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ABSTRACT Chaos is widespread in non-linear systems such as finance, energy, and weather. In the chaos
system, a variable changing with time generates a chaotic time series, which contains a wealth of information
about the non-linear system, and it is helpful for us to analyze and understand chaos systems. Traditional
hybrid models for chaotic time series prediction based on neural networks have problems such as low
prediction accuracy and difficulty in determining the network topologies. In recent years, the chaotic time
series prediction has attached the attention of researchers in the area of deep learning. In this paper, we use
a deep hybrid neural network (DHNN) based on convolutional neural network (CNN), gated recurrent
unit (GRU) network, and attention mechanism to predict chaotic time series. Besides, we use the idea of
neuroevolution to optimize the topologies of the DHNN. In the DHNN, we use CNN to capture spatial
features from phase space reconstruction of chaotic time series. Then, we combine spatial features with the
original chaotic time series. GRU extracts the spatio-temporal features from the combined sequence, and
an attention mechanism with a non-linear activation function is designed to capture critical spatio-temporal
features. Besides, we propose an improved differential evolution (IDE) algorithm to optimize the topologies
of the DHNN, including the filter sizes of CNN and the number of hidden neurons of GRU. We develop
the IDE with an adaptive mutation operator and dynamic chaos crossover operator, which can improve
convergence speed and reduce optimization time. In this paper, we use the theoretical Lorenz datasets,
monthly mean total sunspot datasets, and the actual coal-mine gas concentration datasets to verify the
prediction accuracy of the proposed prediction model. Experimental results have shown that the proposed
prediction model performs well in chaotic time series forecasting.

INDEX TERMS Chaotic time series prediction, convolutional neural network, gated recurrent unit, attention
mechanism, improved differential evolution, neuroevolution.

I. INTRODUCTION

Chaotic time series prediction (CTSP) is involved in various
domains of social and natural sciences, such as copper
metal price, oilfield water injection, wind power, and
rainfall [1]-[4]. Over the last decade, CTSP has been
applied to the study of blood glucose, disease, and gait in
humans [5]-[7]. Besides, CTSP also has been applied to
cyber-information tasks such as retweeting [8], information
diffusion [9], and DoS and DDoS attack detection [10].
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The application of CTSP in the real world is becoming more
significant and more widespread.

Theoretical and empirical studies reported in the liter-
ature suggest that the hybrid model is one of the best
ways to improve the accuracy of time series forecast-
ing [11], [12]. A hybrid network model combined support
vector machine (SVM) and echo state mechanism (ESM) was
proposed to CTSP [13]. Ardalani et al. [14] proposed a hybrid
Elman-NARX neural network to forecast the chaotic time
series. Said Jadid et al. developed an unscented Kalman filter
and NARX neural network to analyze and predict the Lorenz
time series [11]. Combined with the smoothing approach
considering the entropic information, a noisy forecast
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method was applied to chaotic rainfall time series [4].
Nhabangue et al. proposed a functional link extreme learning
machine to CT SP [15], and Xu et al. applied a hybrid regu-
larized echo state network to forecast multivariate CTSP [16].
Yan et al. developed a hybrid empirical mode decomposition
and neural network for Maritime Time Series Prediction [17].
These hybrid models have performed well in CTSP. More
recently, deep learning algorithms such as long short-term
memory neural network (LSTM) [18], convolutional neural
network (CNN) [19], and hybrid CNN-LSTM neural network
have been applied to CTSP [20]-[22]. YanLi et al. applied
hybrid empirical mode decomposition, adaptive regrouped,
and LSTM to forecast port cargo thro-ughput time series [23].
Compared to the hybrid machine learning model, the hybrid
deep learning model has a better performance [22].

In the last few years, a particular hybrid model named
neuro-evolution has once again caught the attention of
researchers. Unlike other hybrid models, neuroevolution
can be used to design neural networks [24], [25]. Genetic
algorithms (GA) and evolutionary strategies (ES) have
yielded excellent performance in optimizing the topology
and weights of neural networks [26], [27]. Through neu-
roevolution, we can determine the appropriate network struc-
ture for a specific problem and achieve excellent predictive
performance [28]. At present, the research of evolutionary
algorithms for neuroevolution is continuously developing.

In previous studies, we observed that attention mechanism
had made more exceptional performance on the tasks of
sequence models, such as machine translation and textual
entailment [29], [30]. The attention mechanism can extract
key spatio-temporal features from spatial and temporal fea-
tures [29]. Besides, it also can solve some long-term memory
problems [31]. Thus, it is taken into account while using
neural networks to extract temporal features from sequence
models. More recently, attention mechanism has been applied
to predict time series. Youru ef al. introduced an evolution-
ary attention learning approach to transfer shared parame-
ters of LSTM [32], and a multistage attention network is
designed to capture the influence information and the varia-
tion law of data over time [33]. Yao et al. proposed a dual-
stage attention-based recurrent neural network (DA-RNN)
to address long-term temporal dependencies and select the
relevant driving series to make predictions [34]. Yeqi ef al.
developed a dual-stage two-phase attention-based recurrent
neural network (DSTP-RNN) for long-term and multivariate
time series prediction, which can capture spatio-temporal cor-
relations and long-term temporal dependencies [35]. In deep
learning, an attention mechanism with function mapping is
designed to capture mutation information on the target time
series, which can process the fusion of historical hidden state
and cell state information for LSTM [36].

The hybrid models mentioned in the previous literature
were only considered the spatial or temporal characteristics
of chaotic time series. In this paper, a deep hybrid neural
network based on deep learning is proposed to CTSP, which
considers both spatial and temporal. In the proposed model,
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spatial characteristics are acquired by CNN, and gated
recurrent unit (GRU) [37] is used to extract temporal
characteristics. We apply the differential evolution (DE) [38]
algorithm to design the topologies of hybrid neural network
and search appropriate time-steps for forecasting. However,
we observed that simple DE and adaptive DE [39] have a slow
convergence speed and long running times. Thus, we improve
DE by changing the mutation operator and crossover
operator. In section II, we describe the specific improvements
in detail. Of course, the attention mechanism is used to extract
spatial-temporal features from hybrid deep learning neural
networks.

The paper is organized as follows. We introduce the
hybrid neural network, CNN, GRU, attention mechanism,
and improved DE in section II. In section III, we describe
the specific details of the experiments. In section IV, we ana-
lyze and discuss the experimental results. The conclusion is
summarized in section V.

Il. HYBRID MODEL

As shown in Fig.1, various kinds of neural networks play
different roles in the proposed hybrid model. The recon-
structed phase space of the chaotic time series contains spatial
features of the chaos system, while the original sequence also
contains rich temporal features. Therefore, the CNN model is
used to capture the spatial features of the reconstructed phase
space, and GRU extracts the spatio-temporal features under
the spatial features. The attention model is used to capture
the critical spatio-temporal features. Meanwhile, we use the
improved DE to design topology of the hybrid network,
including the kernel sizes of the CNN and the number of
hidden neurons for the GRU neural network. In this paper,
we make a one-step prediction, and time-steps (the number
of data used to forecast) often affects the prediction accuracy.
Therefore, we use improved DE to search fitting lookback for
forecasting. The details are described as follows.

A. CONVOLUTIONAL NEURAL NETWORK

Convolutional neural network(CNN) is a specialized kind
of deep learning neural networks which can process data
with known grid-like topologies [19], [40]. It is widely to
use CNN in the fields of time series analysis, computer
vision, and natural language processing[40]. CNN can cat-
egorize into 1-D (dimension), 2-D, and 3-D convolution by
processing the different data streams. In this paper, we use
a 1-D convolutional neural network, which is widely using
in the fields of time series analysis and natural language
processing [41]. As shown in Fig.2(a), the main parts of the
simple 1-D CNN include the essential input and output layers,
the convolutional and pooling layers are the most critical
layer, and the fully connected layer is necessary. In 1-D CNN,
we can understand the function of convolution as extracting
the translation features of the data in a particular direction,
where the essence of the operation of the convolution is the
circular multiplication and summing, which is expressed by
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FIGURE 2. 1-D CNN.

the following formula:
N
y(k) = h(k) - u(k) = Zh(k — Du(i) ey
i=0
where y, h, u are series, as shown in Fig.2(b), h and u are a row
of a multivariate time series, they are convoluted from top to
bottom. k represents the times of convolution, the length of u
isN.

B. GATED RECURRENT UNIT
As the extension of the feed-forward neural network, the
re-current neural network(RNN) can handle variable-length
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FIGURE 3. GRU cell.

sequence data via hidden state units [42]. However, the
vanishing and the exploding gradient problems put a limit
on training RNN [43]. Long short-term memory and gated
recurrent unit were proposed to solve the vanishing and the
exploding gradient problems. LSTM and GRU are gated
recurrent neural networks, which use various gates to capture
long-term dependencies of a sequence data.

LSTM has three gates, including an input gate, an output
gate, and a forget gate. Unlike LSTM, GRU has two gates.
As shown in Fig.3, GRU uses an update gate u to control
the forgetting factor and the decision to update the state unit
simultaneously. Besides, a reset gate r can control how much
historical information to forget, and the update equations are
the following:

u<t>

<t>
r =

U(Wu[h<t_l>,x<[>] + bu)
U(Wr[h<t_l>,x<t>] + br)

@)
3
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FIGURE 4. Attention model.
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FIGURE 6. Lorenz Chaotic Time Series.

i‘l<t> — tanh(Wh[r<’> * h<t71>,x<t>] + bh) (4)
h<l> — (1 _ u<l>) *h<l—1> + M<t> *il<t> (5)

where W and b stand for weights and biases, o is a sigmoid
function, tanh represents activation function, 2<'> is the
output of the GRU cell, t represents the current time state.

C. ATTENTION MECHANISM

It tends to focus on certain parts of the things when the
human brain observes something, and these focused parts
are the key to acquire information form things, which are
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very useful for us to recognize similar things. The attention
mechanism is a unique method that mimics this cognitive
process [44]. Attention mechanism has been applied to the
computer version and natural language processing [29], [30],
and we apply attention mechanisms to the analysis of chaotic
time series.

In CTSP, we use CNN to extract spatial features from
the reconstructed phase space of the chaotic time series, and
then use GRU to extract spatio-temporal features based on
spatial features. However, the prediction accuracy is affected
by too many or non-critical features. Thus, we apply the atten-
tion mechanism to extract the key features from the hybrid
CNN-GRU model. As shown in Fig.4, the attention
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TABLE 1. The performance of the neuroevolution-DHNN.

Datasets Evolution CNN GRU Time RMSE MAPE Average Running
algorithm neurons neurons Steps error times (s)
IDE [64,19] [26,49,23] 19 0.0756 0.0135 0.0587 2623
ADE [42,34] [23,36,50] 9 0.1137 0.0322 0.0954 3563
Lorenz DE [48,29] [34,50,42] 19 0.0936 0.0225 0.0727 5819
ES [39,64] [38,50,21] 2 0.1605 0.0948 0.1268 3823
GA [30,47] [47,34,30] 26 0.1334 0.0256 0.1008 7136
IDE [44,63] [35,50,14] 14 3.3834 0.0419 2.4868 5421
ADE [30,42] [47,48,15] 28 6.4325 0.0497 4.3808 5774
SunSpots DE [31,48] [35,34,30] 3 6.6567 0.0499 4.5041 6935
ES [30,49] [7,30,24] 29 6.8555 0.0513 4.5994 4273
GA [44,16] [20,33,30] 26 6.6037 0.0504 4.4675 7285
IDE [50,48] [10,8,25] 26 0.0493 0.1094 0.0332 2871
Coal-mine ADE [33,48] [8,14,37] 19 0.0556 0.1365 0.0382 3575
Gas DE [30,23] [14,4,44] 19 0.0521 0.1301 0.0362 4252
concentration ES [40,64] [50,39,48] 23 0.0524 0.1330 0.0371 3215
GA [30,47] [47,48,15] 9 0.0538 0.1216 0.0348 3271

mechanism is a crucial feature extractor, and it performs a
weighted sum operation. It will give high weight to important
features and weaken useless features, the vector c is the
extracted key features, and its formula is as follows:

CcC = Z ﬁ,-vi (6)
i=1

where m is the sum of input time-steps of the GRU, v is the
feature vector output by the GRU, and g represents the weight
of the vector v.

In order to obtain B, we add a small neural network
a(v) with softmax activation function to the attention model,
the formula is as follows:

Pp— . CU ™)

> k: 1 exp(ex)

where ¢; = a(v;).

D. DIFFERENTIAL EVOLUTION AND ITS IMPROVEMENT
Differential evolution algorithm is a stochastic heuristic algo-
rithm that is simple to use and has strong robustness and
global excellence seeking ability[45]. Rainer Storn and Ken-
neth Price proposed the original and a few variants of the
differential evolution [31], [38], [39], [46], [47], defining
notations DE/x/y/z, where x specifies the mutation method,
y represents the number of difference vectors, and z is the
cross method.

1) STANDARD DE/BEST/1/BIN

In this paper, we use standard DE/best/1/bin [46] as the
underlying algorithm template, in which the mutation method
uses the best population individual to generate vectors, and
the bin represents DE obtains the experimental population
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using the binomial distribution crossover method. In DE,
we set population size, the number of generation, mutation
and crossover operator as NP, G, F' and CR, respectively. For
each D-dimensional target vector, the calculate equations are
the following:

xigi=1,2,---,NP) (8)
Vi.G+1 = Xpest,G + F - (Xr1,6 — X12,G) 9
Ui G+1 = (U1,G+15 U2i,G+1> "+ » UDi,G+1) (10)

Vii,g+1 If randb(j) < CR or j = rnbr(i)
uj; =
o+ Xji,.G if randb(j) > CR or j # rnbr(i)
i=1,2,--- ,NP;j=1,2,---,D (11)

where x; g is ith population individual of generation G,
a mutant vector v; 41 is generated according to (9), Xpest,G
is the best individual of generation G, r1 and r2 are random
indexes in range {1, 2, - - - , NP}, F' is an invariant operator €
[0, 2], which determines the magnification ratio of the dif-
ferential vector. As shown in (10) and (11), the trial vector
u; G+1 18 selected form the mutation vector vj; 6+ and orig-
inal vector xj;, . CR is a constant operator € [0, 1], randb(j)
represents the jth estimated value of random number gener-
ator with the outcome [0, 1], rnbr(i) is a casually selected
indexe1,2,---,D.

2) IMPROVED DIFFERENTIAL EVOLUTION ALGORITHM
In DE/best/1/bin, F and CR are a real and constant factor,
which are difficult to choose during the search process.
Adaptive DE (ADE) [39], [48], [49] provides a way to solve
this problem, which uses adaptive strategies with generation
to choose F, the equation is expressed as [49]:

G

r=exp(l — —),

F =Fy- -2 12
Gut+1—-G 0 (12)
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where Fy is original mutation operator, G, is the max gen-
eration, F' trends and eventually equals Fy, G represents the

current generation. and 1 < G < Gy,.
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It is efficient to choose a proper mutation operator in the
implementation. However, we found that F' tend to lager
factor while F is large, and this affected the efficiency of
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the search process. Thus, we improved (12) as follows:

G 1
o = ,)\4= )
Gn+1—-G 1 + exp(—a)

F=Fy-2" (13)

where Fy is original mutation operator, G, is the max gen-
eration, F' trends and eventually equals Fy, G represents the
current generation, and 1 < G < Gy,.

As expressed in Fig.5, AF is the operator described
by Eq. (12) and IF represents the mutation operator computed
via Eq. (13). It is apparent that AF' varies over a wide range,
while IF varies over a smaller range, which can not only
maintain the population diversity in the initial stage but also
ensures the search efficiency.

In this paper, we use the Logistic chaotic mapping equation
to compute CR. Chaotic disturbance not only allows CR to
control the crossover probability and diversify the population
but also accelerates the convergence. Chaotic CR calculated
from the following formula:

CRG+1 = - CRg - (1 — CRg) (14)

where p is a parameter, Eq.(14) is chaos when 3 < p < 4,
in the literature, © = 4. The change curve of CR is shown
in Fig.5.

3) OPTIMIZATION OF HYBRID NEURAL NETWORK USING
IMPROVED DIFFERENTIAL EVOLUTION

In this paper, we use improved differential evolution algo-
rithm to optimize the topologies and time-steps on the hybrid
neural network. In the optimization, the mean square error
(MSE) is used as the evaluation criterion to select the best
individual. It means that MSE is the fitness function, which
computed as:

1 & A
MSE = ~ Zl i — 3)? (15)
1=

where y; and y; stand for raw and predictive values, 7 is the
number of predicted points.
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Algorithm 1 describes the process of IDE optimizing the
hybrid neural network.

Algorithm 1 Improved Differential Evolution Optimizes
Hybrid Neural Network

Step 1: Set control parameters: mutation factor Fy, crossover
operator CRp, population size NP and max generation
MAX_G
Step 2: Randomly initialize a population of NP individuals
xio = (cl,c2, g1, g2, g3, 1), where cl and ¢2 is the size of
the CNN filter, g1, g2, and g3 is the number of neurons of
the GRU layers, and [ is the time-steps for forecasting. Set
the generation number G = 1
Step 3: while the stopping criterion is not satisfied
fori =1 to NP
Step 2.1Mutation:
compute F by Eq. (13)
generate a mutant vector by Eq. (9)
Step 2.2Crossover:
compute CR via Eq. (14)
generate a trial vector by Eq. (11)
Step 2.3Selection:
set up a hybrid neural network according to each
individual
train prediction model
compute the MSE on the validation set by Eq. (15),
which has smaller value will be selected
end for
G=G+1
end while

Ill. EXPERIMENTS
In this section, we introduce the detail of data access, data
preprocessing, and evaluation criteria.

A. DATA ACCESS

In this paper, we use two data sets to verify the predic-
tive performance of the proposed model, including theo-
retical Lorenz datasets and a coal-mine gas concentration
datasets.

VOLUME 8, 2020
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FIGURE 15. Comparison of true values and predicted values of different
neuroevolution-DHNN (Sunspot datasets).

1) LORENZ CHAOTIC TIME SERIES
The equation of Lorenz chaotic mapping is:

dx ( )

— = —alx —

dt Y

dy n

—_— = —X CX-

dt < y

dz

— =xy—b 16
o =Yz (16)

The initial value of equation selected as x =y = z =1,
the parameters a =10, b =8/3, ¢ =28. to ensure chaos,
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FIGURE 16. Comparison of true values and predicted values of different
neuroevolution-DHNN (Gas concentration datasets).

discarding the first 10,000 samples and select the last 3,000
samples as experiment data. Fig.6 is an example of the Lorenz
time series, and we use the X variable of Lorenz to train and
test the proposed deep hybrid model.

2) MONTHLY MEAN TOTAL SUNSPOT NUMBER

Sunspots are common phenomena on the sun’s photosphere
that appear as spots darker than the surrounding areas.
We collected monthly mean total sunspot numbers
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FIGURE 17. Comparison of actual values and predicted values of different
models (Lorenz datasets).

form1749 to 2019, and 3240. records are valid and used in
this paper. Fig.7 expresses the curve of monthly mean total
sunspot number.

3) CHAOTIC COAL-MINE GAS CONCENTRATION

TIME SERIES

In this paper, we also use a chaotic coal-mine gas concen-
tration series to the proposed model. We captured the actual
data of a mining face in Xingtai Mine, and 1464 records are
valid and used in this paper. The Fig.7 shows the curve of gas
concentration datasets.

159560

=6 —— CNN-GRU-Att
----- CNN-GRU
NN
GRU

0 100 200 300 400 500 600
Time

FIGURE 18. The prediction error curve of different models (Lorenz
datasets).

B. DATA PREPROCESSING

1) PHASE SPACE RECONSTRUCTION

The emergence of the theory of phase space reconstruc-
tion provides a theoretical basis for forecasting chaotic time
series. In the basic idea of phase space reconstruction, any
variable in the system is determined by other variables inter-
acting with each other. Therefore, any variable’s development
and change contain information on the development and
change of other variables [50]. Packer et al. proposed that
the phase space can be reconstructed by using the delayed
coordinates of a variable in the dynamical system [50].
Takens Floris demonstrated that the dimensions of the orig-
inal dynamical system could be recovered with the appro-
priate embedding dimension [51]. In this paper, we use
the mutual information method [52] and Cao method [53]
to determine the delay time t and embedding dimension.
Time-series lists as {xj,x2,---,xy}, the delay time is t
and embedding dimension is m. Phase space reconstruction
D={X®),Y®)),t=1,2--- ,M,where M = N — (m —
DT, X(1) = [X¢, Xive, -+ Xerimonye ] Y(0) = [Xi411, The
matrix is represented as follows:

X1 Xl+1 X1+(m—1)t X2
X2 X241 X24+(m—1)t X3

X = . , Y =
XM—1 XM—147 -** XM—I1+4(m—Dr XM

2) DATA NORMALIZATION

It is necessary to normalize datasets in deep learning, which
not only eliminates the magnitude and unify the data to
the same scale but also enhance the convergence speed and
prediction accuracy of the model. In this paper, we use nor-
malization to unify phase space reconstruction datasets and
original chaotic time series to a range between (0,1), and the
normalization function can be expressed as:

, x — min(x)

= T (17)
max(x) — min(x)

The Fig.8 shows the process of data preprocessing.
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FIGURE 19. The prediction error curve of different models (Sunspots datasets).

C. EVALUATION CRITERIA

In the literature, we use two kinds of criteria to evaluate the
performance of the prediction model, and there are root mean
square error (RMSE) and mean absolute percentage error
(MAPE), the calculation equations are the following:

| — .
RMSE = | -~ ;(vi — 52 (18)
1=
1|y =3
MAPE = ~ Z 2 % 100% (19)
n Vi

i=1
where y; and y; stand for raw and predictive values, 7 is the
number of predicted points.

D. TRAINING OF PREDICTION MODEL

In this paper, we choose the first 80% of datasets as the
tra-ining datasets and the rest of 20% as the testing datasets.
In the training phase of DHNN experiments, we use the
impr-oved differential evolution algorithm to infer opti-
mal topo-logies and time-steps for the proposed model.
We use Keras to code experimental programs and imple-
ment the ES, GA, and DE using The genetic and evolu-
tionary algorithm tool-box with high performance in Python
python(geatpy) [54] in Python library. We also implement
improved DE quickly by using geatpy. As the loss function,
the mean square error is applied to compute the quantity that
a model should seek to minimize during training. We also use
Adam [55] to optimize the gradient of the stochastic objective
function.

IV. ANALYSIS AND DISCUSSION

In this section, we analyze and discuss the prediction accu-
racy of the proposed hybrid model through two experiments.
One of them is to optimize the hybrid neural network through
different evolutionary algorithms, and the other is to compare
the proposed model with other variant models.

A. VARIOUS EVOLUTION ALGORITHMS FOR HYBRID
NEURAL NETWORK

In this part, we analyze and discuss the predictive perfor-
mance of the hybrid neural network, which optimized by
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TABLE 2. The prediction errors of experimental results.

Datasets Model RMSE MAPE Average

error

CNN-GRU-Att  0.0756 0.0335 0.0587

Lorenz CNN-GRU 0.1338 0.1006 0.1203
CNN 0.4085 0.1555 0.3454

GRU 0.1492 0.0813 0.1493

CNN-GRU-Att  3.3834 0.0419 2.4868

Sunspots CNN-GRU 10.3999  0.0800 7.0994
CNN 12.6620  0.0995 8.5569

GRU 12.5915  0.0719 8.2467

CNN-GRU-Att  0.0493 0.1094 0.0332

Gas CNN-GRU 0.0548 0.1276 0.0362
concentration CNN 0.0681 0.1856 0.0506
GRU 0.0653 0.1688 0.0461

different evolution algorithms. We use the differential evolu-
tion (IDE) algorithm, adaptive differential evolution (ADE)
algorithm, standard differential evolution (DE) algorithm,
evolution strategy (ES) [56], and genetic algorithm (GA) [57]
to infer optimal topologies and time-steps for the hybrid
neural network.

As shown in Fig9, the IDE not only has a faster
converg-ence speed but also achieves the lowest target value,
which compares with other algorithms. From Fig.10 (a), it
can be seen that the convergence value and convergence rate
of IDE and ADE are similar, but the convergence rate of IDE
is faster than ADE, and both of them are better than DE, ES,
and GA. From Fig.10 (b) and (c), it is clear that the IDE has
the smallest convergence value. From Table 1, it is obvious
that IDE runs faster than DE, ADE, ES, and GA. Thus, it is
proved that the IDE proposed in the literature can improve the
convergence speed and reduce the optimization time.

In Table 1, we can notice that the RMSE, MAPE, and
average prediction error of IDE-DHNN model are the low-
est. The RMSE of IDE-DHNN model is obviously lower
than other models, and the MAPE values of IDE-DHNN
models are slightly higher than others. From Fig.12, it is clear
that the values predicted by IDE-DHNN are close to actual
values. And Fig.11 shows that the max percent-age error of
IDE-DHNN is 1.5%, which is lower than ADE, DE, ES, and
GA-DHNN.
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FIGURE 20. Comparison of actual values and predicted values of different
models (Sunspots concentration datasets).

On the other hand, IDE-HNN also has higher fore-
casting accuracy on the sunspot datasets. Tablel shows
that the RMSE of IDE-DNHH is the lowest with a value
of 3.3834. The MAPE value of IDE-DHNN is 0.0419, which
is the minimum. Fig.14 and Fig.15 show that the accu-
racy of IDE-DHNN is higher than other models. Fig.13 and
Fig.16 respectively show the curve of actual-predicted values
and prediction error on gas concentration datasets. We notice
that IDE-DHNN performance well, and the max error is 5%,
which is far lower than other forecasting models. Varieties
of evaluation criteria all verify that IDE-HNN has excellent
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forecasting performance, and it is the right choice for chaotic
time series prediction.

B. COMPARISON OF VARIANT PREDICTION MODELS

In the literature, the hybrid neural network includes three
parts, which are CNN, GRU, and attention model. We use
three various forecasting variant models to verify the
fore-casting accuracy of the proposed hybrid neural network,
which are hybrid CNN-GRU model, single CNN model, and
single GRU model. Table 2 shows the RMSE, MAPE, and
average error of various prediction models.

As described in Table 2, the RMSE, MAPE, and the aver-
age error of the CNN-GRU-Att prediction model are far lower
than CNN-GRU, CNN, and GRU model. The CNN-GRU-Att
has the lowest RMSE, MAPE, and the average error on three
different datasets.

On the Lorenz datasets, the RMSE of the various prediction
models is quite diverse. The RMSE of CNN-GRU-Att is the
lowest with a value of 0.0756. Besides, the MAPE of CNN-
GRU-ALtt is obviously lower than that of other models. It
is clear that CNN-GRU performs well too, which is better
than CNN and GRU. From Fig.17 and Fig.18, it is evident
that CNN-GRU-Att has higher prediction accuracy, and the
forecasting error is controlled within 1.5%.

Fig.19 and Fig.20 respectively show the curve of
perdic-tion error and true-predicted values of four models.
As shown in Fig.20 (a), the values forecasted by CNN-
GRU-Att are close to actual values. The prediction error curve
represents that the proposed CNN-GRU-Att model has higher
prediction accuracy. Table 1 shows that the RMSE and MAPE
of CNN-GRU-Att are the lowest with a value of 3.3834 and
0.0419, respectively.

From Table 2, Fig.21, and Fig.22, it is evident that the
hybrid model with CNN, GRU, and attention model performs
very well on the gas concentration datasets. As expressed in
Fig.22, the prediction accuracy of CNN-GRU-ALtt is higher
than the others, and the prediction error is controlled within
5%. 1t is also clear that the prediction error of CNN-GRU,
CNN, and GRU models are higher than the CNN-GRU-Att
model. It is worth noting that the gas concentration dataset is
significantly less than the other two datasets, but the proposed
hybrid neural network still has high predictive accuracy.

C. DISCUSSION
Based on previous trial results, we can summarize the follow-
ing findings:

(1). Neuro-evolution is an excellent choice for designing
topologies and searching for some hyperparameters for neural
networks. The improved differential evolution proposed in
this paper performs well in optimizing hybrid neural network.
We can see that the IDE can improve convergence speed
and reduce running times simultaneously. The most important
thing is that the optimization result of IDE for hybrid neural
network achieves better prediction performance and higher
prediction accuracy.
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FIGURE 21. Comparison of actual values and predicted values of different
models (Gas concentration datasets).

(2). The hybrid neural network plays an essential role in the
prediction model, and the prediction accuracy is low while
using the single CNN and GRU model, and hybrid neural
network without attention model. It is because that chaotic
time series expands with high dimensions in the phase space
reconstruction, and in this condition, the chaotic system con-
tains rich spatial information. At the same time, the original
chaotic time series also contains rich temporal characteristics.
It is difficult to fully extract the temporal or spatial char-
acteristics from the chaotic system with a single CNN or
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FIGURE 22. The prediction error curve of different models (Gas
concentration datasets).

GRU model. Besides, even if the hybrid CNN-GRU model
can extract temporal and spatial features, but the prediction
accuracy is affected by lots of non-key features. At this point,
the attention model plays a crucial role in extract temporal-
spatial features. It gives high weights to critical features
while weakening non-critical features. From the previous trial
results, it is evident that the hybrid neural network optimized
by IDE and added attention mechanism has high prediction
accuracy.

V. CONCLUSION

In this paper, we propose a hybrid model to forecast the
chaotic time series, which includes convolutional neural
network, gated recurrent unit, attention mechanism, and
improved differential evolution algorithm. The proposed
hybrid model can be summarized as two parts, one is the
deep hybrid neural network, and the other is neuroevolu-
tion based on IDE. In the deep hybrid neural network, we
use CNN and GRU to extract spatial and temporal features
from phase space reconstruction and time series, respectively.
The attention model can extract critical spatio-temporal fea-
tures, which can improve prediction accuracy. In the neu-
roevolution, we first develop the IDE with an adaptive
mutation operator and dynamic chaos crossover operator,
which can improve convergence speed and reduce optimiza-
tion time. Then, we use IDE to infer appropriate topolo-
gies and time-steps for the deep neural network. Simulation
experiment results show that IDE can improve convergence
speed and reduce optimization time. Furthermore, it also
can acquire a lower prediction error. Thus, the deep hybrid
neural network is an excellent choice for chaotic time series
prediction.
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