a knowledge-based solution [12], and

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 160231

https://orcid.org/0000-0002-1139-8507
https://orcid.org/0000-0001-9966-2466
https://orcid.org/0000-0002-5323-6661
https://orcid.org/0000-0003-3323-2732
https://orcid.org/0000-0003-1790-8640


U. Afzal et al.: Feature Selection Optimization in SPL

ontologies [13]. The description logic-based framework is
evaluated using a small product configuration with a limited
feature set (almost 35). In a real-world SPL product configu-
ration scenario with thousands of features, this solution does
not show the same result [10]. The semantic web approach
is used to identify and resolve the inconsistencies from FM,
which is also a potential research issue for SPL researchers.
However, this approach does not apply to the product config-
uration because of the different dynamics (explained in detail
in the Background Section) [13]. Similarly, the main focus of
the knowledge-based approach [12] is to solve the inconsis-
tencies in FM. The abductive reasoning approach [11] only
identifies an inconsistency with the possible reason but it
does not solve inconsistencies. Moreover, these works are
validated using exemplary FMs with a limited set of features
(30-1000), which raises questions on their applicability to
large-scale FMs.

Considering the scale of a typical SPL (thousands of
features), researchers also explored Constraint Satisfac-
tion Problem (CSP) and optimization to cater to differ-
ent SPL problems. Many researchers [14]–[17] present
optimization-based solution to solve the cost-based feature
selection problem. Trinidad et al. [18] present a CSP-based
solution to identify the inconsistency of FM and generate a
consistent FM from the given inconsistent one. FM inconsis-
tency issues cannot bemappedwith the product inconsistency
issue because of their different dynamics. The research by
Bagheri et al. [19] and Cruz et al. [20] optimize features
based on user requirements and user segments. They optimize
the given FM and generate predefined and static product
configurations, which satisfy the objective functions. These
predefined configuration techniques are interesting to explore
the different research directions, but in industrial setups and
real-world environments, feature selection in product con-
figurations is not static and predefined. Features select/de-
select dynamically during the configuration as per the user
demand. Therefore, it is not practically feasible to lock the
feature selection during the actual process of configuration.
Similarly, researchers have also explored optimization to SPL
inconsistency problem [21], but the focus of this research is
to drive a consistent predefined configuration from the given
FM. It does not cater to the real-time scenario in which a
product becomes inconsistent during the configuration.

The limited applicability (on small-scale FMs) of existing
research work to cater the large-scale SPL product inconsis-
tencies also shows its reflection on the SPL industry. Hence,
SPL industrial configuration tools also show the limited sup-
port to inconsistency resolution, with an increased focus on
identifying the inconsistencies rather than solving them [22].
This situation motivates the need to provide SPL developers
with appropriate decision support to solve the real-world
inconsistencies of large-scale SPLs (Section VII presents a
detailed comparison of the existing solutions and their limi-
tations).

From the existing research literature, we discovered that
the most effective and scalable research domain to solve

large-scale SPL configuration issues is optimization, which
has seen widespread applications in a large number of
domains (including SPL) of varying complexity [23], [24].
Our study also revealed optimization-related research works
such as [14], [25], [26], but we did not find any work which
addresses the issue of inconsistent product configuration.
Only, [21] caters to the inconsistency in SPL, but is limited
to FM inconsistency.

Optimization is a good solution to product inconsistency
problem because typically an SPL product configuration con-
tains a large number of features or search space, and hence
can be conveniently optimized. Moreover, feature selection is
an NP-hard problem [27], where a large number of decisions
are required to select the feature set from an inconsistent
configuration to make it consistent. A product configura-
tion has multi-modal search space, i.e., multiple possible
solutions without any standard process of resolving feature
inconsistencies. Before setting a real world controlled setup
for our researchwork, a Proof of Concept (PoC) is designed to
validate the potential practicality of optimization to the incon-
sistency issue in SPL product configuration [28]. In this PoC,
a small testing setup is designed with industrial control knobs
to evaluate the validity of optimization to inconsistency issues
in SPL product configuration. Genetic Algorithm (the selec-
tion of the algorithm is justified in the paper) is employed to
minimize the inconsistencies. Three datasets (one small-sized
and two large-sized) are used to run the experiments. The
results verify the applicability of optimization to the product
inconsistency issue. We also explored other optimizations
algorithms, such as Particle Swarm Optimization (PSO). The
same experimental setup is used to run the experiments with
PSO. Promising results strengthened our idea with better
performance (published within our research group).

After a successful PoC, our next challenge was to select
the appropriate optimization technique. For this, we found
that Swarm Intelligence (SI) is a standard optimization tech-
nique, with Particle Swarm Optimization (PSO) being a well-
known, widely applied, and recognized algorithm [29], [30].
Moreover, the initial results of our testing setup support this
selection. In this context, we posed and addressed a question
in this article i.e.,

RQ1: Can we experimentally validate an application of
SI through PSO to resolve SPL product inconsistencies?

To answer the research question, we conducted experi-
ments using different representative SPLs which varied in
the size of feature repositories. These SPLs were provided
by an anonymous multinational SPL vendor and focused on
the ERP business domain. We designed and implemented
an SPL tool, which is labeled as o-SPLIT (optimization-
based Software Product LIne Tool), and implements amodule
related to SI. Finally, we attempted to validate the different
results of o-SPLIT for the SPL industry concerning usabil-
ity, effectiveness, efficiency, and user satisfaction. For this,
we posed and answered the following research question:

160232 VOLUME 8, 2020



U. Afzal et al.: Feature Selection Optimization in SPL

FIGURE 1. The Vendor Master Feature Model.

RQ2: What is the opinion of the SPL designers regard-
ing the optimization-based decision support provided by
o-SPLIT in the SPL product configuration process?

We compare the performance and efficiency of SI by
implementing o-SPLIT in a testing environment of an SPL
company, whose data was used to run the experiments.
We acquired anonymous feedback from SPL designers of
this company for the results of o-SPLIT through a subjective
questionnaire.

This article is organized as follows: In Section II, the back-
ground information pertinent to this article is presented.
Section III presents the architecture of o-SPLIT framework
and Section IV discusses the experimental methodology.
Section V presents the detailed results of o-SPLIT over dif-
ferent experimental settings, whereas Section VI describes
its controlled evaluation. Finally, we compare o-SPLIT with
state-of-the-art to prove its novelty.

II. BACKGROUND
In this section, we first describe the Software Product
Line (SPL) concepts. Later, we discuss the feature model-
ing, wherein we present an exemplary FM of Vendor Mas-
ter (VM) to describe the features and constraints. We then
discuss the process of a product configuration using VM as
a reference FM and present some consistent and inconsistent
product configurations. Finally, we present the concepts of
optimization.

A. SOFTWARE PRODUCT LINES
An SPL is a collection of software-intensive systems for
configuring similar software products which share common
features to satisfy the need of a particular business market.
An SPL has two development processes, i.e., Domain Engi-
neering (DE) and Application Engineering (AE). DE focuses
on the problem domain and defines the commonalities and
variabilities of the SPL products. AE reuses the domain
artifacts and exploits the SPL variability to develop an SPL
product. The transition from DE to AE is done through a
configuration, that adapts a domain model to define an appli-
cation product. Each unique product derivation is labeled as a

variant, i.e., the representation of a unique SPL configuration
that differs from other variants on specific variation points.

To manage the complex SPL dynamics, analytical skills
are required to identify, model, and encode domain and
product knowledge into artifacts that can be reused across
the development lifecycle. The success of an SPL is highly
dependent on how well the domain is modeled along with
its commonalities and variations. A well-known approach to
model the SPL is feature modeling.

1) FEATURE MODELING
Feature Modeling captures the commonalities and variations
among SPL products during DE. It represents all possible
SPL products. The features are the primary distinguishing
characteristics of a product [31], [32]. A product can be
configured by selecting a subset of all features. The rules
that govern the entire configuration process are derived from
constraints. The list of standard constraints is as follows
(modified from the list in [32]):

• Mandatory: The existence of feature F in product P is
mandatory.

• Optional: The existence of feature F in product P is
optional.

• OR: In product P, there is a feature set from which one
or more features can be selected.

• Alternative: In product P, there is a feature set
{F1,F2,F3, · · · ,Fn} from which only one feature can
be selected.

• Exclude: If feature F1 excludes feature F2, both features
cannot be configured in the same product P.

• Include: If featureF1 includes a featureF2, the inclusion
of F1 in a product P implies the inclusion of F2 in P.

2) AN EXAMPLE OF FEATURE MODELING
Figure 1 presents a feature model of a VM, module of an
ERP SPL which integrates numerous configuration units of
multiple departments of an organization into a single stream-
lined system. Each unit targets a particular business process,
like product development, purchasing, sales, and marketing.

VOLUME 8, 2020 160233



U. Afzal et al.: Feature Selection Optimization in SPL

VM manages the information about vendors that supply an
enterprise. The VM in Figure 1 is derived from the work done
in [33], [34] in which the authors discuss the concepts of ERP.
The description of the feature model in Figure 1 is as follows:
F1 is a mandatory feature, whereas F6, F8, and F11 are

optional ones. F1 conveys Vendor Information in account and
has two children F2 and F3. F2 and F3 are ‘‘Anded’’ and
represent Vendor Name and Vendor ID respectively. F3 has
two children: F4 and F5; F4 generatesManual ID and F5 gen-
erates System Generated ID. F4 and F5 exclude each other,
since System Generated andManual IDs cannot co-exist in a
valid product. F6 is an optional feature to inactivate a vendor
after a specific time period, described by F7. F6 includes F7
to be a meaningful feature. F8 takes the Temporary Vendor
feature in account and has two children F9 and F10. F9 and
F10 exclude each other; F9 allows temporary vendor while
F10 does not allow it. F11 arranges the Vendor List and has
three alternative children F12, F13, and F14. F12, F13, and
F14 arrange vendors by their Name, Code, and Postal Code
respectively.

3) CONFIGURING THE SPL PRODUCT
Software product configuration selects and de-selects fea-
tures from the FM according to user preferences. Software
product configuration needs a strong interaction between
developers and users to identify a FM compliant configura-
tion feature set [3].

Using Figure 1 as a reference, following are some con-
sistent product configurations which are compliant with the
constraints describe in VM feature model:

• P = {F1(F2,F3(F4)),F6(F7)}
• P = {F1(F2,F3(F5)),F6(F7)}

A product configuration becomes inconsistent if the con-
figured feature set is not compliant with the FM and violates
the predefined constraints. Using Figure 1 as a reference,
following are some inconsistent product configurations:

• P = {F6(F7)} is an inconsistent product because a
mandatory feature F1 along with its children features is
missing.

• P = {F1(F2,F3(F4,F5))} is also an inconsistent product
because F4 and F5 cannot coexist in the same product.

• P = {F1(F2,F3(F4)),F6} is also an inconsistent prod-
uct because F6 includes F7, which is missing from the
current feature selection.

4) FEATURE MODEL GENERATORS
SPLOT (Software Product Lines Online Tools) FM genera-
tor [35] and BeTTy (BEnchmarking and TesTing on the anal-
Ysis (of FMs)) online FM generator [36] provide standard-
ized information, tools, and datasets for both SPL researchers
and practitioners; and support the generation of FM test data
to evaluate the performance of analysis tools. In this article,
we used them to generate the FMs for validating o-SPLIT (our
proposed SPL tool).

SPLOT FM generator is a simple, yet robust Java-based
visual editor which supports FM creation, configuration, and
editing. SPLOT FM generator generates FMs based on sev-
eral input parameters such as feature-set size, percentage
distribution of mandatory, optional, alternative and exclusive
constraints, and minimum and maximum branching factors
of the FM. BeTTy online FM generator provides a web-based
interface to generate random feature models. It supports the
generation of FMs on the basis of very few parameters, such
as the number of features and user information. However, one
can also select the advanced parameters to generate FM such
as percentage distribution of mandatory, optional, or alterna-
tive constraints, maximum branching factor and a maximum
number of sub-features in a feature set. BeTTy is released
under LGPL3 licence and distributed as a jar file.

B. OPTIMIZATION
Optimization is the selection of an optimal candidate con-
cerning predefined conditions from a set of available can-
didates. Optimization has seen wide acceptability to several
research domains, such as designing the aircraft, bioinformat-
ics, and control engineering [23], [24].

1) PARTICLE SWARM OPTIMIZATION (PSO): SWARM
INTELLIGENCE
Swarm Intelligence is based on the study and analysis of col-
lective behavior in decentralized and self-organized systems.
Examples of these types of natural systems are fish school-
ing, ant colonies, and animal herds. PSO is a swarm-based
stochastic computational algorithm, that is influenced by the
social behavior of social organisms, such as fish schools and
bird flocks [37]. PSO has many similarities with evolutionary
algorithms, like GA in that, it initializes with a population of
random candidates and searches for the optimal solution by
updating the generations. However, it does not have evolu-
tionary operators such as crossover and mutation and requires
the setting of only a few parameter types [38], [39].

Figure 2 shows the standard working of PSO and its asso-
ciated pseudocode is displayed in Algorithm 1. PSO starts
working by initializing an initial population of particles P.
Each particle Pi is randomly placed in the search space as a
candidate solution to the optimization problem. The change in
particle’s position is defined as velocity V, and the movement
of particle is based on the interaction of particle’s personal
experience and social experience. Each particle adjusts its
trajectory based on its own personal best position experience
(pid ) and the best position held by any particle (pgd ) of the
swarm. Equation 1 and 2 are used to update the velocity
(V) and position (S) of each particle.

Vid (t + 1) = Vid (t)+ C1R1(Pid − Sid (t))

+C2R2(Pgd − Sid (t)) (1)

Sid (t + 1) = Sid (t)+ Vid (t + 1) (2)

where t is the counter, C1 and C2 are the acceleration coef-
ficients (Cognitive and Social attractions), and R1 and R2

160234 VOLUME 8, 2020



U. Afzal et al.: Feature Selection Optimization in SPL

FIGURE 2. Particle Swarm Optimization - Process.

Algorithm 1 Particle Swarm Optimization - Pseudo Code
1: For each Particle Pi
2: Initialize Pi;
3: End For
4: Do
5: For each Particle Pi
6: Compute fitness;
7: If fitness > its personal best
8: Update current value as the new personal best;
9: End If

10: End For
11: Select the particle P with the best fitness value of all as

the global best;
12: For each Particle Pi
13: Compute Vid using Equation 3;
14: Compute Pid using Equation 2;
15: End For
16: While {the termination criteria is not attained;}

are two random numbers in the range [0,1]. The updated
particles are evaluated by the objective function. After several
iterations, the best particle is returned as the optimal solution.

In [40], the authors introduce the concept of the inertia
weight w to the standard velocity update equation, which
supervises the effect of previous velocities on current velocity

and controls the convergence of the algorithm. The modified
velocity is depicted in Equation 3.

Vid (t + 1) = WVid (t)+ C1R1(Pid − Sid (t))

+C2R2(Pgd − Sid (t)) (3)

and the inertia weight is updated according to Equation 4.

W = Wmx − ((Wmx −Wmi)/Imx) ∗ I (4)

where Wmx , Wmi are the maximum and minimum values
respectively, that W can take; I is the current iteration and
Imx represents the total number of iterations.
Several encoding schemes have been proposed to represent

the particles, such as binary and natural encoding.

III. O-SPLIT: OPTIMIZATION-BASED SOFTWARE
PRODUCT LINE TOOL
In this section, we describe our optimization-based Software
Product LIne Tool (o-SPLIT) to deal with the SPL prod-
uct inconsistencies. o-SPLIT provides automated support to
resolve inconsistencies in the form of decision support to SPL
developers while configuring critical feature sets. o-SPLIT
successfully resolves inconsistencies by employing Swarm
Intelligence (SI).

The o-SPLIT architecture comprises a Swarm Intelligence
Module (SIM) as shown in Figure 3.

A. SWARM INTELLIGENCE MODULE (SIM)
SIM implements Particle Swarm Optimization (PSO) to gen-
erate consistent product configurations. In Figure 3, we show
the operational flowchart of SIM. It fetches an inconsis-
tent product configuration from Product-Rep and uses the
objective function explained in Section III-B, to encode
configuration as an optimization problem. SIM encodes the
inconsistent product configuration as a particle. For the given
configuration with n number of features, it maps them to
a particle with n dimensions. The bit strings (0 and 1) are
used to encode the particle, where 0 and 1 represent the
de-selection and selection of a feature respectively.

As our ultimate goal is to generate a consistent configura-
tion from an inconsistent one, SIM uses the given inconsistent
product configuration as an initial seed to generate the initial
swarm with multiple particles. It tunes swarm size, inertia
weight, cognitive and social attraction parameters to acquire
their optimal values. SIM, then employs PSO to the encoded
configuration with the optimal values of the parameters and
finally, returns the optimized configurations. We have imple-
mented the SIM module in Matlab by inheriting and modify-
ing the PSO code available on MathWorks website.1

B. OBJECTIVE FUNCTION
Here, we describe our objective function which is used by
SIM. This function must address two challenges: 1) minimize
inconsistencies while avoiding the deselection of all features

1https://www.mathworks.com/matlabcentral/fileexchange/25986-
constrained-particle-swarm-optimization/all_files

VOLUME 8, 2020 160235



U. Afzal et al.: Feature Selection Optimization in SPL

FIGURE 3. An Abstract Level Overview of o-SPLIT.

in a given configuration, and 2) maintain prioritization of the
different types of inconsistencies. We solve them as follows:

To understand the first challenge, assume an inconsistent
product configuration P = {F1(F2,F3(F4,F5))}, where F4
and F5 cannot coexist in the same product. The easiest way to
make it consistent is the deselection of both inconsistent fea-
tures, i.e., F4 and F5. This is logical but not a good approach,
because developers have to make their efforts again in select-
ing between F4 and F5. To better understand the problem,
assume we scale up a product configuration to a large number
of features n containing a high number of inconsistencies m.
If we turn off all inconsistent features, then the consistent
configuration can contain aminimum of n−m features, which
can potentially be a very small subset of n. Obviously, this
doesn’t give much choice for developing products having
diverse features. A better approach, for instance, could be
to deselect any one of F4 or F5 to generate a consistent
product configuration with n-1 features. To formalize similar
solutions automatically, we modify our objective function to
meet the threshold value of the number of selected features,
which can be set by the developers along with the main
objective of minimizing inconsistencies.

Our second challenge was to assign weights to differ-
ent constraint types that introduce product inconsistencies.
In a real-world scenario, developers give importance to those
constraint violations which have a high priority. To model

our optimization approach according to the real world,
we assigned weights to different types of constraints. For
this, we targeted four primary types, i.e., mandatory, include,
exclude, and alternative. We first prioritized them based
on their severity, i.e., Mandatory > Exclude and Alterna-
tive > Include. Then, we normalized the weight values
on a scale of 0-1. We arbitrarily assigned 0.4 weight to a
mandatory constraint violation, 0.3 to an alternative or an
exclude constraint violation, and 0.3 to an include constraint
violation.

We now mathematically formalize our objective function.
Suppose that:

FS is a set of all possible Features (F) of a Software
Product Line (SPL). It represents the complete domain
of a particular SPL.
γ is an inconsistent product configuration derived to
meet the demands of a specific SPL customer. It contains
9 features.
9 = {F1,F2, · · · ,Fn} is a subset of FS which is
configured in γ .
� = {Ct1,Ct2, · · · ,Ctn} is the set of applicable con-
straints on Fi of γ . For instance,mandatory, include etc.
ω = {0.4, 0.3, 0.3} is the set of weights assigned to
constraints Ctn ∈ �. As already discussed, 0.4 for
mandatory, 0.3 for exclude and include constraint
violations.

160236 VOLUME 8, 2020



U. Afzal et al.: Feature Selection Optimization in SPL

8 = {ω1Ct1F1, ω2Ct2F2, · · · , ωjCtjFj} is the set of
j inconsistencies, where j is not necessarily equal to
n (total number of features in 9), because the given
product configuration γ contains9; and9 can also have
consistent features which do not introduce any incon-
sistencies. In a nutshell, n − j are those features which
are consistent. If a mandatory feature F1 is missed in γ ,
the representation of this j inconsistency is (0.4(Manda-
tory)*F1). Note that, we use the textual terms to increase
the readability of the user, although an encoding scheme
(explained in Section IIIA and IV) is used to represent
the 8, ω, 9, γ , and FS.

Then, Equations 5 and 6 are used to represent the objective
of the optimization, i.e., maximization of selected features
and minimization of the inconsistencies.

Min
n∑
j=1

8(ωjCtjFj) (5)

s.t. P→ �
n∑
i=1

9(Fi) ∼ Threshold (6)

For a given inconsistent product configuration γ of a SPL
with 8 inconsistencies, the goal of the optimization problem
is to minimize the 8 by complying � along with maximiza-
tion of the features Fi up to a given threshold value. This
threshold value is set by a consensus between developers
and users. As shown in Equations 5 and 6, a consistent
SPL product configuration is a multi-objective optimiza-
tion problem where the two objectives, i.e., minimization
of inconsistencies and maximization of feature selection are
competing. Therefore, there is usually no single optimal solu-
tion. A tradeoff of these multiple objectives is calculated
as a solution (Pareto optimal solution). For more details
on multi-objective optimization and pareto optimal solution,
please refer to [41].

As we already mentioned, we use PSO to optimize this
problem which tries to search a consistent product config-
uration in a search space. We have n dimensional search
space which contains a swarm of possible candidates of m
dimensional configurations. The values of n and m are based
on swarm size and configuration size (number of features)
respectively. For instance, if we have small-scale product
configuration with 100 (m) features and 20 (n) swarm size,
then the search space has 20*100 dimensions. Every pos-
sible candidate configuration is encoded in a particle. The
position (movement) of these particles in the search space is
based on particle personal experience and social experience
(detailed in section IIB). An objective function is used to
evaluate how good or bad is the position of the particle.
After several iterations, PSO generates an optimal product
configuration with lesser number of inconsistencies.

C. O-SPLIT: A WORKING EXAMPLE
In this subsection, a working example of the o-SPLIT is
presented to give an idea of how it can provide SPL developer

teams a decision support. Vendor Master (VM) example
(explained in the Background section) is used for the illus-
tration. The details are as follows:
• Actors and Roles: Assume the following actors in the
working example:
– SPL Vendor (SV): Representing the company

involved in selling SPL products.
– Developer Teams: Representing the developer

teams involved in SPL product configuration.
– R-Industries: Representing the client company

interested in purchasing the VM module.
• Domain Engineering Module (DEM): o-SPLIT’s
DEM provides interfaces for SPL initialization along
with its associated modules, features, and constraints
definitions for SPL. These interfaces are described as
follows:
– SPL Initialization: This interface is used to store

SPL profile information including SPL ID, SPL
Name, and SPL Descriptionwhich helps in tracking
a particular SPL. Figure 4 shows the initialization of
an SPL with an ID T-ERP, which is a Test ERP.

– Add Modules: This interface allows the developer
teams to add and definemodules to an SPL. It stores
Module ID,Module Name, andModule Description
for an SPL. Figure 5 shows the definition of a
VM module, i.e., ERP-VM for T-ERP SPL.

– Add Constraints: This interface facilitates the
developer teams to define SPL constraints. Figure 6
shows the definition of a unary constraint (single
feature involved) mandatory to the T-ERP.

– Add Features: This interface helps the developer
teams in defining features to the SPL. The process
of feature definition starts with the selection of
an SPL followed by the selection of a particular
module for which the features are defining or being
defined. This interface stores Feature ID, Feature
Name, and Feature Description. It also allows a
feature to be stored as a Root Feature (with no
parent feature) or as a Final Feature (with no child
feature). In case a feature is not a Final one, a user
can associate a parent feature. Figure 7 shows the

FIGURE 4. An interface to Initialize SPL.

VOLUME 8, 2020 160237



U. Afzal et al.: Feature Selection Optimization in SPL

FIGURE 5. An interface to Add Modules.

FIGURE 6. An interface to Add Constraints.

FIGURE 7. An Interface for Defining SPL Features.

definition of F1, a root feature, which stores Vendor
Information of VM-ERP.

– Add Constraints to Features: This interface
facilitates the developer teams to create associa-
tion between SPL features and constraints, shown
in Figure 8. A mandatory constraint is being
assigned to feature F1, already defined in the T-ERP
SPL domain.

• Application Engineering Module (AEM): o-SPLIT
provides a runtime configuration support to developer

FIGURE 8. Features and Constraints Association.

FIGURE 9. Application Engineering Interface.

teams in AE process of SPL by offering interface for
SPL product configuration.

– AE Initialization: This interface facilitates the
developers to start an SPL product configuration
process by initializing a client profile along with the
modules they want in the configuration. Figure 9
shows the initialization of product configuration
process for R-Industries. The ID assigned to the
SPL product is CL-T-ERP, which is a test config-
uration of T-ERP. CL-T-ERP contains only a single
module, i.e., VM.

– Product Configuration: This is the core interface
of an SPL product configuration. Figure 10 shows
the configuration process of VM-ERP module of
CL-T-ERP. The top left of Figure 10 shows the
tracking information of VM-ERP, i.e., CL-T-ERP
(product name) and T-ERP (SPL name). Similarly,
the top right shows the information of the features
which are already configured within VM-ERP. The

160238 VOLUME 8, 2020



U. Afzal et al.: Feature Selection Optimization in SPL

FIGURE 10. SPL Product Configuration Interface.

FIGURE 11. o-SPLIT Optimization.

bottom of Figure 10 shows a list of potential fea-
tures (along with description), which are not part of
VM-ERP but can still be selected.

• Optimization Module o-SPLIT provides decision
support through its optimization module, i.e., SIM.
Figure 11 shows the optimization of the SPL product
CL-T-ERP which contains the configuration of VM fea-
ture model. After clicking the input configuration but-
ton, the developer can browse the file which contains
inconsistent CL-T-ERP configuration. The inconsistent
configuration used to run this example is as follows
(8 represents the % inconsistencies and 9 shows the
number of features in the given configuration):
– CL-T-ERP = F1(F3(F4,F5)),F6,F8(F9,F10),
F11(F12,F13); 8 = 45.4%, 9 = 11

After this, parameter values are selected to run the
experiment. For this example, the following parameters
setting for the small-scale configurations is used:
– Swarm size= 20, inertia= 0.5, cognitive attraction
= 1.5, and social attraction = 1.5

The experiments are run 10 times to acquire the
three best configurations on the basis of performance

measure, i.e., minimization of inconsistencies. The
results containing the details of these 3 consistent con-
figurations are finally exported to the text file. This file
is presented to the client who can select a configuration
for the implementation. Three consistent configurations,
SIM generated for CL-T-ERP are as follows (8 repre-
sents the % inconsistencies and 9 shows the number of
features in the given configuration):
– CL-T-ERP = F1(F2,F3(F4)),F6(F7),F8(F10),
F11(F13); 8 = 0%, 9 = 10

– CL-T-ERP=F1(F2,F3(F5)),F6(F7),F8(F9),F11(F12);
8 = 0%, 9 = 10

– CL-T-ERP = F1(F2,F3(F5)),F6(F7),F8(F10),
F11(F13); 8 = 0%, 9 = 10

These CL-T-ERP configurations are 100% consistent
with the same number of selected features.

The source code of the main features of o-SPLIT and
datasets are available at this URL.2

IV. EXPERIMENTAL SETUP
In this section, we first define the data collection procedure,
then we describe the problem encoding scheme and the pro-
cess of generating the initial population. Finally, we discuss
the experimental configurations of the SIM module.

A. DATA COLLECTION
We acquired real-world data of a local ERP SPL from a well
known multi-national organization, that has a large customer
base and a good repute in our local market. The datasets
contain small-scale (containing 100 features), medium-scale
(containing 500 features), large-scale (containing 1000 fea-
tures), and very large-scale (containing 5000 features) FMs
with different complexities (measured in terms of the number
of features and constraints). Table 1 presents the details of the
total features and constraints in each of the FM. It shows that
the number of constraints in the given FM is proportional to
the FM size. Moreover, in each FM except the small-scale
one, the occurrence of include constraint is the highest fol-
lowed by mandatory, exclude, and alternative constraints.
In small-scale FM, the occurrence of mandatory constraint
is the highest followed by include, exclude, and alternative
constraints.

TABLE 1. SPL Feature Models; M=Mandatory, I=Include, E=Exclude,
A=Alternative.

We then generated 10 inconsistent product configurations
for each FM, containing all real-world inconsistencies includ-
ing mandatory, exclude, alternative, and include constraint

2https://sites.google.com/site/afzaluzmaa/research/i-split

VOLUME 8, 2020 160239



U. Afzal et al.: Feature Selection Optimization in SPL

TABLE 2. Small-Scale Configurations Set; CID = Configuration ID, F = Number of Features, M = Mandatory Inconsistencies, I = Include Inconsistencies,
E = Exclude Inconsistencies, A = Alternative Inconsistencies.

violations. The naming convention we use to represent the
FM is a combination of the domain type and scale, for
instance, ES for ERP-Small-scale, EM for ERP-Medium-
scale, EL for ERP-Large-scale and EVL for ERP-VeryLarge-
scale.

To analyze the applicability of o-SPLIT to different types
of FMs with different complexities, we also generated FMs
using the SPLOT FM generator and BeTTy online FM gen-
erator. SPLOT and BeTTy are the two well-known names in
the SPL industry, they aim to put SPL research into practice
by providing standardized information, tools, and datasets.

SPLOT FM generator generated small, medium, and
large-sized FMs efficiently, but got stuck in a continuous loop
of FM rejections (due to inconsistent FM generation) while
generating very large-scale consistent FM. We attempted
this process five times but SPLOT FM generator did not
produce very large-scale FM (containing 5000 features).
On average, SPLOT FM generator rejected 19,500 FMs
an hour due to inconsistency. On the other hand, BeTTy
online FM generator did not encounter any issues and eas-
ily generated the FMs for each scale (small to very large).
The number of constraints in these automated FMs (SPLOT
and BeTTy) are normally distributed, that’s why we are
not mentioning them in a separate table. Similar to ERP
configurations, we generated 10 inconsistent product config-
urations for each FM and named them as SS-C1, SS-C2, · · · ,
SS-C10 (SPLOT Small-scale Configurations), SM-C1, SM-
C2, · · · , SM-C10 (SPLOT Medium-scale Configurations),
SL-C1, SL-C2, · · · , SL-C10 (SPLOT Large-scale Con-
figurations), and BS-C1, BS-C2, · · · , BS-C10 (BeTTy
Small-scale Configurations), BM-C1, BM-C2, · · · , BM-C10
(BeTTy Medium-scale Configurations), BL-C1, BL-C2, · · · ,
BL-C10 (BeTTy Large-scale Configurations), BVL-C1,
BVL-C2, · · · , BVL-C10 (BeTTy Very Large-scale Config-
urations), respectively.

Table 2, 3, 4, 5 show the small, medium, large, and very
large-scale configurations derived from the feature models

generated through ERP, SPLOT FM generator, and BeTTy
online tool, respectively. Figure 12 shows a comparison of
these configurations. In all of the scale configurations, except
very large-scale ones, SPLOT configurations contain the
highest number of inconsistencies followed by BeTTy and
ERP configurations. In very large-scale configurations, ERP
configurations contain the highest occurrence of inconsisten-
cies followed by the BeTTy configurations. The overall num-
ber of inconsistencies in all configurations is proportional
to the size of the given configurations. Inconsistencies wise,
the occurrence of mandatory and include inconsistencies are
the highest in numbers, followed by exclude and alternative
inconsistencies.

We selected two configurations with the highest incon-
sistencies and two configurations with the least number
of inconsistencies from each configuration set. The reason
behind this was to check the performance of o-SPLIT in
both cases, i.e., the best (containing a fewer number of
inconsistencies) and the worst (containing a high number of
inconsistencies) situations.

We statistically computed the configurations details, such
as the number of inconsistencies and features, which helped
us in the selection process. Based on the above discussion,
Table 6 lists the selected configurations, which we used to
run our optimization related experiments.

B. PARAMETER TUNING
In order to obtain the optimal values for the different
parameters of SIM, we used the parameter tuning method,
which is a traditional way of testing and comparing dif-
ferent values before the actual test run [42]. We randomly
selected ES-C2 from the small-scale configurations set, SM-
C3 from the medium-scale configurations set, BL-C10 from
the large-scale configurations set, and EVL-C8 from very
large-scale configurations set. For SIM, we tuned the swarm
size, cognitive and social attraction, and inertia weight. For
each parameter setting, we ran the experiments 10 times

160240 VOLUME 8, 2020



U. Afzal et al.: Feature Selection Optimization in SPL

FIGURE 12. Inconsistencies (Averaged) in SPL Product Configurations Generated through ERP, SPLOT FM and BeTTy Online Tool.

TABLE 3. Medium-Scale Configurations Set; CID = Configuration ID, F = Number of Features, M = Mandatory Inconsistencies, I = Include Inconsistencies,
E = Exclude Inconsistencies, A = Alternative Inconsistencies.

(based on recommendations of [43]) to obtain the average
value.

For cognitive (C1) and social (C2) attraction, we used three
standard settings, i.e., C1=C2 (C1=1.5, C2=1.5), C1 > C2
(C1=2.0, C2=1.0), C2 > C1 (C2=2.0, C1=1.0) [44], [45].
For swarm size parameter, we tested the selected configura-
tionswith a small (20, 100, 200, 1000), medium (40, 200, 400,
2000), large (80, 400, 800, 4000), and very large (160, 800,
1600, 8000) swarm sizes. For the tuning of inertia weight,
we used a value ranging between 0.4-1.0 [46]. The results of
these experiments are described in Section V.

C. OPTIMIZING AND EVALUATING INCONSISTENT
CONFIGURATIONS
After obtaining the optimal parameter values for SIM,
we passed these parameters to SIM for their optimization
task. For selected configurations set (Table 6), we ran the opti-
mization experiments 10 times (based on recommendations

of [43]) to obtain the best consistent configuration. We per-
formed all these experiments on a Windows 8 machine with
Intel Core i7 CPU, 2.4 GHz processor, and 16GB RAM.

V. RESULTS AND DISCUSSION
We ran SIM experiments based on the experimental method-
ology explained earlier. We first present the results of SIM
parameters tuning, followed by SIM application with tuned
parameters on ERP, SPLOT, and BeTTy configurations.

A. SIM PARAMETERS TUNING
We tuned swarm size, cognitive attraction (C1), social attrac-
tion (C2), and inertia weight. The selection of different values
to tune these parameters is already justified in methodology.
During the trial and error process, we identified inertia weight
as the most influential parameter for the configuration prob-
lem. Thus, we tuned it first. We started from a value of 0.4 for
inertia, and in each iteration increased the value by 0.05 until

VOLUME 8, 2020 160241



U. Afzal et al.: Feature Selection Optimization in SPL

TABLE 4. Large-Scale Configurations Set; CID = Configuration ID, F = Number of Features, M = Mandatory Inconsistencies, I = Include Inconsistencies,
E = Exclude Inconsistencies, A = Alternative Inconsistencies.

TABLE 5. Very Large-Scale Configurations Set; CID = Configuration ID, F = Number of Features, M = Mandatory Inconsistencies, I = Include
Inconsistencies, E = Exclude Inconsistencies, A = Alternative Inconsistencies.

TABLE 6. Selected Inconsistent Configurations.

it reached 1.0. To find the optimal value for cognitive and
social attractions, we tested SIM with three standard settings,
i.e., C1 = C2, C1 > C2 and C2 > C1.

Table 7 shows the optimal values of SIM parameters. SIM
produced the optimal results with equal values of cognitive
and social attractions across all the given configurations,
i.e., C1= 1.5 and C2= 1.5.We also found 0.95 as the optimal
value for inertia except for small-scale configurations, which
produced optimal configurations with inertia as 0.5. Similar
to the value of inertia, small-sized swarm is the optimal

setting across all the given configurations except large-scale
and very large-scale configurations.

B. SIM SPL PRODUCT CONFIGURATIONS RESULTS
In this subsection, we present the results of SIM applica-
tion with tuned parameters on the given SPL product con-
figurations. We first present the results of small-scale SPL
product configurations, followed by medium, large, and very
large-scale configurations. For each of the different scale con-
figuration results, initially, we discuss the results of ERP con-
figurations, followed by SPLOT and BeTTy configurations.
Later, we compare the results of all these configurations.

Table 8 shows the results of small-scale configurations
with SIM. For ERP configurations, SIM resolved 100% of
the inconsistencies and generated consistent product config-
urations. It also increased the number of selected features by
more than 112% in ES-C2, followed by ES-C5 (91%), ES-C7
(65%), and ES-C4 (61%) in 1.98, 2.03, 2.15, and 2.05 seconds
respectively. SIM also decreased 100% of the inconsistencies
and generated consistent product configurations for SPLOT
given configurations. It also increased the number of selected
features by more than 62% in SS-C2, followed by SS-C4
(51%), SS-C5 (42%), and SS-C9 (34%). The time required

160242 VOLUME 8, 2020



U. Afzal et al.: Feature Selection Optimization in SPL

TABLE 7. SIM: Optimal Values for Parameters.

TABLE 8. SIM: Small-Scale Configurations Results; I = Number of Inconsistencies, F = Number of Features, %Dec = % Decrease, %Inc = % Increase.

TABLE 9. SIM: Medium Scale-Configurations Results; I = Number of Inconsistencies, F = Number of Features, %Dec = % Decrease, %Inc = % Increase.

to generate a consistent configuration for all configurations
is almost similar (2.22-2.32 seconds). For BeTTy configura-
tions, SIM was able to resolve 100% of the inconsistencies
and increased the number of selected features by more than
76% in BS-C4, followed by BS-C8 (59%), BS-C9 (22%),
and BS-C5 (23%). The time required to generate a consis-
tent configuration for all configurations is almost similar
(2.36-2.42 seconds).

Table 9 shows the medium-scale configuration results. For
ERP configurations, SIM resolved almost 98-99% of the
inconsistencies. Furthermore, it also increased the number of
selected features by more than 80% in EM-C6, 72% in EM-
C1 and EM-C4, and 67% in EM-C10. The time required to
generate a consistent configuration is 6.98-7.10 minutes. For
SPLOT configurations, SIM resolved 98-99%of the inconsis-
tencies; it also increased the number of selected features by
more than 62% in SM-C8, followed by SM-C3 (61%), SM-
C6 (56%), and SM-C7 (58%). The time required to generate

a medium-scale consistent configuration is almost similar
(6.20-6.41minutes). SIM resolved 99%of the inconsistencies
from BeTTy configurations. It also increased the number of
selected features by more than 61% in BM-C5, 54% in BM-
C3, followed by BM-C4 (50%) and BM-C10 (49%). The
time required to generate a consistent configuration is almost
6-7 minutes.

Table 10 shows the SIM results with large-scale config-
urations. SIM removed almost 98% of the original incon-
sistencies from the given ERP configurations and increased
the number of selected features by more than 2-3%. The
time taken by SIM to generate a consistent configuration
ranged between 147 to 153 minutes. Similar to ERP config-
urations, SIM removed 98% of the inconsistencies from the
given SPLOT configurations. It also increased the number of
selected features by more than 11% in SL-C7 and SL-C6,
followed by SL-C3 (7%) and SL-C2 (3%). The time taken by
SIM to generate a consistent configuration ranged between

VOLUME 8, 2020 160243



U. Afzal et al.: Feature Selection Optimization in SPL

TABLE 10. SIM: Large-Scale Configurations Results; I = Number of Inconsistencies, F = Number of Features, %Dec = % Decrease, %Inc = % Increase.

TABLE 11. SIM: Very Large-Scale Configurations Results; I = Number of Inconsistencies, F = Number of Features, %Dec = % Decrease, %Inc = % Increase.

138 to 146 minutes. SIM removed more than 99% of the
inconsistencies from the given BeTTy large-scale configu-
rations. It also increased the number of selected features by
9-10% in BL-C1 and BL-C4, followed by BL-C10 (7%) and
BL-C9 (5%). The time taken by SIM to generate a consistent
configuration ranged between 129 to 141 minutes.

Table 11 shows the SIM results with very large-scale con-
figurations. SIM resolved almost 96% of the inconsisten-
cies from the given ERP configurations. Moreover, it also
increased the number of selected features by 5-9%. The
minimum time SIM took to return an optimized solution is
almost 2.1 days, while the maximum time for optimization
is 5.4 days. SIM resolved 95% of the inconsistencies from
the given BeTTy configurations. It also increased the number
of selected features by more than 19% in BVL-C2, followed
by BVL-C8 (17%), BVL-C1 (10%), and BVL-C5 (9%). The
minimum time SIM took to return an optimized BeTTy con-
figuration is almost 2.7 days, while the maximum time for
optimization is 5.9 days.

C. DISCUSSION OF SIM RESULTS AND ANSWER TO
RESEARCH QUESTION
In this subsection, we present the analysis of SIM results with
ERP, SPLOT, and BeTTy configurations. We also analyze
the effects of configuration size, configuration type, and a
number of inconsistencies in the configurations on SIM.

Figure 13 shows a comparison of the number of features
selected in optimized configurations generated by SIM to
the original configurations. An increase or decrease in the

number of selected features is dependent on two factors,
the number of features in original configurations, and the
distribution of different inconsistency types in the original
configurations. The results of SIM validate that the exis-
tence of fewer features in original configurations increases
the chances of selection of a greater number of features
in optimized configurations. For instances, EM-C6 (from
ERP medium-scale configurations set) contained the least
number of features, i.e., 192. Furthermore, EM-C6 showed
the highest features selection increment, i.e., 80% (shown
in Table 9) during optimization. The optimization of SM-C3
(from the medium-scale SPLOT configurations set) validates
the effects of inconsistency types on the feature selection,
i.e., the existence of a greater number of mandatory and
include inconsistencies increases the chances of a higher
number of feature selection, while alternative and exclude
inconsistencies decrease this possibility. Moreover, as shown
in Figure 13, the large and very large-scale configurations
show a little increase in feature selection as compared to
small and medium-scale configurations. This shows an equal
trade-off between features selection (due to mandatory and
include inconsistencies) and features deselection (due to the
existence of exclude and alternative inconsistencies).

SIM resolved inconsistencies from all given config-
uration sizes. SIM resolved 100% inconsistencies from
small-scale configurations, followed by medium (98-99%),
large (98-99%) and very large-scale configurations (94-96%).
These results show that the performance of SIM in terms
of inconsistency resolution decreases, i.e., 1-5% with an

160244 VOLUME 8, 2020



U. Afzal et al.: Feature Selection Optimization in SPL

FIGURE 13. SPL Product Configurations - Features Selection: SIM Results.

FIGURE 14. SPL Product Configurations - Inconsistencies Resolution: SIM Results.

increase in the size of configurations. However, this decrease
is independent of the number of inconsistencies in the original
configurations. For instance, SIM produced almost equally
optimized configurations with highly inconsistent (EVL-C9,
EVL-C1) and the least inconsistent configurations. This is
true across all the given configurations as shown in Figure 14.
SIM not only produces the optimal solutions with the least
inconsistent configurations, but also generates almost equally
optimized solutions for the configurations having a higher
number of inconsistencies. Thus, SIM optimizes both types of
configurations, i.e., highly inconsistent and least inconsistent
ones.

Figure 15 (A) shows the inconsistencies resolution com-
parison of SIM results for the configurations generated
through ERP, BeTTy, and SPLOT. For small-scale configura-
tions, SIM resolved 100% of the inconsistencies from ERP,

BeTTy, and SPLOT configurations. For all medium-scale
configurations, SIM resolved 99% of the inconsistencies,
followed by large-scale configurations (98%). For very
large-scale configurations, SIM resolved 96% of the incon-
sistencies from ERP configurations, followed by BeTTy con-
figurations, i.e., 95%. Figure 15 (A) also depicts a little
decline in the optimality of the solutions with respect to
the configuration sizes, i.e., small to very large. SIM does
not show a particular trend in feature selection (shown in
Figure 15 (B)). As discussed earlier, the number of features is
a trade-off between feature selection and deselection, which
is dependent on different inconsistency types. These results
validate the flexibility of SIM across different configuration
domains and scales.

Figure 16 shows the efficiency of SIM for different scales
of configuration. For efficiency comparison, we averaged

VOLUME 8, 2020 160245



U. Afzal et al.: Feature Selection Optimization in SPL

FIGURE 15. SPL Product Configurations across Different Scales and
Domains: SIM Results.

the time taken by SIM to generate small, medium, and
large sized optimized configurations for ERP, BeTTy, and
SPLOT. For very large-scale configurations, we rather mea-
sured the efficiency of SIM by recording the two time lim-
its, i.e., the time to generate the most efficient and the
least efficient configurations. These results show that the
efficiency of SIM is proportional to the configuration size.
For small and very large-scale configurations, SIM gen-
erated the most efficient results with ERP configurations,
while for medium and large-scale configurations, SPLOT
and BeTTy configurations produced the most efficient results
respectively.

Based on SIM results, we answer RQ1 as follows:
SIM optimizes all given configurations of different scales
and domains. For all small-scale SPL product config-
urations, SIM produced 100% consistent configurations,
and for medium-scale, large-scale and very large-scale
configurations, SIM resolved 95-99% inconsistencies.
Hence, we can experimentally validate the application
of Swarm Intelligence (SI) to resolve the SPL product
inconsistencies.

VI. O-SPLIT: A CONTROLLED EVALUATION
In this section, we discuss the implementation and evaluation
of o-SPLIT and answer RQ2. We implemented o-SPLIT in
our client organization, whose FM and datasets were used to
run our experiments. It is important to mention here that the
evaluation is a controlled one, where we took professionals
from the industry to participate in the study.

We developed a testing environment to configure a
medium-scale ERP product for a team of 25 developers
(10 juniors and 15 seniors). We setup 10 test servers and a
database server, where a test server was assigned to every
developer. All test servers were connected to the database
server for sharing SPL repositories and were equipped with
o-SPLIT interface, while the database server was populated
with the configuration repositories of o-SPLIT. o-SPLIT
repositories were also populated with the test FM data for
medium-scale configuration.

The testing process started with the domain engineering of
medium-scale FM.After that, a product was configured for an
exemplary client. The final product configuration contained
inconsistencies because of the involvement of junior develop-
ers, who were not an expert of the ERP domain. Optimized
configurations using o-SPLIT were then generated from the
medium-scale inconsistent product configuration.

After the successful execution of o-SPLIT in the testing
environment, we acquired the feedback from the developers
involved in the test configuration through a subjective ques-
tionnaire. We designed this questionnaire according to the
standard guidelines for questionnaire design [47]. This feed-
back was acquired anonymously from developers, marked on
a scale of 1 (strongly disagree) to 5 (strongly agree). The
questions are as follows:

• Q1: o-SPLIT reduces the overall complexity of the con-
figuration process.

• Q2: The features set generated through o-SPLIT is opti-
mized (performance of o-SPLIT in terms of inconsisten-
cies resolution).

• Q3: The inconsistencies are removed and the configura-
tion is consistent.

FIGURE 16. Time to Generate Consistent SPL Product Configurations: SIM Results.

160246 VOLUME 8, 2020



U. Afzal et al.: Feature Selection Optimization in SPL

• Q4: It is efficient as compared to manual configurations.
• Q5: It has a practical applicability to the business
domain.

We circulated the questionnaire to the developers and cal-
culated the average response for each question:
• Q1, Q2, and Q4 received an average rating of 5, i.e., all
developers unanimously concurred with the efficiency
of o-SPLIT, as compared to their manual efforts.

• Q3 received an average rating of 4, i.e., developers
endorsed the consistency of configurations generated
through o-SPLIT.

• Q5 received a normal response with an average rating
of 4.5, i.e., developers are sure about the industrial prac-
ticability of o-SPLIT.

Considering these results, we believe that o-SPLIT has
the potential to significantly and positively impact the SPL
product configuration problems.

VII. O-SPLIT: STATE-OF-THE-ART COMPARISON
We compare o-SPLIT with two industrial tools, i.e., Gears
and Purevariants as shown in Table 12. o-SPLIT provides
additional pre-configuration support by generating multiple
optimized solutions based on previously configured product.
Clients can select an optimized configuration according to
their requirements. o-SPLIT also generates consistent config-
urations from a given inconsistent configuration. On the other
hand, Purevariants resolves mandatory and include incon-
sistencies by automatically selecting the relevant features.
It identifies exclude and alternative constraints, but does not
resolve them automatically; it only lists them for further
manual actions. Similar to Purevariants, the Gears tool also
identifies inconsistencies, i.e., automatically resolve manda-
tory and include constraints, and list the remaining ones for
manual actions. Nevertheless, o-SPLIT not only identifies
and resolves the mandatory and include inconsistencies but
also identifies and resolves the alternative inconsistencies.
Table 12 shows this comparison in detail.

TABLE 12. o-SPLIT: An Industrial Comparison.

Table 13 presents a comparison of o-SPLIT with other
state of the art techniques. First, we picked our problem
domain, i.e., inconsistencies in SPL configurations, for this,
we selected only Artificial Intelligence (AI) solutions since
the base of o-SPLIT is optimization, which is a sub-domain of
AI. Then, we expand the comparison by picking our solution
domain, i.e., optimization, for this, we selected those research
works which are based on optimization to solve the SPL
configuration issues.

In [10], the authors propose a framework to identify
and resolve the inconsistencies by proposing a description
logic-based solution. The SPL product which is used to test
the framework has a limited feature set, i.e., 35 features.
The framework takes an inconsistent configuration; identifies
and corrects the inconsistencies, and returns a minimal set
of consistent features. This solution resolves inconsistencies
for all given configurations but shows higher identification
and resolution times for large-scalemodels. Similarly, in [13],
the authors use ontology to propose a semantic web approach
to identify the inconsistencies. This work only focuses on
the inconsistencies present in FM, rather than the product
configuration. It takes an inconsistent FM as an input and
generates a consistent FM. For testing, an in-house FM with
1000 features is used.

A knowledge-based approach to solve the inconsistencies
is also presented in [12]. Here, the focus is on inconsistent
FM due to dead and inconsistent features. For this, the authors
convert the FM into a Knowledge Base (KB) and generate a
list of inconsistent and dead features. The FMwith 35 features
is used to validate the work. Trinidad et al. [18] also present
a CSP (Constraint Satisfaction Problem) based framework
to diagnose the FM inconsistencies. The experiments are
performed on large-scale FM with 5000 features.

Similar to our work, [21] and [48] use optimization to
solve the inconsistencies; but both works take an FM as
input and generate different consistent configurations from
this given FM. These consistent predefined configurations
can be implemented for a SPL client as-it-is. However, in a
real-world scenario, the users have their own wish list of
features and they want the product configuration according
to their choice. In this context, the predefined configuration
cannot be a good solution, and the developers need an auto-
mated support to generate the consistent configuration from
a given inconsistent product, configured at runtime. o-SPLIT
fills this gap as we mentioned in the results section. Besides
that, o-SPLIT can also generate a predefined set of consistent
configurations (mentioned in Table 12).

Similar to [21] and [48]; [14]–[17], [19], [20], [49] also
generate optimized predefined configurations from the given
FM based on the given objective (listed in Table 13). They
all are different from o-SPLIT in terms of objective functions
and the input criterion, i.e., FM.

VIII. THREATS TO VALIDITY
In this section, we explain the potential threats to validity
of our research work. Reference [50] proposes a systematic
approach to evaluate the validity threats for empirical soft-
ware engineering. We adapted this approach to analyse the
possible threats to our work. We also discuss the actions that
we have taken to reduce the effects of these threats.

A. INTERNAL THREATS TO VALIDITY
These threats refer to any confounding element that can
affect the outcomes. o-SPLIT implements PSO. For this,
we modified the PSO code available on MathWorks

VOLUME 8, 2020 160247



U. Afzal et al.: Feature Selection Optimization in SPL

TABLE 13. o-SPLIT: Comparison with state-of-the-art; IncId = Inconsistencies Identification, IncRe = Inconsistencies Resolution.

(MATLAB) website. To further reduce the internal threat to
validity, the implementation code is cross-checked by pro-
fessional developers of our research group. Another threat
is related to parameter settings of the PSO. We provide a
detailed discussion related to the selection of the param-
eter values, so one can easily reproduce the experiments.
We perform the experiments 10 times with every product
configuration and report the average performance. We have
also shared the dataset and source code of the critical func-
tionality of the o-SPLIT and made them publicly available
(https://sites.google.com/site/afzaluzmaa/research/i-split).

B. EXTERNAL THREATS TO VALIDITY
We conducted experiments with 44 datasets of different sizes.
14 datasets are derived from real-world industrial ERP fea-
ture models, while the rest are generated through automated
feature model generators (SPLOT-FM and BeTTy). These
system-generated datasets pose a threat to validity because
they do not contain real-world inconsistencies. However,
SPLOT and BeTTy are two big names in SPL industry
and many researchers use them to run their SPL experi-
ments [36], [51]. To reduce this threat to generalizability,
we generated 10 configurations for every configuration group
(small, medium, large, and very large) and selected two
configurations with the highest number of inconsistencies
and two configurations with the least number of inconsis-
tencies. This configuration selection process is appropriate
to select the configurations similar to the real-world con-
figurations. Moreover, we developed and evaluated o-SPLIT
in a controlled testing environment rather than an artificial
environment.

IX. CONCLUSION AND FUTURE WORK
In this article, we comprehensively explore the application of
swarm intelligence algorithms to resolve the product incon-
sistencies in SPLs. We name our tool as o-SPLIT. We select
and fine-tune the widely applied Particle Swarm Optimiza-
tion (PSO) algorithm. We also select standardized ERP,
SPLOT, and BeTTy feature models, along with four different
feature set size configurations. Our results show that PSO has
the potential to generate almost 100% optimized feature mod-

els in an incomparably lesser time as compared to the manual
feature model configuration. We then implement o-SPLIT
as a decision-support tool in a real-life SPL setting, and
obtain subjective responses regarding its performance from
representative feature model designers. The results show that
the designers are convinced of the high-level decision support
provided by o-SPLIT.

These results have motivated us, as a future work, to per-
fect our technology at the enterprise level so that it can
be seamlessly integrated in a standard industrial SPL/ERP
setting. We plan to implement this offering initially using a
cloud-based SaaS model.

REFERENCES
[1] K. Pohl, G. Böckle, and F. Van Der Linden, Software Product Line Engi-

neering, vol. 10. Berlin, Germany: Springer-Verlag, 2005, pp. 540–543.
[2] A Framework for Software Product Line Practice, Version 5.0, SEI, Oaks,

PA, USA, 2012.
[3] A. Hubaux, ‘‘Feature-based configuration: Collaborative, dependable, and

controlled,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Namur, Namur,
Belgium, 2012.

[4] M. Ardis, N. Daley, D. Hoffman, H. Siy, and D. Weiss, ‘‘Software product
lines: A case study,’’ Softw.-Pract. Exper., vol. 30, no. 7, pp. 825–847,
2000.

[5] N. Niu, J. Savolainen, and Y. Yu, ‘‘Variability modeling for product line
viewpoints integration,’’ in Proc. IEEE 34th Annu. Comput. Softw. Appl.
Conf., Jul. 2010, pp. 337–346.

[6] C. Thao, ‘‘A configuration management system for software product
lines,’’ M.S. thesis, Dept. Comput. Sci., Univ. Wisconsin Milwaukee,
Milwaukee, Wisconsin, 2012.

[7] J. Van Gurp and C. Prehofer, ‘‘From spls to open, compositional plat-
forms,’’ in Combining the Advantages of Product Lines and Open Source,
vol. 8142. Saarbrücken, Germany: Dagstuhl Seminar, 2008.

[8] R. Flores, C. Krueger, and P. Clements, ‘‘Mega-scale product line engi-
neering at general motors,’’ in Proc. 16th Int. Softw. Product Line Conf.
SPLC, vol. 1, 2012, pp. 259–268.

[9] J. White, D. Benavides, D. C. Schmidt, P. Trinidad, B. Dougherty, and
A. Ruiz-Cortes, ‘‘Automated diagnosis of feature model configurations,’’
J. Syst. Softw., vol. 83, no. 7, pp. 1094–1107, Jul. 2010.

[10] M. Noorian, A. Ensan, E. Bagheri, H. Boley, and Y. Biletskiy, ‘‘Feature
model debugging based on description logic reasoning,’’ in Proc. DMS,
vol. 11, 2011, pp. 158–164.

[11] P. Trinidad and A. R. Cortés, ‘‘Abductive reasoning and automated analysis
of feature models: How are they connected,’’ in Proc. VaMoS, vol. 9, 2009,
pp. 145–153.

[12] A. O. Elfaki, S. Phon-Amnuaisuk, and C. K. Ho, ‘‘Knowledge based
method to validate feature models,’’ in Proc. Softw. Product Line Conf.
SPLC, vol. 2, 2008, pp. 217–225.

160248 VOLUME 8, 2020



U. Afzal et al.: Feature Selection Optimization in SPL

[13] H. H.Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan, ‘‘Verifying feature mod-
els using OWL,’’ J. Web Semantics, vol. 5, no. 2, pp. 117–129, Jun. 2007.

[14] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, ‘‘A genetic algorithm for
optimized feature selection with resource constraints in software product
lines,’’ J. Syst. Softw., vol. 84, no. 12, pp. 2208–2221, Dec. 2011.

[15] Z.-Q. Wu, T. Jia-fu, and W. Li-yan, ‘‘An optimization framework for reuse
component selection in software product line,’’ in Proc. Chin. Control
Decis. Conf., Jun. 2009, pp. 1880–1884.

[16] J. Muller, ‘‘Value-based portfolio optimization for software product lines,’’
in Proc. 15th Int. Softw. Product Line Conf., Aug. 2011, pp. 15–24.

[17] Y.-L. Wang and J.-W. Pang, ‘‘Ant colony optimization for feature selection
in software product lines,’’ J. Shanghai Jiaotong Univ. (Sci.), vol. 19, no. 1,
pp. 50–58, Feb. 2014.

[18] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro, ‘‘Auto-
mated error analysis for the agilization of featuremodeling,’’ J. Syst. Softw.,
vol. 81, no. 6, pp. 883–896, Jun. 2008.

[19] E. Bagheri, M. Asadi, D. Gasevic, and S. Soltani, ‘‘Stratified analytic hier-
archy process: Prioritization and selection of software features,’’ in Proc.
International Conference on Software Product Lines, 2010, pp. 300–315.

[20] J. Cruz, P. S. Neto, R. Britto, R. Rabelo, W. Ayala, T. Soares, and M. Mota,
‘‘Toward a hybrid approach to generate software product line portfolios,’’
in Proc. IEEE Congr. Evol. Comput., Jun. 2013, pp. 2229–2236.

[21] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, ‘‘Scalable prod-
uct line configuration: A straw to break the camel’s back,’’ in Proc.
28th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2013,
pp. 465–474.

[22] U. Afzal, T. Mahmood, and Z. Shaikh, ‘‘Intelligent software product line
configurations: A literature review,’’ Comput. Standards Interface, vol. 48,
pp. 30–48, Nov. 2016.

[23] K.-F. Man, K.-S. Tang, and S. Kwong, ‘‘Genetic algorithms: Concepts
and applications,’’ IEEE Trans. Ind. Electron., vol. 43, no. 5, pp. 519–534,
Oct. 1996.

[24] R. T. Marler and J. S. Arora, ‘‘Survey of multi-objective optimization
methods for engineering,’’ Struct. Multidisciplinary Optim., vol. 26, no. 6,
pp. 369–395, Apr. 2004.

[25] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, ‘‘Optimum feature
selection in software product lines: Let your model and values guide your
search,’’ in Proc. 1st Int. Workshop Combining Modeling Search-Based
Softw. Eng. (CMSBSE), May 2013, pp. 22–27.

[26] H. I. Alsawalqah, S. Kang, and J. Lee, ‘‘A method to optimize the scope
of a software product platform based on end-user features,’’ J. Syst. Softw.,
vol. 98, pp. 79–106, Dec. 2014.

[27] J. White, B. Dougherty, and D. C. Schmidt, ‘‘Selecting highly optimal
architectural feature sets with filtered Cartesian flattening,’’ J. Syst. Softw.,
vol. 82, no. 8, pp. 1268–1284, Aug. 2009.

[28] U. Afzal, T. Mahmood, I. Rauf, and Z. A. Shaikh, ‘‘Minimizing feature
model inconsistencies in software product lines,’’ in Proc. 17th IEEE Int.
Multi Topic Conf., Dec. 2014, pp. 137–142.

[29] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
vol. 53. Berlin, Germany: Springer-Verlag, 2003.

[30] C. Blum and X. Li, ‘‘Swarm intelligence in optimization,’’ in Swarm
Intelligence. Berlin, Germany: Springer-Verlag, 2008, pp. 43–85.

[31] D. Luo and S. Diao, ‘‘Feature dependency modeling for software product
line,’’ in Proc. Int. Conf. Comput. Eng. Technol., Jan. 2009, pp. 256–260.

[32] C. Thao, E. V. Munson, and T. N. Nguyen, ‘‘Software configuration
management for product derivation in software product families,’’ in Proc.
15th Annu. IEEE Int. Conf. Workshop Eng. Comput. Based Syst. (ECBS),
Mar. 2008, pp. 265–274.

[33] E. Shehab, M. Sharp, L. Supramaniam, and T. A. Spedding, ‘‘Enter-
prise resource planning: An integrative review,’’ Bus. Process Manage. J.,
vol. 10, no. 4, pp. 359–386, 2004.

[34] A. Hawari and R. Heeks, ‘‘Explaining ERP failure in a developing coun-
try: A jordanian case study,’’ J. Enterprise Inf. Manage., vol. 23, no. 2,
pp. 135–160, Feb. 2010.

[35] SPLC. (2014). Software Product Line Online Tools. [Online]. Available:
http://www.splot-research.org/

[36] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-Cortés,
‘‘BeTTy: Benchmarking and testing on the automated analysis of feature
models,’’ in Proc. 6th Int. Workshop Variability Modeling Softw.-Intensive
Syst. VaMoS, 2012, pp. 63–71.

[37] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. IEEE
ICNN, vol. 4. Nov./Dec. 1995, pp. 1942–1948.

[38] A. Bajaj and O. P. Sangwan, ‘‘A systematic literature review of test
case prioritization using genetic algorithms,’’ IEEE Access, vol. 7,
pp. 126355–126375, 2019.

[39] Z. Wang, J. Li, K. Fan, W. Ma, and H. Lei, ‘‘Prediction method for low
speed characteristics of compressor based on modified similarity theory
with genetic algorithm,’’ IEEE Access, vol. 6, pp. 36834–36839, 2018.

[40] Y. Shi and R. Eberhart, ‘‘A modified particle swarm optimizer,’’ in Proc.
IEEE Int. Conf. Evol. Comput. World Congr. Comput. Intell., May 1998,
pp. 69–73.

[41] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
vol. 16. Hoboken, NJ, USA: Wiley, 2001.

[42] C. Bielza, J. A. Fernández del Pozo, and P. Larrañaga, ‘‘Parameter control
of genetic algorithms by learning and simulation of Bayesian networks—
A case study for the optimal ordering of tables,’’ J. Comput. Sci. Technol.,
vol. 28, no. 4, pp. 720–731, Jul. 2013.

[43] A. Arcuri and L. Briand, ‘‘A Hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,’’ Softw. Test.,
Verification Rel., vol. 24, no. 3, pp. 219–250, May 2014.

[44] P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, ‘‘Multi-objective parti-
cle swarm optimization with time variant inertia and acceleration coeffi-
cients,’’ Inf. Sci., vol. 177, no. 22, pp. 5033–5049, Nov. 2007.

[45] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, ‘‘Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration coef-
ficients,’’ IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255, Jun. 2004.

[46] Y. Shi and R. C. Eberhart, ‘‘Empirical study of particle swarm optimiza-
tion,’’ in Proc. Congr. Evol. Comput.-CEC, Jul. 1999, pp. 1945–1950.

[47] I. Brace, Questionnaire Design: How to Plan, Structure and Write Survey
Material for Effective Market Research. London, U.K.: Kogan Page Pub-
lishers, 2008.

[48] A. S. Sayyad, T. Menzies, and H. Ammar, ‘‘On the value of user pref-
erences in search-based software engineering: A case study in software
product lines,’’ in Proc. 35th Int. Conf. Softw. Eng. (ICSE), May 2013,
pp. 492–501.

[49] J. White, B. Doughtery, and D. C. Schmidt, ‘‘Filtered Cartesian flattening:
An approximation technique for optimally selecting features while adher-
ing to resource constraints,’’ in Proc. SPLC, vol. 2, 2008, pp. 209–216.

[50] M. de Oliveira Barros and A. C. Dias-Neto, ‘‘0006/2011-threats to valid-
ity in search-based software engineering empirical studies,’’ RelaTe-DIA,
vol. 5, no. 1, pp. 1–12, 2011.

[51] C. Camillieri, L. Parisi, M. Blay-Fornarino, F. Precioso, M. Riveill, and
J. Cancela-Vaz, ‘‘Towards a software product line for machine learning
workflows: Focus on supporting evolution,’’ in Proc. 10th Workshop Mod-
els Evol. Co–Located ACM/IEEE 19th Int. Conf. Model Driven Eng. Lang.
Syst. (MODELS), Oct. 2016, pp. 1–6.

UZMA AFZAL received the Ph.D. degree in computer science from the
National University of Computer and Emerging Sciences, Pakistan. She is
currently an Assistant Professor with the Federal Urdu University of Arts
Science and Technology, Karachi, Pakistan. Her research interests include
software engineering, software product line, artificial intelligence, big data,
and product configuration. She also worked on research projects with Federal
Urdu University. She has authored many research papers in conferences and
journals of international repute, including Elsevier and IEEE.

TARIQ MAHMOOD received the M.S. degree in
statistical machine learning from Universite Pierre
et Marie Curie (Paris 6), France, and the Ph.D.
degree in machine learning from the University of
Trento, Italy. He is currently an Associate Profes-
sor with the Faculty of Computer Science, Insti-
tute of Business Administration (IBA), Karachi,
Pakistan. He has published around 20 international
journal and 35 conference publications with total
691 citations and H-index of 12 (Google Scholar).

His research interests include BDA, deep learning, and machine learn-
ing/data science. He heads the Big Data Analytics Laboratory, IBA, with
a focus on imparting data science and big data certifications to students
and industry professionals, implementing BDA-related industrial projects
and researching in BDA technology stack, particularly to develop BDA
architectures for different types of streaming and non-streaming data. He also
consults in various local industries regarding business intelligence, data
governance, BDA, and machine learning.

VOLUME 8, 2020 160249



U. Afzal et al.: Feature Selection Optimization in SPL

AYAZ H. KHAN received the bachelor’s degree
(Hons.) in computer science and information tech-
nology from NED University, Pakistan, the M.S.
degree in computer science (Hons.) from the
Lahore University of Management Sciences,
and the Ph.D. degree in computer science and
engineering from the King Fahd University of
Petroleum and Minerals (KFUPM), Saudi Arabia.
He is currently working as an Assistant Professor
with the Dhanani School of Science and Engineer-

ing, Habib University, Karachi, Pakistan. In addition to these, he possesses a
dozen of professional certifications for various technical and soft skills. As a
Computer Scientist with interest in high-performance computing, parallel
programming, and deep learning, he is the author of more than 20 publi-
cations in reputed journals and conferences along with a book on parallel
processing. He has successfully completed several research funded projects
and few more are in process of accumulated worth of about half a million
dollars.

SADEEQ JAN received the B.Sc. degree in
engineering from the University of Engineering
and Technology, Peshawar, Pakistan, in 2004,
the M.Sc. degree from the KTH, Royal Institute
of Technology, Sweden, in 2007, and the Ph.D.
degree (Hons.) from the University of Luxem-
bourg, in 2017, with the thesis entitled Automated
and Effective Security Testing for XML-Based
Vulnerabilities. He is currently an Assistant Pro-
fessor and the Scientific Director of the National

Centre for Cyber Security (NCCS-UETP), University of Engineering and
Technology, Peshawar. He has worked as an Information Security Consultant
in Sweden for several years providing services in the areas of penetration
testing, PCI testing, ISO27001: 2005 compliance process, and developing
security policies for organizations. His research interests include information
security, software testing and verification, search-based software engineer-
ing, and security testing. He was awarded the Presidential Award (IZAZ-
E-SABQAT) and the University Gold Medal for academic excellence in
Pakistan.

RAIHAN UR RASOOL is currently a Senior IT
Consultant with the largest Australian technology
company. He is also affiliated with Victoria Uni-
versity as a Research Scientist. He is also a Ful-
bright alumnus of the University of Chicago, USA.
His research interests include large-scale systems,
security, and computer architecture. His research
work, comprising over 80 papers is published
in various international conferences and journals,
such as ISCA, HiPEC, CCGrid, ACM SIGARCH,

the IEEE TRANSACTIONS ON CLOUD COMPUTING, JNCA, and FGCS.

ALI MUSTAFA QAMAR (Member, IEEE)
received the B.E. degree (Hons.) in computer
software engineering from the National University
of Sciences and Technology, Pakistan, in 2005,
the M.S. degree in computer science from Uni-
versity Joseph Fourier (UJF), Grenoble, France,
in 2007, and the Ph.D. degree in computer science
from the University of Grenoble, France, in 2010.
He has worked as a Temporary Assistant Professor
with UJF, from November 2010 to June 2011.

He has been an Assistant Professor of computer science with the College
of Computer, Qassim University, Buraydah, Saudi Arabia, since 2014, and
an Assistant Professor of computer science with the School of Electrical
Engineering and Computer Science, National University of Sciences and
Technology, Islamabad, Pakistan, since 2011. His research interests include
machine learning, data mining, deep learning, social networks, and informa-
tion filtering.

REHAN ULLAH KHAN received the B.Sc.
degree in information systems from the Univer-
sity of Engineering and Technology Peshawar,
in 2004, the M.Sc. degree in information sys-
tems in 2006, and the Ph.D. degree from the
ViennaUniversity of Technology, Austria, in 2011.
He is currently an Assistant Professor and the
Director Research and Development at CoC,
Qassim University, Saudi Arabia. His current
research interest includes pattern analysis and its
applications in multiple disciplines.

160250 VOLUME 8, 2020


