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ABSTRACT For conserving energy, duty cycle is defined by setting up the active and sleep periods of
network nodes. In beacon enabled networks, to provide support for duty cycle, the IEEE 802.15.4 standard
uses optional super-frame structure. This duty cycle is usually fixed and does not consider the topology
changes that often occur in dynamic sensor networks. In this paper, existing energy conserving duty cycling
approaches for 802.15.4 networks especially the adaptive duty cycling techniques for wireless sensor
networks are summed up. Also, this paper highlights the shortcomings of the proposals in the literature,
such as induced additional latency, so that they may not support the practical scenarios of Internet of Things
(IoT). Further, this study highlights a gross shortcoming that relative performance comparison of RL-based
proposals cannot be performed without using a benchmarking framework and real test-bed environment.
In this paper, we have presented the future research directions that would lay the foundation for successful
development of energy efficient RL-based duty-cycling techniques.

INDEX TERMS Duty cycling, IEEE 802.15.4, reinforcement learning, super frame parameters.

I. INTRODUCTION
A wireless sensor network (WSN) comprises of a typically
scattered set of sensor nodes in an environment. Sensor
nodes send their data to a centralized base station (BS) at
regular intervals. Such nodes are typically constrained by
the available resources like battery power and capacity of
communication channels. On the other hand, the base station
usually does not face restrictions in data processing, power
consumption, and communication. The former set of nodes
usually comprises the constrained network and the later forms
the unconstrained network. In the Internet of Things (IoT),
we are interested in the point-to-point, broadcast, anycast and
point-to-multipoint types of communication between nodes
of the two types of networks [1].

The limited resources of sensor nodes introduce challenges
in the design of IoT applications and related protocols. Most
of standards developed for IoT protocol stack pay special
attention to battery and processing power of sensor nodes.
Examples include the routing protocol for low power and
lossy networks (RPL) [2], constrained application protocol
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(CoAP) [3], and IPv6 over low power wireless personal area
networks (6LowPAN) [4]. Similarly, energy conservation
approaches are needed at the medium access control (MAC)
layer where IEEE 802.15.4, defined in [5], is used for con-
tention based random access of physical medium. If a sensor
node remains active all the time, it is likely to lose battery
rapidly and becomes dead. To achieve maximum network
throughput and lifetime, we need to alternate nodes between
sleep and active cycles. However, current designation of IEEE
802.15.4 standard does not specify the procedure for config-
uring duty cycle of sensor nodes to conserve energy under
varying traffic load, without significantly compromising the
network efficiency. Thus, we need to do wake-up scheduling
of nodes and it involves switching of the sleep and active
states of sensor nodes. In active state, the CPU, sensors, and
radio of a sensor node remains ON. Similarly, a node can
sense, process, and communicate the environmental informa-
tion to other nodes, when it is in active state. On the other
hand, CPU, sensors, and radio remains OFF when the node
is in sleep state and it can run with a negligibly small amount
of energy. However, nodes in sleep mode cannot transmit or
receive data. Different approaches can be adopted to manage
the cycle between active and sleep period.
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This paper provides an overview of different approaches
used for scheduling of duty cycles of nodes, with a particular
focus on reinforcement learning (RL) based approaches [6].
RL-based approach enables the learning of optimal duty cycle
of nodes, so that it could be used during the life-span of the
network.

The paper is organized as follows. Section II provides an
overview of medium access mechanism inWSNs. Section III
provides the details of IEEE 802.15.4 standard. Intelligent
approaches for adaptive medium access control are discussed
in Section IV. The Section V discusses RL-based approaches
and their learning challenges in constrained environments.
In the Section VI performance of different techniques is
compared and discussed. The future research directions are
presented in the SectionVII and finally the paper is concluded
in the Section VIII.

II. MEDIUM ACCESS IN WSN
MAC protocols in wireless sensor networks have the follow-
ing types: random-based, slot (schedule)-based, hybrids (ran-
dom/slot based), and low-power listening (LPL). LPL proto-
cols are currently used for duty cycling. LPL uses scheduled
transmissions to ensure low power consumption in WSNs.
Taxonomy of LPL protocols for machine-to-machine (M2M)
networks is presented in [7]. MAC protocols are significantly
good in dealing with broadcast, interference, and packet
collision issues in a wireless network. Traditionally, such
issues are resolved by packets (re)transmission approaches,
modulation schemes, using packet length, and transmission
control [8]. However, such techniques do not work well in
WSN due to decentralized control, highly directed data traffic
(towards few sink units), volatile links, and large number of
energy limited nodes [8]. MAC protocol minimizes energy
consumption by scheduling the wake-up and sleep periods.
Reliability, scalability, longevity, latency, and fairness are the
core factors relevant in MAC protocol design, in addition to
the network throughput.

Traditionally, the access to the shared medium in WSNs
is regulated by two approaches: (a) reservation or schedule
based and (b) contention based. In reservation-based proto-
cols, schedule of node communication is decided on the basis
of network topology. Time division multiple access (TDMA)
is an example of this approach. In TDMA, a unique time-slot
is assigned to each node for transmission of data. This
approach avoids collisions during transmissions. However,
throughput is limited by the slot-length. InWSNs, scheduling
is a vital aspect of TDMA based protocols. Complexity in
infrastructure-less networks, scalability of slot assignment
schedule, broadcast communication, reduced flexibility, and
maintenance of memory status are the central issues that
should be addressed by effective scheduling protocols. Many
canonical protocols are designed to address these issues.
There are various MAC based scheduling protocols in liter-
ature based on centralized and distributed scheduling func-
tions. A summary of these protocols is presented in the
Table 1.

TABLE 1. Examples of different MAC protocols.

In contention-based protocols (CBPs), WSN nodes com-
pete with each other to gain access to the wireless medium,
in the absence of a central scheduling authority. However,
CBPs are agnostics of network topology and clock syn-
chronization. The carrier sense multiple access (CSMA)
and ALOHA [9] are popular examples of contention-based
random-access protocol. However, performance of these pro-
tocols degrades under high load of traffic [10], [11]. For
energy optimization, various canonical approaches have been
introduced based on CSMA that reduce collisions, overhead,
overhearing and idle listening [8]. Carrier sense multiple
access with collision avoidance (CSMA/CA) [10], multi-
ple access collision avoidance (MACA) [12], and Sift [13]
are recognized contributions that are used to reduce colli-
sions. To reduce protocol overhead, various optimizations
have been proposed such as adaptive rate control in CSMA
(CSMA/ARC) [14]. It introduces a back-off that is relaxed
according to the frequency of transmission of the application.
Overhead is further reduced by eliminating the use of explicit
acknowledgment (ACK) messages, request-to-send (RTS)
and clear-to-send (CTS) intervals, as well. Power-awaremulti
access with signaling (PAMAS) [15] is yet another improve-
ment that deals with the over hearing issue in CSMA-based
protocols. MAC protocols in WSNs IEEE 802.11 power save
mode (PSM) focuses on reducing the idle listening issue
by offering sleep and active modes [16]. However, it does
not support multi-hop networks as well as increases network
latency.

In contrast to protocols that use common active periods,
preamble sampling-basedMAC protocols do not have a com-
mon active/sleep schedule for each node. Rather, each node
decides about its active period scheduling independently from
other nodes [8]. A preamble precedes every data frame that
ensures that all recipients detect the preamble before getting
data frame. A node samples the medium according to the
duty cycle parameters and goes to sleep mode if the channel
is found to be idle. Conversely, if a node senses a preamble
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FIGURE 1. MAC sub-layers in IEEE standard.

being transmitted, it remains active until the successive data
frame is also received.

For successful reception of data by a receiving node,
the length of the preamble should be as long as the check
interval (CI). The CI ensures that all nodes are awake dur-
ing the preamble and subsequent data frame transmission.
LPL [7], cycled receiver [17], and channel polling [18] are
examples of preamble sampling protocols. These protocols
have a benefit of less energy consumption at the cost of longer
preambles. Long preambles cause collisions and limit the
duty cycle of nodes.

Some hybrid alternatives also exist at MAC layer to pro-
vide the combined features of contention-based, slotted, and
preamble sampling-based protocols. Hybrid protocols focus
on the assurance of flexible MAC frame structure, CSMA
inside TDMA slots for dynamic traffic, hybrid sampling and
slotted to minimize preamble cost, minimization of conver-
gence cost effect, and receiver-based scheduling. Examples of
different MAC protocols, used in wireless sensor networks,
are given in Table 1.

III. IEEE 802.15.4 STANDARD
MAC and physical sub-layers for low-rate wireless personal
area networks (LR-WPANs) are detailed in IEEE 802.15.4
standard [5]. The standard uses CSMA/CA and offers con-
tention based medium access. However, schedule-based
access can also be provided by using time slots for the devices
that deal with delay sensitive data. The network can operate
in star or peer-to-peer topologies as per the standard. The
standard consists of specifications for physical and MAC
sub-layers. MAC layer interacts with higher layers using two
service access points, known asMAC common part sub-layer
(MCPS) and MAC sub-layer management entity (MLME),
as shown in Fig. 1. Functions of physical layer include detec-
tion of energy consumption, activation/deactivation of radio
transceiver, selection of channel, indication of link quality,
clear channel assessment (CCA), and transmission of data
units of physical layer protocols.

TheMAC sub-layer helps in beaconmanagement, time slot
management, frame validation, channel access, association
and dissociation, frame delivery (with acknowledgements),
and providing support for implementing application specific
security techniques.

A. SUPER FRAME STRUCTURE
IEEE 802.15.4 optionally supports the use of super-frame
structure. The format of super frames is defined by the PAN

coordinator. It is restricted by the transmission of a beacon
frame at the start and end of super frame. Beacons are used
in synchronization of devices, identification of the network
and definition of super frame structure [5]. Each super frame
is partitioned into 16 equal slots. Also, it can have active
and inactive portions. A coordinator can switch to less-power
mode during the inactive duration.

If the coordinator does not want to utilize super frame
structure, it can break off beacon’s transmission at the
initiation of first slot of the frame. Two PAN attributes
namely macBeaconOrder (BO) and macSuperframeOrder
(SO) are used to describe the structure of the super
frame.

Let us assume DBS denotes aBaseSuperframeDuraion.
DBS is a MAC sublayer constant and is equal to the number
of symbols in a superframe of order zero. BO refers to the
time duration at which PAN coordinator broadcasts beacon
frames. Beacon interval (BI) and BO are related to each other
as shown in Equation 1.

BI = DBS × 2BO (1)

where, 0 ≤ BO ≤ 14.
For BO = 15, beacon frames are not transmitted except if

explicitly requested. The attribute SO defines the length of the
active period of the super frame including the beacon frame.
The super frame duration (SD) is calculated from SO using
the Equation 2.

SD = DBS × 2SO (2)

where, 0 ≤ SO ≤ BO ≤ 14.
A device that wishes to communicate, has to contend with

other devices by employing a mechanism of ALOHA or
CSMA/CA during the contention access period (CAP). Some
portions of the active super frame are reserved by the PAN
coordinator for sensitive applications or applications that
require specific bandwidth. These reserved parts of the active
period are termed as guaranteed time slots (GTSs). These
GTSs collectively make the contention-free period (CFP)
which begins immediately after the CAP, usually at the end
of the active period, as shown in Fig. 2. A GTS can constitute
more than one slot and seven GTSs can be allocated. How-
ever, an ample portion of the CAP is still left for random
access by other existing nodes in the network, or new nodes
that want to join the network. The CFP begins when all
contention-based transactions have been completed. Also,
each device, using a GTS for transmission, makes sure that
its transaction is finished before the next upcoming GTS or
the end of the CFP.

An un-slotted channel access mechanism is used by non-
beacon-enabled networks. A device has to wait for a random
period of time whenever it has to transmit data frames or
MAC commands. This is called the random back off time.
Data can only be transmitted by the device if the channel
is inactive after the random back off. If the channel is busy
then the device will wait for another unplanned period before
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FIGURE 2. IEEE 802.15.4 superframe structure.

the next random channel access. Transmission of acknowl-
edgment frames does not use the CSMA/CA mechanism.
Beacon-enabled networks employs a slotted CSMA/CA
channel access. Here, back off slots are synchronized with the
beginning of beacon frame. To find the start of the upcoming
back off slot, a device has to wait for some random amount of
back off slots for transmission during the CAP. If the medium
is busy then the device has to wait for another random number
of back off slots before accessing the channel again. If the
medium is unused, the device can start to transmit data on the
upcoming back off slot boundary available. Acknowledgment
and beacon frames are transmitted without a carrier sensing
mechanism.

B. DUTY CYCLING
The IEEE 802.15.4 standard does not specify how to config-
ure activation time of wireless nodes for optimal network per-
formance under varying traffic load. Moreover, appropriate
SO and BO parameters need to be set during the initialization
of network, in beacon enabled mode. Non-optimal BO and
SO values may lead to wastage of power and channel capac-
ity. The four major factors responsible for energy wastage are
the following.

1) COLLISIONS
When a transmitted frame collides with other frames,
it becomes corrupted and has to be neglected. This leads to re-
transmissions and increased energy consumption. Collisions
result in high latency as well.

2) OVERHEARING
This happens when a node receives frames that are bound for
other nodes.

3) CONTROL FRAME OVERHEAD
This refers to sending and receiving frames containing control
information, and it consumes energy too.

4) IDLE LISTENING
This refers to listening to the channel in anticipation of data
that has not yet been sent, and occurs commonly in WSNs.
If nothing is being sensed then this implies that nodes are
in an idle mode for maximum number of times. Measure-
ments indicate that idle listening energy can match the energy
required to receive a message [47].

IV. MAC PROTOCOLS WITH ADAPTIVE DUTY CYCLING
Duty cycling is a mechanism to manage major energy
wastages factors. Also, packet transmission scheduling helps
reduce collisions. However, such scheduling techniques may
incur non-deterministic transmission latency due to the longer
sleep times of nodes. The contention-based approaches
that implement duty cycling can be categorized into two
main classes: synchronous and asynchronous. The sender
sends a preamble frame which is received by the receiver
once it wakes up, followed by data frames. Asynchronous
scheduling introduces longer delays than the synchronous
approach. Also, the preamble frame incurs overhead and
consumes extra energy. The synchronous approaches such as
C-MAC, S-MAC, DW-MAC, and T-MAC synchronize the
transmission schedules and duty cycles among neighboring
nodes. Energy consumption due to idle listening is reduced
by sending data packets when the neighboring nodes are
active. However, extra energy is used by control frames sent
to synchronize duty cycling among neighboring nodes.

In [49], a dynamic duty cycle (DDC) scheme has been pro-
posed for minimizing the delay in WSNs. The DDC scheme
suggests prolonging the active period of nodes proportional
to the residual energy, in non-hotspots areas of the network.
The residual energy is used to increase the listening time of
node and its availability which enhances data forwarding but
reduces transmission delay. Similarly, an adaptive duty cycle
control–based opportunistic routing (ADCCOR) scheme has
been proposed to reduce the end-to-end delay. In ADCCOR,
duty cycle of a node is adaptively set in direct proportion to
residual energy of node. The study [50] shows the end-to-
end network delay can be reduced, up to 70%, without reduc-
ing the network lifetime. By adding hardware of wake-up
radio (WuR) in nodes, a node can wake up only on-demand,
at any time even in the sleep state, when there is data to be
transmitted [51]. Whereas, in duty cycling, a node wakes up
regularly according to its duty cycle. A WuR-based scheme
for relay selection consecutive packet routing (RS-CPR) has
been proposed in [52]. In RS-CPR, relaying node is selected
with much residual energy, a large number of packets, and a
short distance from sink by other nodes.

The following sections provide an overview of syn-
chronous MAC protocols that use common active periods for
duty cycling.

A. S-MAC
Ye et al. [47], [53] propose a medium access control protocol
for wireless sensor networks that considers the constrained
nature of sensor nodes that remain inactive most of the time.
The primary goal of sensor MAC (S-MAC) is to provide
self-configuration and energy conservation while latency and
node fairness are secondary goals. It allows low duty cycle in
multi-hop networks and uses the concept of virtual clusters
where nodes are grouped according to their sleep schedules.
The protocol also claims to achieve collision avoidance and
valuable scalability using a mutual contention and scheduling
scheme.
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S-MAC aims to minimize energy consumption overhead
from all major energy wastages factors. It puts nodes to sleep
periodically, as opposed in IEEE 802.11 networks where
nodes always remain in active mode, thus saving battery
and network life. Low-duty-cycle is the default mode in
S-MAC, where nodes wake up only during the existence
of traffic in the network. The authors have implemented
low-duty-cycle scheme in multi-hop networks with periodic
listen and sleep modes that greatly reduces energy con-
sumption by avoidance of idle listening. Also, it presents
a technique of adaptive listening that minimizes the delay
occurred due to periodic sleeping. In-channel signaling is
used to avoid energy consumption on overhearing and mes-
sage passing is introduced to minimize control overhead
and application-perceived latency. S-MAC is evaluated for
energy, latency and throughput on Berkeley Motes.

Each node sleeps and hibernates for some random time
period and sets a timer to awake itself later. After the sleep
periods, it wakes up to check if any other node wants to
communicate to it. During inactive time the radio of the node
is turned off. The active interval of node is fixed based on the
physical and MAC layer parameters; like contention window
size and radio bandwidth. The sleep interval can be modified
with respect to specific application requirements thus chang-
ing the duty cycle. The sleep and awake time values are con-
sistent for all nodes. Moreover, all nodes can select their own
schedules for sleep/listen. However, virtual clusters of nodes
are created, that share the same neighborhood, to minimize
control overhead. For this, the nodes need to synchronize with
each other so that the sleep/listen schedule start at the same
time and they listen for same duration and sleep for the same
duration. It should be observed that all neighboring nodes
cannot synchronize in a multi-hop network. The node sched-
ules are broadcasted using a SYNC packet. An advantage of
S-MAC is that it uses a peer-to-peer topology instead of using
only cluster heads to communicate with each other.

Each transmitted frame has a field that defines a duration
for which the remaining transmission will continue. If a node
gets a frame meant for another node, it can determine how
long to remain in sleep mode using this field. The value of
this field is stored in a variable called the network allocation
vector (NAV) and a timer is set. As soon as the timer expires,
NAV is decremented until it reaches zero. Before starting a
transmission, a node first looks at its NAV. A non-zero NAV
value indicates that the medium is busy. This is referred to
as virtual carrier sense. It is performed by all nodes before
starting a transmission. A node goes to sleep if it finds the
medium busy and wakes up only when the receiver starts lis-
tening again. Broadcast frames are transmitted without using
CSMA request-to-send (RTS) and clear-to-send (CTS) pack-
ets. However, unicast packets follow the normal sequence of
RTS/CTS/DATA/ACK between the sender and receiver. Data
transmission is done following the successful communication
of RTS/CT between two nodes.

Sleep schedules are coordinated among nodes in S-MAC
rather than randomly sleeping. When an interfering node

overhears an RTS or CTS message meant for another node,
it goes to sleep. This is how S-MAC avoid overhearing.
Since DATA frames are usually long in length than control
frames, this approach prevents overhearing of long frames by
neighboring nodes.

B. T-MAC
Timeout-MAC (T-MAC) [54] transmits all messages in bursts
of variable sizes and sleeps in between the bursts. The dura-
tion of active time (TA) is defined dynamically and it ends if
nothing is heard on the channel for a specific period of time.

The protocol works as follows. Each node wakes up occa-
sionally to communicate with its peers, sleeps again until
the arrival of the next frame. Queue of upcoming messages
is maintained. Nodes communicate with each other using
RTS/CTS/Data/ACK scheme, which ensures collision avoid-
ance and reliable transmission. An active period is triggered
by an activation event (discussed below) and terminates when
no such event has happened for a time. The activation timer
gives an upper bound on the duration for idle listening time
of a node at the end of the active period. The following five
events can trigger activation of a node.

• Expiration of periodic frame
• Message reception
• Collision sensing
• Acknowledged transmission of data
• Data transmission of neighbor node is finished

A node will sleep if it is not in an active period or is idle.
This timeout scheme moves all communication as a burst to
the start of the frame. The buffer capacity defines an upper
bound on the maximum frame time because messages during
the sleep time have to be buffered.

T-MAC also provides clustering and synchronization,
as similar to S-MAC. In addition to this, it uses a fixed
contention interval which means that the contention interval
remains the same under high and low traffic loads. Contention
time is used even if there is no collision. T-MAC also uses
RTS retries to avoid the early sleeping problem. If a node
sends an RTS and does not receive a reply in TA time, it retries
by sending a subsequent RTS. If there is still no reply from
the receiver, the sending node changes its mode to sleep. This
prevents the sending node from sleeping early in case of a
collision or overhearing RTS/CTS. Moreover, the activation
timer should be long enough to receive the start of a CTS
message in response to an RTS. As soon as the CTS is
received, the TA is also renewed. The lower limit on the length
of this interval can be given as,

TA > C + R+ T (3)

where, C is the duration of the RTS contention interval, R is
the RTS packet length and T is the turnaround time between
the end of an RTS and start of CTS packet. In [54] TA is set to
be 1.5× (C +R+T ). A large value of activation interval can
lead to more energy consumption. The protocol also supports
overhearing avoidance as proposed in [53]. However, it is
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noted that collisions increase as a result because a node may
miss hearing other nodes exchanging RTS/CTS messages
when it wakes up and starts sending right away.

It can be concluded that time-outs are an effective way to
resolve the idle listening issue under variable load of traffic.
The implementation of T-MAC has shown energy conser-
vation both in simulation in OMNET++ [55] and on real
hardware (EYES nodes) [56]. It is shown that during a high
load, nodes communicate without sleeping however, during
low traffic load the nodes will use their radios as little as
2.5% of the time, resulting in 96% of energy conservation
compared to a traditional MAC protocol.

C. Z-MAC
A hybrid MAC protocol, called Zebra-MAC (Z-MAC), has
been presented for WSNs in [45]. The Z-MAC protocol
merges the benefits and balances the drawbacks of TDMA
and CSMA. Its main feature is adaptability to network
contention levels, acting like CSMA under low contention
level while attaining low latency and high channel uti-
lization. Under high contention levels, similar to TDMA,
Z-MAC achieves high channel utilization and reduces colli-
sions between two-hop neighbors with minimal control over-
head. A unique characteristic of Z-MAC is that it performs
well despite slot allocation failures, synchronization errors,
and dynamic channel conditions.

Z-MAC has a setup phase in which the following opera-
tions are performed in sequence: (i) discovery of neighbor,
(ii) assignment of slot, (iii) exchange of local frame, and
(iv) synchronization of global time. These operations are per-
formed exactly once during the setup phase and are repeated
only if a major change occurs in the network topology.
The initial high overhead, caused by setting up the network,
is compensated by energy efficiency and improved through-
put over a longer network operation. As soon as a node
starts up, neighbor discovery protocol is run where a ping
is broadcasted to its one-hop neighbors periodically. This is
done to create a one-hop neighbor list of this node. Each
node transmits one ping message per second at a random time
and does so for 30 seconds. In this way, each node aggre-
gates the information it receives from its one-hop neighbors
using ping operations, thus gathering its two-hop neighbor
information. The list of two-hop neighbor is then used for
time-slot allocation. Z-MAC uses DRAND [57] algorithm
to assign time slots to each node of network using the two-
hop neighbor list of each node. DRAND ensures that nodes
lying within a neighborhood of two-hop communication are
not assigned same slot in a broadcast schedule. This guaran-
tees the minimization of interferences in two-hop neighbor
communication. It should be noted that broadcast schedule is
used to cater the routing changes occurring among neighbors
at one-hop.

After the time slot assignment, each node defines the
period which is the time interval that can be used for trans-
mission. This period is referred to as time frame of the
node. A time frame rule helps nodes to pick their own time

frame lengths, based on their local neighborhood informa-
tion. At the termination of DRAND phase, each node sends
its time frame and slot number to its neighborhood at two-
hop distance. This is followed by the transmission phase
of Z-MAC. A node can function in one of two modes in
Z-MAC: (i) high contention level (HCL) and (ii) low con-
tention level (LCL). If a node gets an explicit contention
notification (ECN) from any two-hop neighbor with in a
contention time interval, then node is in HCL. Otherwise,
the node is in LCL. In LCL a node can transmit in any slot
where as in HCL only owner and their one-hop neighbors can
contend for a slot for transmission. Owners of a slot are given
higher priority to send data over non-owners in both HCL and
LCLmodes. But if the owner does not have data to send, then
non-owners can take the slot for transmission. This allows for
high utilization of channel, even in LCL mode. Node always
performs carrier-sensing and transmission of a packet occurs
when the channel is clear.

The Z-MAC protocol deals with the loosely synchro-
nized clocks and knowledge of topology to enhance MAC
performance in scenarios involving high contention. Under
low contention the protocol resorts to acting like CSMA.
Z-MAC fits best for applications where two-hop contention
and expected data rates are medium or too high.

D. DCA
A new algorithm for duty cycling in IEEE 802.15.4 networks
has been proposed in [58]. The idea is to use a parameter
called MAC status index (MSID) in addition to the existing
MAC parameters of the standard. It represents the buffer
occupancy and queuing delay at the MAC layer and is used to
control the duty cycle by the PAN coordinator so that packet
loss is minimized and energy efficiency is maximized. It is
assumed that the BO is constant and the SO is set by the PAN
coordinator adaptively. The MSID is used to show the MAC
status of the end device such as queue sizes and queue wait
times to the PAN coordinator, which only know the number of
transmitted packets and end devices during the active period.
Queuing delay tells whether the end device in the network
has been a part of the contention in a given active period.
Buffer occupancy and queuing delay are combined to express
the MSID in 8 levels. The buffer occupancy is categorized
into four levels and the queuing delay into three levels. Three
bits (7-9) of the reserved field in the MAC control frame
are used to represent MSID. To reflect the queuing delay,
the MSID is modified at every last back off count slot. The
coordinator finds the SO using parameters collected during
an active duration and MSID value. The number of sending
nodes and number of received packets are also measured. The
previous SO value and number of end devices are known.

E. TSCH
The scheduled nature of Time synchronized channel hop-
ping (TSCH) makes it different from traditional low power
MAC protocols [59]. TSCH divides time into timeslots
grouped to form a slot frame. However, no slot frame size
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FIGURE 3. A typical TSCH schedule.

is imposed by TSCH. It can range from 10s to 1000s of
timeslots. Smaller slot frame provides increased availability
at the cost of higher energy consumption. In TSCH network,
every node follows a schedule of transmission. This schedule
looks like a matrix. The width of this matrix is equal to slot
frame size. The height of this matrix is equal to the number
of available frequencies. A typical TSCH schedule is shown
in Fig. 3. Each cell of the schedule matrix is comprised of
two components a slot offset and a channel offset. A cell can
be allocated to only a single pair of communicating nodes.
A node can be allowed to use same frequency channel in two
different time-slots, for its communication with two different
nodes.

However, a node must be using at most one frequency
channel for a given time-slot. Similarly, two communicating
nodes may use different frequency channel at different time-
slots. The schedulematrixmust also ensure that the scheduled
communications are conflict free. Such that a nodemay either
transmit or receive for a given time-slot. Similarly, a wireless
sensor node can use only one frequency channel for its com-
munication, for a given time-slot. In this manner, a conflict
free schedule matrix relies upon temporal and spatial spacing
resulting in collision free communication. Energy conserva-
tion can be ensured by using adaptive schedules especially for
applications that require low power consumption, at the cost
of low bandwidth.

TSCH has the benefits of providing collision free commu-
nication along with channel hopping enabling multiple pairs
of nodes to exchange data during the same slot but at different
frequencies. In the schedule matrix, if a cell is allocated for
communication between nodes A and B, where A is sending
and B is receiving data, this cell is called transmission cell
and receiving cell for nodes A and B, respectively. During a
transmission cell, a node matches the destination address of
the packet with the address of receiving cells in the current
time slot. If there is no match found the node keeps the
radio off and sleeps for this time slot. If a match is found,
the node transmits and start waiting for the acknowledgment
from the legitimate recipient. Similarly, in a receive cell,
a node listens for incoming packets. It goes to sleep if none
to be received in the current time slot. Otherwise, for the
received packet an acknowledgement is sent. If a time slot
is shared for a particular frequency, the standard implements
a back off algorithm for contention resolution [59]. In [60]

an adaptive channel selection (ACS) mechanism has been
proposed for TSCH networks. It is reported that ACS reduces
the number of retransmissions using a channel assessment
and channel selection before updating a hopping schedule,
hence, conserving the energy.

F. PASAGA
A priority-based algorithm for super frame adjustment has
been proposed in [61]. It partitions the guaranteed time
slots (GTS) in IEEE 802.15.4 standard to a new length that
is nearly half in size of the original length of time slot. This
GTS length is calculated based on the size of the high priority
packets. Also, BO and SO parameters are adjusted to alter the
duty cycle after a predefined time period, which is defined
according to the network load in contention period. This leads
to an increased throughput, better bandwidth allocation, and
energy conservation.

G. BARBEI
A battery aware and reliable beacon enabled technique is
proposed in [62] which considers the non-linear process that
takes place whenever batteries diffuse a charge. The exist-
ing IEEE 802.15.4 standard does not take this into account
and assumes linear consumption of power. This approach is
unique in the sense that it exploits battery status as well as
network latency to reduce energy consumption and delay.

H. ZISENSE
ZiSense [63] is an asynchronous low duty cyclingmechanism
which is robust to interference. It detects the presence of
ZigBee [64] signals and wakes up nodes when the signal is
sensed. This is contrary to the method of checking signal
strength or probe packets which might be susceptible to inter-
ference. However, the detection time should be very small to
avoid unnecessary energy consumption. Similarly, there are
compute and storage constraints on ZigBee devices. To solve
such problems, it is proposed in [63] to use temporal feature
vector from the samples of received signal strength indica-
tor (RSSI). This helps to identify ZigBee signals from other
interfering signals. Resultantly, ZiSense achieves significant
improvement in energy saving by avoiding false wakeups
caused by interference.

V. REINFORCEMENT LEARNING BASED MAC PROTOCOLS
FOR DUTY CYCLING
Reinforcement learning belongs to a class of machine learn-
ing algorithms aiming at goal-directed learning using the
concept of actions and corresponding rewards. The learning
agent does not know which actions will maximize rewards to
start with, but only learns the best set of actions by interacting
with the environment. Delayed reward and trial-and-error
search are two core features of reinforcement learning [6].
A learning agent must be able to sense its environment and
be able to take actions to affect its state. It must also have a
goal relating to the state of the environment. The interaction
of an agent with the environment is depicted in the Fig. 4.
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FIGURE 4. Interaction of agent with environment.

Reinforcement learning differs from both supervised learning
and unsupervised learning. One of the challenges faced in a
reinforcement learning problem is balancing the compensa-
tion between exploration and exploitation. The learning agent
has to exploit its existing knowledge of the environment based
on experiences it has accumulated so far. It also needs to
explore the environment in search of better actions, so that
the reward could be maximized.

A reinforcement learning system has four main compo-
nents: (i) policy, (ii) reward signal, (iii) value function and
optionally, (iv) model of the environment. A policy defines
a mapping from environment states to actions to be taken in
those states, and it can be stochastic. Reward is the goal in the
reinforcement learning system. It defines the best and worst
events for an agent. Rewards can alter policies and actions so
that long term goals are achieved. The value function gives
the value of a state which is the total reward an agent can
expect to gain over the future if it starts from that state. Value
of a state is different from a reward in that it gives the long
term rewards that a state can offer by taking into account the
reward of all subsequent states from that state. Rewards on
the other hand are immediate or short term signals that a state
can offer. The value of a state can be larger as compared to the
reward that it has to offer. Finally, a model of the environment
tells about the behavior of the environment in response to
actions of learning agents. Thus, for a given action and state
the model may predict the next sate and reward.
FINITE Markov Decision Processes: In mathematics,

finite Markov decision processes (MDPs) [19] are used to
formulate the reinforcement leaning problem. The key ele-
ments of the problem’s mathematical structure can be defined
using MDPs. The agent interacts with the environment at
discrete time steps t = 0, 1, 2, · · · . Environment states are
represented as St at any given time and an agent can take
action At from this state. As a consequence of the action
the agent receives a numerical reward Rt+1 and transitions
to state St+1. This process continues until maximum reward
has been achieved. It should be noted that in a finite MDP,
the set of states, S, actions, A, and rewards, R, all have finite
number of elements. The goal of all reinforcement learning
algorithms is to estimate value functions of states that tell how
much reward an agent gets from a given state against a given
action. This not only involves current or immediate rewards
but also future rewards, more specifically the expected value
of future rewards. This in turn depends on what actions

an agent will take. As earlier stated, actions are defined in
policies, therefore the maximum expected return depends
on an optimal policy that the agent pursues. A policy can
formally be defined as a mapping from states to probabilities
of selecting each possible action. If the agent is following
policy π at time s, then π (a|s) is the probability that At = a
if St = s. Reinforcement learning methods specify how
policies are altered after agent gets new experiences from
the environment. The value of a state, s, under a policy π is
denoted by vπ (s), and defined as expected return when agent
starts in s and follows actions in policy π afterwards. For
MDPs, vπ is formally defined by

vπ (s) =̇ Eπ [Gt |St = s ]

= Eπ
[∑∞

k=0
γ kRt+k+1 |St = s

]
, (4)

For all s ∈ S, where Eπ [.] represents the expected return
given an agent follows policy π at time step t . The function
vπ is called the state-value function for policy π . Similarly,
the value of an action, a, in state, s, is represented as qπ (s, a)
and described as,

qπ (s, a) =̇ Eπ [Gt |St = s,At = a ]

= Eπ
[∑∞

k=0
γ kRt+k+1 |St = s,At = a

]
. (5)

where the function qπ (s, a) is called the action-value func-
tion for policy π .
Q-learning is a model-free algorithm of reinforcement

learning. It does not depend on a state-transition function to
predict transition probabilities from one state to another. The
optimal policy is estimated using interactions between agent
and the environment. This is done using a value function,
Q(St ,At ), that evaluates an action for all states, produces a
’quality’ value and obtains a policy from this value.

Q-learning [6] is a type of temporal difference learning
which combines Monte Carlo methods and dynamic pro-
gramming to solve a Markov decision process. It can learn
from raw experiences without a model of the environment
and is suited to problems where the complete state space
of the environment is not known beforehand. Agents can
learn effectively by interacting with the environment and
converge to an effective and optimal policy under certain
conditions with a probability of one. The Q-values of any
<state, action> pair can be represented as,

Q (St ,At)← α × [Rt+1 + γmaxaQ (St+1, α)]+ (1− α)

×Q (St ,At) (6)

where,Q is the new q-value learnt, γ is the learning rate
and α is the rate of exploration / exploitation. The Q matrix
is initialized to random values and updated for each state
and action after each iteration according to (6). The reward
matrix R is usually given. When the Q matrix represents
maximum reward for all states and actions, the problem has
been converged.We have now identified the state-action pairs
that can give us the maximum reward. Note that the value of
learning parameter α has to be carefully chosen, to keep a
balance between exploration and exploitation.
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TABLE 2. RL parameters for duty cycling in wpans.

Reinforcement learning can be used to provide an efficient
solution to the duty cycling problem, as will be discussed in
the section to follow. However, a few considerations need to
be made here.

Effective learning depends on reward function formulation.
For duty cycling, the reward function can be as simple as
giving a positive value to encourage or a negative value to
penalize a certain action, or it can be a complex function of
different system variables. Few examples of RL parameters
for duty cycling are given in Table 2.

Ideally, an efficient reward function is easy to con-
verge, less complex and computationally less intensive.
This is especially important in the context of LR-WPANs
because most RL agents are sensor nodes and the com-
plex reward computations may lead to excessive battery
consumption. Efficient reward function formulation is an
open research issue in reinforcement learning and may
vary according to the problem at hand. Reward functions
of a few RL approaches used in duty cycling are given
in Table 3.

Reinforcement learning is a technique which can be used
for effective duty cycling. The following subsections elab-
orate the use of various reinforcement learning based duty
cycling approaches to achieve optimal energy consumption
and better network lifetime.

A. USE OF REINFORCEMENT LEARNING APPROACHES
A study of Q-learning approaches for medium access in
wireless sensor networks, named ALOHA-Q, is presented
in [65]. The implementation of ALOHA-Q is extended to
grid, linear chain, and random topologies. Hardware lim-
itations and other practical limitations in ALOHA-Q are
studied. The performance of the ALOHA-Q is compared
with a Z-MAC [45] and SSA [66] through simulation. It is
concluded that ALOHA-Q performs better than SSA and
Z-MAC protocols in multi-hop networks. However, a limita-
tion of ALOHA-Q, is to trade-off exploration and exploitation
by setting parameters accordingly. To solve this problem,
ALOHA-Q-DEPS [65] is proposed. It is similar in working
to ALOHA-Q but uses a decreasing ε -greedy policy in which

a transmission slot with highest q-value is selected by a node
with probability 1−ε and random slot with probability ε. The
channel performance of ALOHA-Q-DEPS and ALOHA-Q
are evaluated with respect to two practical events: addition
of new nodes to the network and packet losses introduced
due to sensor node hardware. ALOHA-Q-DEPS is better than
ALOHA-Q in terms of robustness. It allows protection of the
channel performance in dynamic environments.

B. DECENTRALIZED RL BASED DUTY CYCLING
The work presented in [67] is focused on energy efficient
wake-up schedule in wireless networks using a decentral-
ized RL technique. Nodes interact with each other locally
and communicate their wake-up cycles with each other.
By this, synchronization and de-synchronization of active
periods in an independent way is learned by sensor nodes.
Synchronization helps in improving message throughput and
de-synchronization aims at reducing communication inter-
ference. Thus, the self-organizing RL approach helps in
reducing the duty cycle of a system. The performance of
a self-organizing RL approach is compared with a stan-
dard synchronized network. Three topologies are evaluated.
It is shown that each node can adapt its duty cycle to
network’s routing tree of network in an independent man-
ner. As compared to full synchronized technique in which
each node wakes up simultaneously, the proposed adaptive
behavior enhances the lifetime of the system and increases
the throughput for high data rates. No explicit coordination
mechanism is needed for converging to synchronization and
de-synchronization. Initial randomized wake-up schedules
achieve successful convergence. The object is to minimize
the amount of active time slots in a frame in a particular
contiguous period.

Size of action space of an agent creates a tradeoff between
energy conservation and optimality of the solution. Conse-
quently, it is evident that, for duty cycling, the action space
is limited to only select an active period in a frame. Thus,
the solution can be sub-optimal creating energy burden on the
system. Each node holds a q-value for every slot in a frame.
This value shows how good it is for a node to be awake during
a given slot. It depicts the efficiency of an active time pattern
considering the duty cycle and history of communication. The
q-value is updated for a node whenever idle listening or a
communication event (send/ receive packet) occurs.

Initialization is done using a series of q-values drawn
using a uniform random distribution. The number of q-values
updated by a node is defined by the number of events occurred
during active period. This approach differs from the tradi-
tional q-learning approach in which q-value of a selected
action is updated only. The time slots which have highest sum
of q-values define the wake-up time for nodes. For example,
if a user defines the duty cycle to 10%, then each node will be
active (or stay awake) for those 10 consecutive time slots in a
frame that holds maximum sum of q-values. The agents will
stay asleep for the rest of the time slots as it is not beneficial
to stay awake. Thus, during transmission of messages to sink
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TABLE 3. Reward functions of a few reinforcement learning approaches used in duty cycling.

node, sufficient knowledge regarding slot quality is acquired
by nodes to assess best period to stay active. This results in
neighboring nodes to desynchronize their actions. By this,
fast message delivery and low latency is achieved.

Active time slots are updated in individual manner irre-
spective of node’s wake-up schedule due to three reasons.
First, this approach results in exploration of each time slot in
a frequent way. Second, altering q-values individually makes
it possible to dynamically update the duty cycle of nodes.
Third, the proposed approach not only updates wake-up slots
but every slot in an active period. Also, updating individual
time slots does not require an explicit exploration scheme.
The greedy strategy ensures that each slot is explored and
updated at application initiation. This continues until the sum
of q-values of some group of slots gets larger as compared

to the rest, in which case the policy converges and further
exploration is stopped. Reward based greedy policy will not
get stuck in local optima as alteration of slots is done reg-
ularly. When a node fails and messages are not delivered,
the goodness of wake-up slot will start to decrease till nodes
relearn and re-wake-up using a different scheme. Duty cycle
schedule fixed by the user has an impact on the convergence
speed and re-learning. Learning rate is usually in the range
of 0.1 to 0.2. In non-stationary environment, it is desirable to
have a constant learning rate to make sure that the policies
change with regard to the rewards received most recently.

C. SMART DUTY CYCLE CONTROL
A duty cycle control scheme based on reinforcement learning
that ensures reliable and efficient M2M communication is
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proposed in [68]. The scheme is reinforcement learning based
duty cycle control for IEEE 802.15.4. A multi-hop based
M2M communication network is modeled that considers var-
ious dynamics of network. A distributed and optimal duty
cycle control scheme is derived mathematically to ensure
reliability of transmission and optimizing end-to-end delays
and energy. This scheme helps in learning optimal policy
without having initial information about network. It helps in
smart control of duty cycle with respect to various dynamics
of network.

D. ALOHA-Q
A scheme reported in [69] applies Q-learning for intel-
ligent slot selection mechanism to frame based ALOHA.
It starts with random access and moving towards complete
slot scheduling. It presents reinforcement learning algorithm
called Q-learning for an adaptation of slotted ALOHA with
reduced collisions and retransmissions in single-hop net-
works. Experimental results show that perfect scheduling in
steady states can be achieved. The only overhead incurred is
acknowledgement packet. It uses a Markov model to analyze
convergence and to validate the simulation model. The per-
formance of a steady state is evaluated against S-MAC and
Z-MAC through simulation.

E. DYNAMIC ADAPTATION OF DUTY CYCLING USING MAC
PARAMETERS
Mihaylov, M. et al. investigated the previous schemes of
IEEE 802.15.4 duty cycle management, by using MAC layer
parameters like SO and BO, and highlighted their limita-
tions [66]. It is reported that the use of buffer occupancy and
super frame occupation ratio as parameters can lead to less
than optimal BO and SO settings. Therefore, a dynamic and
adaptive duty-cycling scheme for cluster tree networks using
MAC parameters is suggested. This scheme determines chan-
nel traffic while incurring low control overhead. A Markov
model to approximate power consumption and delay in trans-
mitting frames is also suggested in [70].

The algorithm approximates channel conditions by taking
three parameters as input which are macMinBE (BEB), mac-
MaxFrameRetries (NR), and macMaxCSMABackoffs (NB).
The BO and SO parameters are then adjusted for subsequent
super frames. The default values of BEB,NB, andNR are 3, 4,
and 3 respectively, as specified in the standard IEEE 802.15.4.
The algorithm can be started after a set number of super
frames have been received or after every super frame cycle.

The PAN coordinator initiates the algorithm. The coordi-
nator fetches the values of the three parameters from received
super frames and calculates the average. At termination of the
active period, the coordinator determines the average of BEB,
NB and NR, and computes SO and BO, as given in Table 4.
Under low channel contention, SO and BO parameters are
set in a way that the nodes sleep for longer periods of time.
If this is not done; it will lead to inefficient duty cycles due to
frequent beacon transmissions. In case of a high retransmis-
sion rate of frames in the network only SO is decremented

TABLE 4. Use of MAC parameters for dynamic adaptation of duty
cycling [70].

by 1. This is because back offs occur due to high contention
in the network and packets are being retransmitted due to
collisions. Collisions could be either a result of synchroniza-
tion issues between nodes, or hidden terminal problem. This
directs to having a shorter active period, without altering the
frequency of beacon transmissions. However, if the number
of back offs increase, it shows more frames have sensed a
busy channel and therefore transmission in contention access
period of the coordinator cannot happen. SO is incremented
leading to a longer active window for transmission of frames.
This lowers the contention. New SO and BO parameters
are communicated to connected devices which now follow
the new duty cycle. Experimental results using the proposed
approach show that this duty cycling approach leads to the
best use of the PAN coordinator’s active period and good
energy conservation. This ensures a longer network lifetime
as compared to the IEEE 802.15.4 standard.

F. DCLA
To estimate incoming traffic, DCLA [71] captures network
statistics during active period. To learn best duty cycle, rein-
forcement learning based framework is used at every bea-
con interval. This approach eradicates the need to manually
reconfigure the duty cycle for nodes for specific network
deployment. To achieve this, traffic estimation performed by
FFD devices in setting duty cycle is reviewed and q-learning
based method is used to design a DCLA based algorithm,
policy functions, and reward which is employed by the agent.
The DCLA based algorithm is designed as a software com-
ponent that dynamically configures duty cycle at run time
without human involvement. This aims at providing energy
efficiency. The algorithm is designed such that a PAN coordi-
nator executes it to find the optimal duty cycle schedule with-
out any initial knowledge about network. This is achieved
by q-learning in which the RL agent takes only one state
and takes one of the many actions. Exploration and selection
are done in an optimal way. For static environment, best
actions in the q-matrix are exploited as the training process
starts progressing. For dynamic environment, new actions are
explored on the basis of rewards received. Thus, to ensure fast
convergence in static environments and adaption to dynamic
environment, DCLA manages the exploration to exploitation
ratio with biasness of a policy using knowledge obtained from
rewards.
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A number of parameters that are used to measure the
overall network performance are also mentioned in [71].
Examples of such parameters include, network offered load
(NOL), which refers to the amount of data a wireless sensor
node generates at a specific time and is measured in bps (bits
per second). The energy efficiency (Eeff) is the total amount
of information sent / received per Joule of utilized energy by
the sensor node. End-to-end delay (D) is the latencymeasured
in seconds, experienced by a datagram from its generation to
reception. Probability of success (PS) refers to the number of
times a packet is successfully transmitted in the network.

Comparison of DCLAwith different duty cycle approaches
for IEEE 802.15.4 is also reported with respect to event based
and periodic scenarios. This technique is more effective and
ensures a long network lifetime as compared to contemporary
duty cycling techniques [71].

G. SSA
To lower the consumption of energy and achieve low latency
in wireless sensor network a distributed and self-learning
scheduling approach (SSA) is presented in [66]. It extends
the q-learning method to make nodes learn sleep and con-
tinuous transmission parameters. SSA incrementally learns
an optimal scheduling policy without initial knowledge of
network. The learning process of all nodes is periodic and
simultaneous. Transmission parameter is taken as an action
for a node. Sleep schedule parameter is found using parameter
for transmission scheduling. There are two stages in SSA:
scheduling update (SU) and data delivery (DD). In DD, all
nodes perform their tasks according to sleep and packet trans-
mission scheduling. In SU, nodes update their q-values after
they receive a reward in DD stage. Nodes then use ε-greedy
scheme for selection of next action. This is done iteratively
until the q-values of the states reach the expected optimal
value. Transmission of packets takes place in DD stage. The
nodes sleep or wake-up according to the scheduling param-
eters. Reward is calculated in SU stage and q-values are
updated. All nodes interact simultaneously with a wireless
sensor network to learn the optimal scheduling parameters.
Learning these parameters is vital as it will have an impact
on behavior of a node and wireless network as a whole. The
aim is to achieve a long-term optimal sum of rewards by a
series of exploration and exploitation.

In order to verify the correctness, SSA is implemented in
MAC layer. ACK frame helps in acknowledgment of data
received by a recipient. In case of packet transmission failure,
sender has to re-transmit the data packet. Under various work
load, simulation study reveals that performance of SSA is bet-
ter as compared to S-MAC [53] and DW-MAC [72], in terms
of throughput, latency, energy consumption, and maximum
length of queue. In scenarios of heavy workload and serious
collisions, SSA performs better than the other two methods.

H. RL-MAC
An adaptive RL based MAC protocol for WSNs is pre-
sented in [73]. Other existing approaches focus on active and

sleep period scheduling of nodes to minimize consumption
of energy. Recent protocols that use adaptive duty cycles
are employed to optimize energy consumption. However, in
many cases, duty cycle is determined on the basis of traffic
load of node itself. In adaptive RL-based MAC protocol [73],
nodes make inference about their state using a reinforce-
ment learning approach. This results in low power utilization
and high throughput for a series of traffic conditions. This
approach is good for practical deployments as it has mod-
erate computational complexity. It is simple, self-organized,
and distributed in nature. RL based MAC protocol uses a
frame-based structure similar to T-MAC and S-MAC. Active
time and duty cycle of the frame are dynamically updated
with respect to node’s traffic load characteristics. The length
of a slot is a function of packet length and bandwidth. Initially
at the start of the frame, RL agent acts as a MAC protocol
engine. It reserves the active time slots dynamically. Node
exchanges packets with its peers and listen to the channel in
its active time. After expiration of active time, the node does
not send or receive any data packet and goes to the sleep state.
Two goals of RL agent are to maximize the energy efficiency
(as ratio of transmission/receive time and total reserved time
for active period) and to maximize the throughput of data.

I. CR-MAC
Carie et al. [74] present a cognitive radio-based approach
for medium access in such a way that the nodes learn about
the channel by using Q-learning. Cognitive radio-basedMAC
employs channel switching to improve achievable through-
put. Existing CR-MAC protocol selects channels randomly
which leads to packet collisions and latency in the network.
Carie et al. [74] presents a channel selection scheme based
on Q-learning. In this scheme, time is divided into fixed
intervals of size t and the number of successfully transmitted
packets (ND) are recorded. At the beginning of each interval
the node updates its q-value and broadcasts this value to
its neighbors along with the primary user free channel list
(PCL). The neighbors update their PCL table after receiving
this broadcast message. Also, the occupation state of each
channel is calculated, which shows the number of users that
have selected each channel. Nodes prefer channels with low
occupation rate. Q-values (0, 1) of each available channel
are maintained in a table. A node takes a greedy approach to
select a channel with the highest q-value. For every successful
transmission, reward R of the channel is increased by the
number of packets transmitted on it, and zero otherwise.
A variable discount factor is used which is dependent on
the number of competing nodes and the bandwidth. Channel
selection is based on the activity of other nodes. Channel
selection and channel re-use are exploited in order to optimize
power consumption.

TheQoS-AwareMAC is a distributedMAC andQ-learning
based duty cycling technique proposed for QoS differentia-
tion [75]. The QL-MAC presents RL-based radio scheduling
schema [76]. In this decentralized on-line approach, each
node determines the best suited radio schedule by dynamic
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TABLE 5. Reinforcement learning for MAC protocols in WSNs.

adaptation according to the communication activities and its
own traffic load.

VI. DISCUSSION AND PERFORMANCE COMPARISON
The use of reinforcement learning based approaches present a
plausible solution to adaptive duty cycling, leading to a better
energy conservation in IEEE 802.15.4 low-power networks.
It mainly relies on determining an optimal Q-matrix which
captures the state transitions leading to a maximized reward.

In the Table 5 some RL based duty cycling solutions are
presented which we have reviewed in this paper. It should

be noted that all approaches discussed here need to main-
tain information about traffic load of sensors and occasion-
ally their neighbors also. This leads to a couple of consid-
erations when adopting RL based techniques for efficient
duty cycling. First, defining a network-representative reward
function can be challenging because the requirements of
delay, throughput, battery, and network lifetime, vary from
application to application. Second, the convergence time of
the algorithm can induce unnecessary delays especially in
applications where contention is low and data is sent after
long intervals of time. Conversely, under high traffic loads
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TABLE 6. RL based MAC protocols for duty cycling scheme in first column outperforms schemes in second column.

and high contention levels the time needed by RL based
algorithms to reach the optimal duty cycle may cause extra
latency. Network nodes are mostly constraint by power (com-
putation) which limits the complexity of potential Q-learning
algorithm and reward functions.

It should also be noted that Q-learning algorithms require
time to converge and it might be challenging in case of delay
sensitive applications and in the situations where network
lifetime is less than the convergence time of the learning
algorithm. Adjusting duty cycle for energy saving leads to
longer end-to-end message latency. The active period is also
reduced and leads to achieve contention at the start of the
super frame. In some approaches, extra control overhead
is incurred at nodes and the coordinator. It is difficult to
compare the performance of all the techniques from the liter-
ature because most of them are tested in different simulation
environments for certain topologies with particular network
parameters. Due to this reason, rather than an exhaustive
comparison, the available choice is to compare techniques
which share the testing environment. Table 6 presents such a
comparison, where, the techniques listed in first column out-
perform the techniques listed in second column for each row
separately.

Results of RL-MAC [73] are quoted in comparison with
S-MAC [53] in simulated environments configured using star,
linear, and mesh topologies on NS-2 platform. For all three
topologies, throughput of RL-MAC is more than S-MAC.
In linear topology RL-MAC consumes 30.93% less energy
as compared to S-MAC. In mesh topology, performance of
RL-MAC is better than not only S-MAC but also T-MAC
in both data throughput and energy efficiency, as shown
in Table 7.

Decentralized reinforcement learning scheme [67] was
evaluated on OMNET++ simulator by using linear, mesh,
and grid topologies. The results are given for average end-to-
end latency at different values of duty cycles by considering
both synchronicity and de-synchronicity. It was shown that

TABLE 7. Performance comparison of RL-based MAC protocols.

the de-synchronized approach could reduce duty cycle by
around 10% without increasing the latency.

Performance comparison of QL-MAC [76] with
RL-MAC [73] and S-MAC [53] carried out on OMNET++
simulator by using linear, mesh, and star topologies.
QL-MAC demonstrated maximum throughput and minimum
power consumption in all topologies, as shown in Table 7.

It is shown in [65] that ALOHA-Q outperforms SSA [66]
and Z-MAC [45] in both simulated and real setups. In sim-
ulation for linear, grid, and random topologies, ALOHA-Q
showed more channel throughput as compared to SSA and
Z-MAC. The, throughput of SSA was more than Z-MAC
but less than ALOHA-Q. Real experiments show a similar
pattern.

CR-MAC [74] was evaluated on NS-2.31 simulation
platform using grid topology. The results were compared
with IEEE 802.11 DCF, Inband-CRMAC, Hybrid-CRMAC
(Omni), Hybrid-CRMAC (Directional), and out-of-band-
CRMAC. Proposed RL based CR-MAC outperforms others
in terms of throughput, energy consumption, and elapsed
time.

VII. FUTURE RESEARCH DIRECTIONS
In various studies, experimental results have highlighted that
various Q learning-based duty cycling techniques are capable
of achieving higher throughput (byte/second) in an energy
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efficient manner. Thus, RL-based techniques are considered
as plausible solution for energy conservation at MAC layer.
For further successful development of such techniques we
need to acquire better visibility in many aspects such as esti-
mation of convergence time, formulation of efficient reward
functions, and performance evaluation on real network test-
bed using standardized network configuration, and impact of
cross layer design, as well.

A. CONVERGENCE TIME
The time elapsed until every node has learnt an optimal duty
cycle is called convergence time after which nodes are in
steady state. These RL-based algorithms may take long time
before convergence depending upon several factors such as
state-action space, reward function, network topology, and
traffic load, a few to name.

A primary challenge is to estimate the size of the
state-action space which determines how long the algorithm
takes to reach a steady state. Q learning is a model-free algo-
rithm that does not require state-action transition probabilities
and prior knowledge of the environment. Mostly, state-space
consists of number of slots in a frame. However, in a net-
work determining an optimal duty cycle can be challenging.
A study on determining optimal number of slots per frame
can be conducted for different network configurations.

Moreover, it is also important to note that network param-
eters, whether set statically or learnt adaptively, should be in
line with the global view of the network. It is crucial that
all optimal parameter settings should account for topology
changes, mobility of the nodes, and network lifetime in IoT
networks. Further, most techniques [66]–[71] studied so far
assume a static model of the environment, where the network
topology does not change. Still, it has to be asked that howRL
algorithm will perform in a dynamically changing network
topology. Furthermore, what factors influence convergence
time of RL-based duty cycling algorithm and what is their
significance?

Notably, for the proposed algorithms, only empirical
results have been presented without any support of analy-
sis for asymptotic running-time complexities, to attain an
optimal state of duty cycle. Also, on account of possible
variation in the state-action space and reward function of a
duty cycling algorithm, it is hard to come up with a gen-
eralized convergence theorem. A careful theoretical study
on the expected number of learning iterations to ascertain
convergence time can be conducted using randomized or
probabilistic approaches. Further, the cost-benefit analysis
should be done for employing duty cycling techniques.

B. EFFICIENT REWARD FUNCTION
Every RL algorithm employs a reward function to discourage
bad actions and to encourage good actions. However, in pur-
suit of an optimal duty cycle, formalizing an efficient reward
function is the most daunting task. Further, efficient reward
function should be capable of depicting network dynamics
by considering network parameters. The Table 3 summarizes

reward functions that are comprised of several parameters, for
different duty cycling algorithms in the literature.

It is trivial to understand that generalization across short
range wireless technologies for reward functions is not easy
because they are specific to an environment. Therefore,
research endeavors should be made to design an efficient
reward function for short range wireless technologies such
as IEEE 802.15.4, IEEE 802.15.1, and IEEE 802.11. For
example, in IEEE 802.15.4 it would entail finding optimal
values of BO and SO parameters.

It should be noted, although complex reward function
may capture many network parameters for example incom-
ing/outgoing data of a node, state of neighboring node(s), and
changing network conditions, yet, complex reward function
may lead to large convergence time. Here, an important ques-
tion arises, how to tradeoff complexity of reward function
with convergence time, while achieving high throughput and
energy efficiency.

C. PERFORMANCE EVALUATION
Finally, most of the work summarized in Table 5 has been
evaluated using simulation software and it is important to
investigate it on a real test bed.

So far, RL-based duty cycling techniques have been evalu-
ated for energy efficiency, network throughput, and transmis-
sion latency. But, these evaluations are made in a simulated
environment under varying/non-standardized network con-
figurations leading to obscure comparison of RL algorithms.
The following two possible research directions are proposed.

(1). A proposed RL algorithm should be evaluated on real
network test-bed, under varying network parameters
and traffic intensity inviting a wide community to eval-
uate and improve. In that case, comparison of relative
performance would pave the way for the integration of
RL-based techniques into the current protocol stack.

(2). To make an effective performance comparison, it is
required that all proposals should be evaluated under a
standardized environment, offered by a benchmarking
framework. We suggest that a benchmarking frame-
work should be designed with a set of network config-
uration and parameters. This will provide a common
ground for evaluation and comparison of current and
coming techniques in future resulting in a data-driven
and time-efficient decision making.

D. CROSS-LAYER DESIGN
The approach of cross layer design can be applied in the
following ways.

(1). To study the adaptive duty cycling in conjunction with
RPL [2]which is designed as network layer protocol for
IoT protocol stack. The potential effects of duty cycling
on construction and maintenance of RPL destination
oriented directed acyclic graph (DODAG) needs to be
investigated, in case a node fails or topology changes.
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(2). It is clear, that RL engine should not be hosted at
constrained nodes of IoT. Computationally extensive
tasks, such as learning the optimal duty cycle, should
be offloaded to unconstrained nodes of the network for
instance IoT gateway. However, such a configuration
may require adequate trust management [77] mech-
anisms between gateway and sensor nodes. Further,
in this case, dissemination of duty cycle schedule infor-
mation to each node would be a cumbersome task and
may induce additional transmission delay and unwar-
ranted use of radio resources.

(3). We suggest using fog computing paradigm as an
answer to this issue. Duty cycle learning engine can be
offloaded to a resourceful node [78] for instance PAN
coordinator in IEEE 802.15.4 network. Such resource-
ful nodes can act as command and control nodes, in line
with the ideology of software defined network (SDN),
which learn through reward function and disseminate
optimal duty cycle to lean nodes, while maintaining
global perspective of the network.

VIII. CONCLUSION
In this paper, medium access control (MAC) protocols
have been summarized. In the view of energy conservation,
at MAC layer the duty cycling has been extensively studied
in the last decade. Further, to find the optimal duty cycle
schedule the use of reinforcement learning (RL) has been a
popular technique in the literature. This papers attempts to
make a performance comparison of RL-based duty cycling
techniques. Also, this survey paper highlights the associated
challenges that hinder a fair and meaningful comparative
analysis of RL-based proposals. However, it is highlighted
that lean nodes of IoT are incapable of running complex learn-
ing algorithms while paying high cost of energy. In the light
of this survey, we emphasized the future research directions
that would help in overcoming the hindrances in adoption of
RL-based energy conserving duty cycling, in the context of
Internet of Things (IoT). The recommendations have been
made in four broader areas for: a) estimation of convergence
time, b) formulation of efficient reward functions, c) perfor-
mance evaluation on real network test-bed, and d) cross-layer
design.
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