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ABSTRACT Networks-based models have been used to represent and analyse datasets in many fields such as
computational biology, medical informatics and social networks. Nevertheless, it has been recently shown
that, in their standard form, they are unable to capture some aspects of the investigated scenarios. Thus,
more complex and enriched models, such as heterogeneous networks or dual networks, have been proposed.
We focus on the latter model, which consists of a pair of networks having the same nodes but different
edges. In dual networks, one network, called physical, has unweighted edges representing binary associations
among nodes. The other is an edge-weighted one where weights represent the strength of the associations
among nodes. Dual networks capture in a single model some aspects that cannot be described by using a
standard model. Dual networks can be used, for instance, to capture a co-authorships network, where physical
network represents co-authors. In contrast, the conceptual network is used to model topics sharing among
a couple of authors by means of edge connections. This allows capturing similar interests among authors
even though they are not co-authors. We propose an innovative algorithm to find the Densest Connected
Subgraph (DCS) in dual networks. DCS is the largest density subgraph in the conceptual network, which is
also connected in the physical network. A DCS represents a set of highly similar nodes. Moreover, since DCS
is a computationally hard problem, we propose novel heuristics to solve it. We tested the proposed algorithm
on social, biological, and co-authorship networks. Results demonstrate that our approach is efficient and is
able to extract meaningful information from dual networks.

INDEX TERMS DCS, dual networks, graph alignment, social networks.

I. INTRODUCTION

The use of network-based models to analyse data is currently
growing in many research fields. For instance, in biology
and medicine, many approaches use graphs both to model
and analyse data [1], [2]. Similarly, social networks data can
be modelled using graphs and analysed to extract relevant
information regarding connections among people [3]. Most of
the problems are modelled by using a single network, i.e., the
same structure is used to model data and, then, to extract
information by studying network properties, as well as to
identify community-related structures [4]-[7]. For instance,
considering networks of genes and proteins, communities
represent groups of related genes or proteins in biology.
The network instance is then used to study relations among
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proteins (or genes) with molecular mechanisms. In social net-
works, a single network can be used to identify the existence
of community-based structures which usually indicates the
presence of related users [8].

Recently, more complex models have also been introduced.
The use of a pair of graphs representing two different views
of the same scenario has been introduced to detect hidden
properties which are not detected by single network-based
models [9]. For instance, there are scenarios where given a
set of nodes, we need to model weighted connections as well
as (minimal) set of simple connections. In these cases, two
graphs are required.

We focus on problems requiring two graphs, which are
modelled with the so-called dual networks model (or sim-
ply dual networks). This model is based on the use of two
graphs with the same vertices set and two different edges
sets. One graph is unweighted and referred to as physical

162279


https://orcid.org/0000-0001-5542-2997
https://orcid.org/0000-0002-1678-0051

IEEE Access

P. H. Guzzi et al.: Extracting Dense and Connected Communities in Dual Networks: An Alignment Based Algorithm

i A ~

-
R
e . 4 v
- of L] ¥
; \
~ 4 : !
e, ) ¥
e ‘\ i
# -
~ 5

# -

¥
’ b i
- (S !
» O
’ Qe T
. .

FIGURE 1. An example of dual network. Graph on the left (with solid edges) represents the
conceptual network, while the other one (with red dashed edges) represents the physical
network (for sack of simplicity we omitted the weight of edges on conceptual network).

graph. The other graph, called conceptual graph, is edge-
weighted. Figure 1 reports an example of dual network. The
use of dual networks finds natural applications whenever it is
needed to model two kinds of relations among the same set of
nodes. The two networks represent physical and conceptual
interactions.

Phillips e al., used dual networks to analyse interac-
tions among genetic variants [10], while Tornow et al.,
use the dual network to analyse expression data and their
functional relations [11]. In such a scenario, networks
representing the co-expression of genes (functional net-
works) may be jointly analysed with other one presenting
known interactions among proteins. The integration of data
may help to find relations among genes co-expression and
known interactions. Ulitsky ef al., use a graph representing
genetic interactions, i.e. a graph whose nodes are genes,
and edges represent the association of two genetic perturba-
tions affecting the phenotype (genetic conceptual network),
and a graph representing physical interactions among genes
(physical network) [12].

In this paper we focus on the problem of finding Densest
Connected Subgraphs (DCS) in dual networks. Formally, let
G, = (V,Ep), and G, = (V, E¢) be two undirected graphs
defined on the same set of vertices V, where G, is unweighted
and G, is weighted. Such two graphs represent a dual network
that can also be formally indicated as G(V, E., Ep). Finding
DCS in the dual network G, consists in selecting nodes / €
V, edges E! € E. and Elg € E, such that: (i) the subgraph
GII, =, Eé) is connected and (ii) the subgraph G. = (I, E!)
is the densest, i.e. where the density is the maximum possible
value. The density of a graph is the ratio between the sum
of edge’s weights versus the number of nodes. We formally
introduce such definitions in Section III.

Finding DCS in dual networks allows to capture real cases
which cannot be captured with single networks. For instance,
in co-authorship networks, the physical networks model the
existence of a co-authorship relation, while the conceptual
network models the similarity of research among authors,
independently of the property of being co-authors. The DCS
in this case represents a community of authors having similar
research interests and also mutual co-authorship relations
(e.g. ’A’ is co-author of ’B’, B’ is co-author of ’C’ but A’
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may not be co-author of *C’). The co-authorship DCS may be
used for instance by a recommendation system to optimise
conference proposals. Similarly, in the social network case,
the conceptual network of the DCS can be used to model
the geographical distance among users, while the physical
network could model friendship relations. Therefore a DCS is
a community of geographically related users having common
friends, therefore DCS may suggest novel friendship rela-
tions or some targeted information. DCS evaluation in social
networks allows to identify set of users that share common
interests and are geographically related.

Finding DCS is an NP-hard problem [9] in its general
formulation. Indeed, it can be reduced from the set cover
problem [13]. Thus, the need for introducing novel heuris-
tics able to solve it arises. Nevertheless, while finding the
densest graph in a single network has been solved by many
approaches employing different heuristics, finding a DCS in
a dual network is still a challenging problem. E.g., in [9]
authors propose two heuristics based on pruning for solving
DCS problem. The here proposed contribution consists in
modelling the problem of finding the DCS as a local network
alignment problem, for which we propose a novel algorithm.
Such an algorithm, implemented in a tool named DN-Aligner,
uses a merge-and-mine approach as in [14]-[16], and receives
as input a pair of networks. It merges these networks in
a single Weighted Alignment Graph (WAG). Each node of
the built WAG belongs to both conceptual and physical net-
works. Each weighted edge is added to the WAG using a
scoring function. This way, any sub-graph of the obtained
alignment network represents a connected sub-graph of the
input one. The weights of the edges are derived from the
input conceptual network. Finally, we extract the densest
sub-graph by using a variation of the Charikar algorithm [17].
Such densest sub-graph represents a connected graph in the
physical network; therefore, it is a solution to the problem.
Figure 2 depicts the main steps of our algorithm. We imple-
mented such an algorithm, and we show the effectiveness
of our approach presenting three case studies: (i) the first
one based on social networks data, (ii) the second one based
on biological networks and (iii) the third one based on a
co-authorship network. Results confirm the effectiveness of
our approach.
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FIGURE 2. Workflow of the DN-Algorithm. The algorithm receives as input the two networks representing a dual network.
In the first step the two networks are merged together into a single Alignment Graph. Each node of the alignment graph
represents a pair of nodes of the input network. Edges are inserted considering the two input networks. Then the Charikar
algorithm is used for extracting the densest sub-graph of the alignment graph. Each sub-graph of the alignment graph
represents a connected sub-graph of the unweighted networks. Therefore it is a densest connected sub-graph for the dual

network.

The paper is structured as follows: Section II discusses
main related works. Section III reports a formal formulation
of DCS and describe the proposed algorithm. Section IV
discusses the case studies and results of applying the
DN-Aligner tool, and Section V concludes the paper.

Il. RELATED WORK

We focus on finding the Densest Connected Subgraph (DCS)
in a dual network. Detecting dense components of a graph
is one of the most challenging problems in graph analysis
[18], [19]. Recently, it found applications in many important
fields such as social network analysis [20]—[22]. The problem
is based on the definition of density for a graph, and literature
contains many definitions that have been applied in different
contexts. One of the first definitions of dense sub-graph
is a fully connected sub-graph, i.e. a clique. However the
identification of a maximal clique, also referred to as the
maximum clique problem, is NP-hard [23], and it is difficult
to approximate [24].

Wau et al. proposed an algorithm for finding densest con-
nected sub-graph in a dual network. The approach is based
on a two-step strategy [9]. In the first step, the algorithm
prunes the dual network without eliminating the optimal
solution. In the second step two greedy approaches are devel-
oped to build a search strategy for finding the DCS. Briefly,
the first approach finds the densest sub-graph in the concep-
tual network first, and then it is refined to guarantee that it
is connected in the physical network. The second approach
maintains the sub-graph connected in the physical network
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while deleting low-degree nodes in the conceptual network.
Authors also propose a possible solution for finding the DCS
with fixed number of nodes and for maintaining a set of input
seed nodes in the identified sub-graph.

The DN-Aligner algorithm proposed here is more stable
than the one presented by Wu er al., since it allows to define
the input correspondence among nodes, while the approach of
Wu et al., is based on the correspondence of nodes with the
same name. Therefore our approach may be easily extended
when the set of nodes are not the same and may be also used
to find other kinds of communities (e.g., by using a different
algorithm for mining the alignment graph, as we show in the
following).

The problem of finding the densest sub-graph may be also
treated by using heuristic in polynomial time, for instance the
algorithm developed by Goldberg based on maximum-flow
approach [25]. Asashiro et al. proposed a greedy algorithm
based on the strategy of deleting the node with minimum
degree [26]. Our method includes also an heuristic by imple-
menting a similar approach but we improve it by extending
the method to weighted graphs.

The here proposed algorithm uses network alignment
methods to build the initial alignment graph. Network align-
ment algorithms aim to find a mapping among two (or more)
input networks and are categorised as local or global. The
global alignment algorithms (GNAs, Global Network Align-
ment) search the best superimposition of the whole compared
networks by exploiting one-to-one node mapping. Moreover,
algorithms may be designed for homogeneous networks or
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TABLE 1. The main notations used for graphs.

Symbol

Definition

G=(V.E)

Graph G with node set V' and edge set &/

G = (V,Ep, E¢)

a dual network made by a conceptual network
G.(V, E.) and a physical network G, (V, Ep)

I1CcV a subset of nodes
vol(v),v € V the sum of the weights of the edges incident to the
node v
_ Zveev (vol(v)) .
p(V) = 4 density of a graph G defined as the average vol of the
nodes

heterogeneous ones [4]. Many implementation have been
proposed, such as: (i) MAGNA [27]; (ii)) MAGNA++ [28]
and (iif) IGLOO [29]. Traditional GNAs employ a two-stage
procedure. During the first stage, they apply a cost function
to estimate pairwise similarities among nodes. Then, they
use an alignment method to quickly determinate, among all
probable alignments, the one with a high score with the
overall similarity on all aligned node [16].

Local Network Alignment algorithms (LNAs) find mul-
tiple (relatively small) regions of similarity among input
networks. Each region is usually mapped independently of
other regions. Each subgraph represents a conserved motif or
pattern of activities. Prominent examples of LNAs are Net-
workBLAST [30], MaWish algorithm [31], Graemlin [32],
NetAligner [33], and AlignNemo [34].

We used local network alignement starting from methods
proposed in [14] and [35]. We built the alignment graph simi-
larly to L-HetNetAligner by employing the same algorithmic
approach.

IIl. FINDING THE DENSEST CONNECTED

SUBGRAPH (DCS)

In this section, we formalise the problem of finding a Densest
Connected Subgraph (DCS) in a dual network. We describe
the here proposed DN-Aligner algorithm to find DCS from a
dual network.

A. GRAPH FORMULATION

A dual network comprises two networks sharing the
same node-set. One network, called physical network, has
unweighted edges. A second network, called conceptual net-
work, has weighted edges. Edge sets are in general different
in the two networks. Using the standard notation reported
in Table 1, we formulate DCS problem [9] by using the
following definitions.

Definition 3.1: Dual Network.

A dual network G = (V, E,, E.) consists of two networks:
a conceptual weighted network G.(V, E.) and a physical
unweighted one G,(V, Ep).

Definition 3.2: Density of unweighted graph.

Given an unweighted graph G(V, E) the density p is
defined as the ratio of number of edges to the number of
nodes, i.e. p = £V||

The definition may be extended to weighted graphs as
described in literature [9] by considering the sum of the
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weights of the edges for each node, known as the vol of the
node. Then, the density is calculated using the average weight
of each node.

Definition 3.3: Density of a weighted graph.

Given an weighted graph G(V, E), let v € V a node of
G, and vol(v) = Z(v’w)eE weight(v, w) be the sum of the
weights of the edges for the node v. The density of weighted
graph is defined as p(G) = M

Given a dual network we may consider the subgraphs G;
and G induced in the two networks by the same node set
I C V. A densest common subgraph DCS is the subgraph
defined on a subset of nodes / such that the density of the
induced conceptual network is maximised and the induced
physical network is connected. Thus the problem consists in
identifying the set of node I.

Definition 3.4: Densest Common Subgraph.

Given a dual network G(V, E, E,), the densest connected
subgraph is a subset of nodes I C V such that Gf) is connected
and the density of G/ is maximised.

Table 1 summarizes the above reported formulation.

B. DN-ALIGNER ALGORITHM DESCRIPTION

To identify the DCS in dual network, we use an alignment
graph algorithm and then aligned graph is used to extract the
DCS. Given a dual network, the Algorithm 1 reported briefly
in the sequel is based on the following two steps:

o (step 1) Merge the input networks into a single alignment
graph;

o (step 2) Analyse the alignment graph using (an adapted
version of) Charikar algorithm [17].

Algorithm 1 DN-Aligner Algorithm
Input: : A Conceptual Network G, = (W, E), and a Physi-
cal Network G, = (V, E),
Input: : A Correspondence File F indicating the nodes to be
merged
Input: : A distance threshold § (optional)
Qutput: : DCS
Begin
1: : WAG < BuildAlignmentGraph(G,Gy,8,F)
2: : DCS <« Analyse(WAG)
3: return DCS

End
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FIGURE 3. Alignment example: the algorithm receives as input two
networks and a set of similarity relationship among nodes of the
networks (dashed lines).

In the first step the two networks are merged together in
a single alignment graph. The algorithm has two additional
parameters: (i) a file F' that stores the correspondence among
nodes, i.e. which nodes belonging respectively to conceptual
and physical networks have to be merged; (ii) a distance
threshold § that represents the maximum distance threshold
that two nodes should have in the physical network (the
parameter is optional and it is used to prune the possible
solutions).

In the first step the algorithm merges the input network
in a single weighted alignment graph. Each node of the
input graph represents a pair of corresponding nodes of
the input ones. Each weighted edge of this graph is added
using a match-mismatch-gap model. In this way, each con-
nected sub-graph of this graph represents a pair of connected
sub-graphs of the input ones. Weight of the edges are derived
from the input conceptual networks without modifying them.
Finally, the algorithm extracts the densest sub-graph by using
amodified version (see below) of the Charikar algorithm [17].
Such densest sub-graph represents a connected graph in the
physical network, and it is a solution for the initial problem.

C. ALIGNMENT GRAPH DESCRIPTION

The first step of the Algorithm 1 is based on a previous work
on graph alignment [14], which has been improved to fulfil
the DCS evaluation problem.

We explain the building of the alignment graph through
an example. Let us consider two input graphs: a weighted
graph G| = (W, E), and an unweighted graph G, = (V, E),
as depicted in Figure 3. We build the alignment graph by
considering input graphs and a set of similarity relations
among nodes used as starting seeds.

Consider, for the sake of simplicity, two networks (concep-
tual and physical) with an equal number of nodes. Figure 3
shows these relationships as dashed lines connecting the
nodes of the two graphs. The modified version of the align-
ment algorithm [14] works as follows. First, the algorithm
builds a new node, defined as composite node, for each pair
of nodes that are in a relationship. Each node of the alignment
graph represents a pair of correspondent nodes. After this
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FIGURE 4. First, the algorithm builds the nodes of the heterogeneous
alignment graph. The edges are then added according to the analysis of
input networks.

step, the algorithm adds the edges among nodes by examining
the two input graphs. Given two nodes, a connection node
is inserted whenever the corresponding nodes are connected
respectively in conceptual and in physical networks. For
instance, in Figure 3 both (v1, v2) and (w1, w2) are connected
in input networks, hence the alignment graph will contain
(v1—wl)and (v2—w2) nodes, where wl, w2 € W,v1,v2 € V
and (vl — wl) and (v2 — w2) are the corresponding nodes
in the alignment graph. This condition represents a Match.
Therefore an edge is inserted between (v1 —w1) and (v2—w?2)
and the weight of the edge between them will be equal to the
weight of the edge between w1 and w2. Let us now consider
nodes (v3 —w3) and (v4 —w4) of the alignment graph. Nodes
w3 and v4 are adjacent while v3 and v4 are connected but not
adjacent and let us suppose that the distance is below a given a
threshold of distance § = 4, (e.g. distance less than 4). In this
case, an edge will be inserted between nodes (v3 — w3) and
(v4—w4) of the adjacent graph, while the weight of the edge is
the average of the weights of the edges of the path linking w3
to w4. After the analysis of all node pairs, the final alignment
graph is built, as represented in Figure 4. The steps described
above are used to implement the line 1 of the Algorithm 1,
returning AL graph. Such a result is obtained by running the
algorithm Building the Weighted Alignment Graph, reported
formally below also in pseudo code in the Algorithm 2.

The procedure BuildAlignmentGraph receives two
networks, a set of relations among their nodes stored in
the similarity file F and a threshold §. It generates a
weighted alignment graph WAG = (G, E;). In the follow-
ing, the Algorithm 2 in pseudo code is reported.

The similarity file F contains one-to-one relations among
nodes belonging respectively to conceptual and physical net-
works of the dual network. The Algorithm 2, which imple-
ments the first line of Algorithm 1, scans the similarity file
and for each pair of nodes, it builds a node of the alignment
graph. Then it considers all pairs of nodes of AL. Given
two nodes of the alignment graph v, 1 = (vi,wi) and
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Algorithm 2 BuildAlignmentGraph(G,,G),,d,F)
Input: (G.,G,,8,F)
Output: WAG = Gy, E4 (weighted Alignment Graph)
1: BEGIN
Initialisation:
2: // Building Nodes of the Alignment Graph
LOOP Process: Scan F file
3: for each pair contained in F do
4:  add Node to G4
5: end for
6: // Building of Edges
7
8
9

: for Each Edge (n1, m2) € G, do
E4 < Analyse(G.,Gp)
: end for
10: return WAG
11: END

val,2 = (v2, wp), it adds a corresponding edge between them
when the input nodes are adjacent in the two input networks.
In this case, the weight of the edge in AL is the weight of the
corresponding edge in the conceptual network.

Given two nodes vg.1 = (vi,w1) and vg 2 = (v2, w2)
of the alignment graph, we say that there is a gap when the
input nodes are adjacent only in the conceptual network and
they are at distance lower than § in the physical network.
In this case, an edge will be inserted into AL, and the weight
will be the average weight of the edges of the shortest path
connecting them. Conversely, when they are at a distance
greater than &, no edge is inserted into the alignment graph.
When § is set to oo, an edge will be inserted whenever the
nodes are connected in the physical network (see function
Analyse(), Algorithm 2, line 8).

D. DENSEST CONNECTED GRAPH EXTRACTION
We now describe how to obtain the DCS from the aligned
graph, i.e. we explain line 2 of Algorithm 1. We improved
the Charikar algorithm [17]. The latter produces a densest
sub-graph S of given graph G by using a greedy approx-
imation. The algorithm originally has been developed for
unweighted graphs. The idea behind the algorithm is that the
elimination of low degree vertices in an unweighted graph
may produce a subgraph S having the desired properties. The
algorithm starts by considering the whole graph G. For each
iteration it identifies the minimum degree vertex vy, € G
and it removes vy, from G. The algorithm stops when all
the vertices have been removed from G. The sub-graph with
maximum density is built and returned as output during the
iterations. The algorithm can be modified to be used with
a weighted graph by considering the weighted sum of the
degree and weights [17]. We extend the Charikar algorithm
for weighted graph, by using the definition of density reported
below (also introduced in Table 1).

Let G = (V,E) be an undirected graph with weighted
edges and S C V asub-graph. Each node (v € V') has a set of
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incident edges (E(v)) and each edge has an associated weight
w. We define as vol(v), v € V the sum of the weights of the
edges incident to the node v, vol(v) = Y (E(v)). We define as
density of G p(V) the ratio among the vol(v) and the number
of nodes of G:

2wevEW)
[V

We use the above reported extension to the algo-
rithm and include the two reported algorihms to find
the DCS in a Python based program called DN-Aligner.
Code and tests are available for download at https:/
github.com/hguzzi/DualNetworkAligner.

p(V) = ; ey

IV. CASE STUDIES

A. PROOF OF CONCEPT AND VALIDATION

In the next section, we show as a proof of principle results for
the application of our algorithm to some synthetic networks
that contain known DCS. We demonstrate that our findings
have superior quality over other classical approaches. The
quality of the results is evaluated in various ways: we first
show the ability of our approach to recover known DCS by
means of the measures of precision and recall, then we show
that our solutions are better than other methods.

We build 200 test dual networks each one containing
DCS (DCSipn.i,i = 1..200). Each physical networks has
1000 nodes, and 5000 edges and the conceptual network has
1000 nodes and 5500 edges.

The quality of a result was evaluated by comparing each
extracted DCS (DCS. ;) with each known DCSyy, ;. The
DCS sensitivity (Snpcs) represents the coverage of a known
DCS by its best-matching extracted DCS (the maximal frac-
tion of nodes in the DCS found in a common extracted
DCS). Reciprocally, the DCS-wise Positive Predictive Value
(PPVpcs) measures how well a given extracted DCS predicts
its best-matching known DCS.

To estimate the overall correspondence between a result
(a set of extracted DCS) and the collection of known DCS,
we computed the weighted means of all PPV values (averaged
over all extracted DCS) and Snpcs values (averaged over all
known DCS). The resulting statistics, clustering-wise PPV
and clustering-wise Sn, provide information about the quality.
To integrate the two measures, we computed a geometrical
accuracy (Accpcs), defined as the geometrical mean of the
averaged Sn and PPV values.

Since classical clustering and community discover algo-
rithms do not run in dual network, we applied them over
conceptual networks; then we derived the induced sub-graph
into the physical network. Finally, we reduced the cluster on
the conceptual network to find a connected sub-graph into the
physical one.

Then we calculated the same measures described before
for each algorithm running on 200 synthetic networks. We
used the MCL, MCODE [36], and Louvain algorithm on the
conceptual network. Table 2 summarises the performance
of the algorithms (i.e., DN-Aligner, MCODE, MCL and
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TABLE 2. Performances on synthetic networks: average values are
reported with their standard deviation.

Algorithm PPV SSN ACC

DN-Aligner | 0.75.£0.01 | 0.81£0.02 | 0.78 £0.02
MCODE 0.62+0.02 | 0.62+0.02 | 0.62+0.02
MCL 0.72+0.03 | 0.65+0.03 | 0.68 +0.03
LOUVAIN 0.82+0.02 | 0.70£0.01 | 0.75+0.02

LOUVAIN), measured by using the average value evaluated
on the runs over each of the 200 networks, respectively for
PPV, SSN and ACC.

As evidence, DNAligner averaged over 200 networks out-
performs the remaining 3 algorithms for the discovering of
DCS.

We also performed additional tests, by varying the input
network. We randomly added edges (as a matter of noise)
and we generated 5 altered networks by randomly adding
noise defined by 5%, 10%, 15%, 20%, 25% of new edges.
Then we calculated same statistics as before. Results are
summarised into Tables 3. We also evaluate the statistical
differences among accuracy values and the values obtained
by our algorithm are higher than the other algorithms through
a non-parametric test.

This section presents some case studies on a social net-
work, on a co-authorship network and on a biological net-
work. As proof of concept we present three case studies on
three different networks: (i) a social network, (ii) a biological
network and (iii) a co-authorship network. In each study,
we extract the densest connected graph. All experiments have
been performed on a server with 16Gb Memory, Ubuntu OS
and Intel Core i5 CPU.

B. EXPERIMENTS ON SOCIAL NETWORKS: THE
GOWALLA DATASET

GoWalla is a social network where users share their loca-
tions (expressed as GPS coordinates) by checking-in into
the web-site [37]. We downloaded data contained in SNAP
datasets collection [38]. The whole network is undirected
and it consists of 196,591 nodes and 950,327 edges. Each
node represents a user and each edge link two friends into
the network. In order to obtain a dual network we considered
two possible networks starting from these data. The physical
network represents the friendship network. Figure 7 depicts
an extract of the dual network.

Therefore each user of GoWalla is represented by a node,
while an edge represents a friendship relation derived from
data. Since each user is associated with information about
the position, we calculated the distances among the users
expressed as distance among check-ins. In case of multiple
check-ins we considered the average of all the check-ins.
Then we normalised all the distances by considering the max-
imum distance among all the users. Therefore nodes repre-
senting users that may be considered close will be connected
by edges having a weight close to one, while a weight close
to zero will represent user whose positions are not close.
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It should be noted that two users that are geographically near,
they might be not friends and that two friends may be far
geographically. A Densest Common Sub-graph in this case
represents a set of users that are very close geographically
and that are connected among them in a friendship network.
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TABLE 3. Performances of DN-aligner versus MCODE, MCL and LOUVAIN measured on the PPV, SSN and ACC values, with the standard deviation

evaluated by introducing randomly edges in the graph with introducing 5%, 10%, 15% 20% and 25% of variation noise.

% of added edges | Algorithm PPV (+ SD) SSN (£ SD) ACC (£ SD)
DN-Aligner | 0.71 £0.02 0.79 £0.01 0.74 £0.01
5% MCODE 0.61 £0.02 0.58 £0.01 0.60 £ 0.0
MCL 0.70+0.01 0.61 £0.02 0.65 £0.02
LOUVAIN | 0.72+0.01 0.69 +0.01 0.7+0.01
DN-Aligner | 0.71 +£0.02 0.75 +£0.03 0.73 £0.03
10% MCODE 0.60 £ 0.02 0.52+0.02 0.56 +£0.02
MCL 0.68 +0.03 0.60 +0.03 0.64 +0.03
LOUVAIN | 0.71+0.01 0.69 +£0.01 0.70 £0.01
DN-Aligner | 0.70 +£0.01 0.73£0.01 0.73 £0.03
15% MCODE 0.55+0.02 0.5£0.02 0.56 £0.02
MCL 0.67 +£0.03 0.58 £0.03 0.64 +£0.03
LOUVAIN | 0.71+0.01 0.69 +£0.01 0.70 £ 0.01
DN-Aligner | 0.61 +0.01 0.65 +0.01 0.62 +£0.03
20% MCODE 0.51+0.01 0.55+0.01 0.45+£0.02
MCL 0.61 £0.01 0.45+0.01 0.51+0.03
LOUVAIN | 0.61+0.01 0.62 +£0.01 0.57£0.01
DN-Aligner | 0.61 +0.02 0.62 £0.02 0.61 £0.02
25% MCODE 0.52 £0.02 0.45+0.03 0.48 +£0.03
MCL 0.51 £0.02 0.51£0.02 0.51 £0.02
LOUVAIN | 0.54+0.02 0.57 £0.02 0.55+0.01

The analysis of the conceptual network alone may miss all the
information about friendships. The extracted DCS contains
2442 nodes and 149530 edges. This community represents
a set of users that are friends and that are close from a
geographical point of view.

C. EXPERIMENTS ON CO-AUTHORSHIP NETWORK

We evaluate our approach in a dual network represent-
ing authors and the similarity of the activity of their
research. We use the DBLP dataset!. We considered pub-
lished papers in five bioinformatics conferences: BCB, BIBM
ISMB, RECOMB and EMBC. For each conference we
extracted all the information about papers and authors. The
dataset contains 20,563 authors.

The physical network represents co-authorship relations.
Therefore each node represents an author and edge links
two authors that have co-authored a paper. The concep-
tual network models the research interest similarity among
authors, and it is constructed by analysing the similarity of the
paper titles. We considered the Jaccard Index to compute the
research interest similarity. We obtained two graphs having
20,563 nodes, and the physical network has 58536 edges
while the conceptual network has 200530 nodes.

It should be evidenced that a dense sub-graph in the con-
ceptual network represents a set of authors that have large

I The dblp team: dblp computer science bibliography. Monthly snap-
shot release of November 2019. https://dblp.org/xml/release/dblp-2019-11-
01.xml.gz
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similarity research interests that may be not collaborators
considering the co-authorship networks. Therefore the anal-
ysis of the only conceptual network may miss information
about the chain of collaborations evidencing the need for the
use of dual networks. DN-Aligner tool found a DCS with
573 nodes and 95823 edges, Figure 8 depicts an extract of the
found DCS. The DCS contains co-authors that share common
research interests.

We also extracted a dense subgraph only in the concep-
tual network and we derived the induced subgraph in the
co-author network. We obtained a graph with 1073 nodes and
198746 edges. We found that this graph is not connected in
the physical network thus the analysis of only a network is
missing many important information.

D. EXPERIMENTS ON BIOLOGICAL DATA: ANALYSIS

OF PROTEIN INTERACTIONS

We considered data from the STRING database [39]. This
database contains data about proteins and their interactions.
Each node represents a protein, and each edge takes into
account the reliability of the interaction between two proteins
with a value in the interval (0 — 1). Therefore, we obtained

two networks:
« a conceptual network, which represents the strength of

associations among proteins;
« a physical network, which stores the binary interactions
among proteins.
We obtained two networks having 19.354 nodes and
5.879.727 edges. We ran DN-Aligner algorithm, and it
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FIGURE 10. Conceptual network.

resulted in a DCS having 756 nodes and 154.142 edges.
We performed a biological interpretation of the results
by using a functional enrichment algorithm provided by
the DAVID software [40]. Main enriched functions of the

DCS are:

o GO:0006281 - DNA repair

o GO:0006302 - double-strand break repair
o GO:0070182 - DNA polymerase binding
o GO:0003676 - nucleic acid binding
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FIGURE 11. Dual networks representing biological data.

Similarly to social networks, we extracted the densest
graph in the conceptual network, and we verified that the
induced graph in the physical one is not connected.

V. CONCLUSION

In a dual network model a pair of graphs is used
to model complex scenarios in which one of the two
graph is unweighted (physical network) while the other is
edge-weighted (conceptual network). In the present paper
we presented an heuristic algorithm for obtaining the dens-
est connected sub-graph (DCS) having the largest density
in the conceptual network and being also connected in the
physical network. We formalised the problem and we then
mapped the DCS problem into a graph alignment problem.
Finally, we proposed a possible solution and presented a set
of experiments, which demonstrate the effectiveness of our
approach.
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