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ABSTRACT In order to investigate coordinated orbit control problem for large-scale cluster flight spacecraft,
a distributed orbital containment control algorithm is proposed for spacecraft cluster flight system with
multiple leaders. At first, a general distributed orbital containment control strategy for large-scale cluster
spacecraft system is given, so that all followers are driven to the convex hull formed by leaders. Then
the constraints of convergence and convergence rate of cluster spacecraft system on control gains and
information topology are investigated. Specifically, the control gains which achieve maximal convergence
rate are analyzed. Furthermore, two kinds of cell partitions from graph theory are employed to investigate
the influence of information topology on steady states of followers, which provides theoretical basis for
collision avoidance design. Finally, simulation results show that the designed information topology could
meet the requirements of large-scale cluster system, and followers belonging to the same cell have the same
steady states.

INDEX TERMS Large-scale cluster, orbital control, multiple leaders, containment control, graph theory,
topology design.

I. INTRODUCTION
Cluster flight spacecraft has received growing attention in the
recent years [1], [2] for its advantages of greater flexibility,
faster response, higher reliability, lower cost and better
reconfigurability [3]. Contrary to spacecraft formation flight,
cluster flight does not impose strict limits on the geometry
of the cluster, and is hence more suitable for implementation
by multiple micro-spacecraft. Typically, the inter-spacecraft
distances are kept bounded in cluster flight, ranging from
several kilometres to hundreds of kilometres [4]. Large-scale
cluster spacecraft has been deployed by many institutes, such
as ANTS [5], Breakthrough Star Shot project [6], Smart
Dust [7] and so on.

Several technical barriers need to be broken down to pave
the way for large-scale cluster spacecraft to come into being.
Coordinated orbit control of large-scale cluster spacecraft has
been identified as one of the enabling technologies. Although
there has been lots of results on coordinated control problem
for multiple spacecraft systems, we note that most of the
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existing researches consider leaderless [8], [9] or one leader
case [10], [11] where there exists no group objective or only
a single group objective.

However, the presence of multiple leaders are more attrac-
tive for large-scale cluster system, owing to the fact that such
strategies provide attractive solutions to large-scale cluster
problems, both in terms of complexity and computational
load. As a kind of extended consensus problem, the case with
multiple leaders is what we call containment control [12].
The objective of containment control is to guarantee that
all the followers asymptotically converge into the convex
hull formed by the leaders through information interaction
and coordinated control. The containment control problem
received significant research interest due to its various
applications, such as mobile robots [13], unmanned aerial
vehicles(UAVs) [14], underwater vehicles [15] and satellite
formation systems [16], [17] etc.

By now, the researches on distributed containment
control mainly include first-order systems [13], [18], [19]
second-order systems [20]–[21], linear systems [13],
[18], [19], nonlinear systems [16], [20], [23], [24] homo-
geneous and heterogeneous multi-agent systems [26].
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In view of information topology, fixed network topol-
ogy [16], [20], [23], [24] and switching network topol-
ogy [19], undirected graph [21] and directed graph [18], [24]
are considered. In many researches, containment control is
combined with other novel control algorithms, such as finite-
time control [15], [16], [23] adaptive control [15], [17] neural
network [17], event-triggered control [27], etc. In addition,
other problems such as time delay [12], [22] model
uncertainties [16], [17], [24] external disturbances [16], [17]
are also discussed.

Recently, distributed containment control strategies have
gained increased attention in spacecraft control community.
In [25], an attitude containment control algorithm was
proposed in the case of undirected angle information
topology and directed angular velocity information topology,
and the case of unavailable relative angle velocity was
investigated. Under directed topology, [16] investigated
distributed finite-time configuration containment control
problem for satellite formation with model uncertainties and
perturbations. Moreover, a continuous containment control
protocol was proposed for formation satellites modeled by
EL equations in [17]. Based on the approximation ability of
neural network(NN) and adaptive gain techniques, the model
uncertainties and disturbances were compensated for.

Although various novel containment control strategies
have been investigated for satellite formation, which enables
formation members to converge to the convex hull formed
by leaders with a faster convergence rate. Little attention has
been paid to the relationship between system performance
and information topology design of large-scale cluster
system.

On the basis of ensuring wireless energy and infor-
mation transmission during cluster flight, members must
satisfy certain distance constraints to avoid collisions. [28]
employed the potential functions methodology to realize
collision-avoidance and communication maintaining. How-
ever, control force with this method will become larger
when the members collide or lose the ability to interact
with each other, which is not suitable for large-scale cluster
micro-satellite system with limited thrust.

This paper studies orbital containment control problem of
large-scale cluster spacecraft from the perspective of cluster
information topology. The effects of information topology
design on convergence, convergence rate and steady state
distribution of eachmember are analyzed, providing guidance
for topology design under various mission requirements.
Initially, a general distributed orbital containment control
algorithm is proposed to drive followers asymptotically
enter into convex full formed by leaders. Furthermore,
the influence of information topology and control gain
coefficients on system convergence and convergence rate
under undirected graph and directed graph has been analyzed
respectively. Besides, state distribution of large-scale cluster
spacecraft is analyzed based on information topology, which
provides a theoretical basis for collision avoidance design of

cluster spacecraft. At last, numerical simulation is conducted
to verify the influence of information topology design
on control performance and collision avoidance of cluster
system.

The remainder of this paper is organized as follows:
Missions scenarios, algebraic graph theory, orbit dynamics
and preliminaries of containment control are briefly given
in Section 2. In Section 3, orbital containment control
algorithm is proposed for large-scale cluster spacecraft. Then
the influence of control gain coefficients and information
topology on convergence and convergence rate is derived.
State distribution analysis of large-scale cluster spacecraft
based on information topology structure design is given
in Section 4, providing theoretical foundation for collision
avoidance. Numerical simulations to verify the effectiveness
of the proposed control algorithm and concluding comments
are completed in Section 5 and Section 6, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION
In this section, some problem descriptions about mission
scenarios are introduced, and then preliminary knowledge
about graph theory and containment control model are
given.

A. MISSION SCENARIOS
Three typical large-scale cluster spacecraft mission scenarios
which are closely related to orbit containment control are
firstly given and analyzed as follows.

1) LEADER-FOLLOWER COORDINATED ORBITAL CONTROL
FOR LARGE-SCALE CLUSTER MICRO-SATELLITE
Large-scale cluster satellite system with leader-follower
architecture forms a completed and reliable deep space
exploration system [5]. Consists of hundreds of satellites,
cluster system need to avoid collisions with asteroids and
other objects on orbit. Leaders will autonomously plan a safe
area when detect dangerous targets, then cluster members
will enter into the safe area through information interaction
and coordinated control, while they generally do not require
precise final position.

2) COORDINATED ORBITAL CONTROL FOR FRACTIONATED
SPACECRAFT
Fractionated spacecraft distributes the functional capabilities
of a monolithic spacecraft into multiple free-flying, wire-
lessly linking modules (service modules and different pay-
loads) [29]. One of the main challenges of this architecture
is cluster flight, keeping the various modules within bounded
configurations. The fractionated spacecraft generally do not
require precise relative orbit and attitude control, as long as
the relative distance is within the range of communication
and the relative attitude control enables pointing of power
transmission links [30].
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3) COORDINATED ORBITAL CONTROL FOR GRANULAR
SPACECRAFT
Granular spacecraft are complex systems composed of
a spatially disordered distribution of a large number of
elements, for instance a cloud of grains in orbit [31].
An example of application is a large ultralight optical
system, which deploys thousands of high area-to-mass ratio
spacecraft(which weigh less than 0.1kg) in orbit [32].

Several stages of coordinated orbit control are needed
to achieve normal operation of optical system [33].
In coarse control process, satellites are driven into the
two-dimensional plane without strict requirements for final
position.

There is no precise requirement for final state of sys-
tem members in aforementioned cluster spacecraft mis-
sions. Cluster members are controlled into the target
area(constrained by range of measurement, communication
and power transmission links, or just configuration require-
ment of large systems and safe area of obstacle avoidance).
Distributed orbital containment control strategy is one of the
effective control methods to solve coordinated orbit problems
of spacecraft cluster flight.

A common objective for the above large-scale cluster
spacecraft mission scenarios is to form a target area
using (virtual) leaders, and then control followers into the
target area through inter-spacecraft information interaction
and coordinated control. Following we present the basic
theoretical preliminaries of information interaction and
containment control.

B. GRAPH THEORY
Graph theory is introduced as an useful mathematical tool to
describe inter-spacecraft information interaction, providing
theoretical basis for performance analysis of system.

We consider a spacecraft cluster system consisting n
followers and m (virtual) leaders. The followers set and
the leaders set are denoted by F = {1, . . . , n} and L =
{n+ 1, . . . n+ m}, respectively.
Information interaction topology of cluster system can

be modeled by a digraph G = (V ,E) with node set
V (G) = {1, . . . ,N } denote spacecraft with dynamics or
kinematics characteristics and edge set E(G) ⊆ V (G)×V (G)
denote inter-spacecraft information interaction. Each edge
(i, j) ∈ E(G) means spacecraft j can access state information
from spacecraft i, and spacecraft i is called a neighbor of
spacecraft j. The neighbor set Ni = {j ∈ V (G)|(j, i) ∈ E(G)}
of spacecraft i is a collection of all the spacecraft from which
spacecraft i can access state information. If (i, j) ∈ E(G) ⇔
(j, i) ∈ E(G), then it is called undigraph, and bidirectional
edge (i, j) indicates that spacecraft i and j can access state
information from each other.

Two matrices are frequently used to represent interaction
topology: adjacency matrix A = [aij] ∈ RN×N with aij ≥ 0,
aij > 0 if (i, j) ∈ E(G). In this paper, we assume that
self-edges are not allowed, i.e. aii = 0. And the Laplacian

matrix L = [lij] ∈ RN×N with lii =
∑

(i,j)∈E(G) aij, lij = −aij,
where i 6= j.

The system Laplacian matrix L can also be written as block
matrix

L =
[
LF LFL
0 0

]
where LF is n × n submatrix composed by rows and
columns in which the followers of L are located, and
it represents information interaction relationship among
followers. GF denotes followers and information interaction
between followers. LFL is n × m submatrix composed by
rows and columns in which the followers and leaders of L are
respectively located, and it represents the information flow
from leaders to followers.

Several graph theory tools are given to provide theoretical
basis for information topology design of cluster system.
Definition 1 [34]: For directed graph G, a k partition π of

V (G) is composed of k cells C1, . . . ,Ck with Ci ∩ Cj = 8,
(i, j = 1, . . . k, i 6= j) and ∪ki=1Ci = V (G). Cj is a neighbor
of Ci (i, j = 1, . . . k, i 6= j) if there exist i′ ∈ Ci and j′ ∈ Cj
such that j′ is a neighbor of i′.
Definition 2 [35]: Suppose that π = {C1, . . . ,Ck} is a

k-partition of V (G), if any two distinct vertices in Ci have
the same number of neighbors in Cj for all j 6= i, then π
is called a π1 partition. In particular, π1

= {H1, . . . ,Hm}
denotes the π1 cell partition containing Hi (i = 1, . . . ,m) as
m cells of π1.
Definition 3 [36]: Suppose π = {C1, . . . ,Ck} is

a k-partition of V (G), if for each vertex in Ci, it has
the same number of neighbors in all neighbor cells of
Ci (i = 1, . . . ,m), then π is called a π2 partition.

C. CONTAINMENT CONTROL MODEL
The following definitions, assumptions and lemmas related
to containment control strategy are needed to derive the main
results of this paper.

1) CONVEX FULL
There may exist multiple leaders in large-scale cluster
spacecraft missions, and all followers are required to enter
into a target area instead of reaching a certain state. Several
vertices on the boundary of the target area are selected so
that the target area can be approximately replaced by convex
polygons which are formed by these vertices [36]. Generally,
the more vertices are selected, the higher the approximate
accuracy is.

Suppose that the target area (moving or stationary) can be
approximated by a convex hull formed bym vertices. Treating
these m vertices as (virtual)leaders.
The definition of convex hull is given as follows.
Definition 4 [24]: Let C be a set in a real vector space

V ⊆ Rp. The set C is convex if, for any x and y in C, the point
(1− t) x + ty ∈ C for any t ∈ [0, 1]. The convex hull for a
set of points X = {x1, . . . , xm} in V is the minimal convex
set containing all points in X . We use CO(X ) to denote the

VOLUME 8, 2020 164639



S. Zhang et al.: Orbital Containment Control Algorithm and Complex Information Topology Design

convex hull of X . In particular, CO(X ) = {
∑m

i=1 αixi|xi ∈
X , αi ∈ R, αi ≥ 0,

∑m
i=1 αi = 1}

Remark 1: Vertices information of target area could be
provided by earth station or be autonomously generated by
cluster spacecraft which have strong sense, communication
and information processing capability. Once the convex hull
which approximates the target area is selected, vertices
information of the convex hull can be seen as virtual leaders
of the cluster system, while cluster members are regarded
as followers. Leaders form a static or dynamic convex
full, and followers are driven to the convex hull formed
by leaders through inter-spacecraft information interaction
and coordinated control. Thus coordinated orbit control
problem of large-scale cluster spacecraft is transformed into
orbit containment control problem of spacecraft cluster with
multiple leaders.

2) DISTRIBUTED ORBITAL CONTAINMENT CONTROL
FORMULATION
To simplify controller design and analysis, we assume that
for any i ∈ L, ṙi = 0, which means the target area formed
by leaders is stationary relative to the reference frame. That
is, the position of leaders remains unchanged during control
process. So orbit motion of leaders in reference frame could
be written as r̈i = 0, i ∈ L.

Orbit dynamics of followers i ∈ F with respect to the
LVLH coordinate frame can be written as

ẍi − 2ωẏi − 3ω2xi = uxi
ÿi + 2ωẋi = uyi
z̈i + ω2zi = uzi

(i = 1, . . . , n) (1)

where ri =
[
xi yi zi

]T
, ṙi =

[
ẋi ẏi żi

]T , r̈i = [
ẍi ÿi z̈i

]T
denote the relative position, relative velocity and accelerated
velocity of follower i to the reference spacecraft, respectively.
ui =

[
uxi uyi uzi

]T denotes the control input.
Our aim in this paper is to propose appropriate distributed

control algorithm for the followers (i.e., those indexed from
1 to n), so that in an asymptotic manner, they can travel into
the convex hull formed by the leaders(i.e., those spacecraft
indexed from n+1 to n+m). We will also analyze under what
conditions the containment behaviors can be guaranteed and
perform rigorous convergence and convergence rate analysis
accordingly. On this basis, the influence of information
topology design on steady state distribution of followers is
analyzed, which provides a theoretical reference for collision
avoidance of cluster members.

In this paper, there is no information interaction between
leaders. The trajectory of leaders is not affected by other
members, while followers need generate control instructions
with neighbors’ information. In order to ensure that all the
followers enter the convex hull formed by leaders, it must
be ensured that the motion of any follower can be affected
by leaders directly or indirectly. Otherwise, there will exist
followers whose motion is not affected by any leader, nor will
converge to the convex hull formed by the leaders. Thus the

information topology of cluster needs to meet the following
conditions.
Assumption 1 [21]: Suppose that for each follower i, there

exists at least one leader j that has a path to the follower i.
Lemma 1 [21]: If Assumption 1 holds, and the information

interaction between followers are bidirectional, then LF is
symmetric positive definite matrix, each entry of −L−1F LFL
is nonnegative and each row sum of −L−1F LFL is equal to 1.

Consensus control protocol for followers could be written
in the following form

ui = f (rF , ṙF , rL , ṙL) , i ∈ F

where

rF =
[
rT1 , . . . , r

T
n

]T
, ṙF =

[
ṙT1 , . . . , ṙ

T
n

]T
,

rL =
[
rTn+1, . . . , r

T
n+m

]T
, ṙL =

[
ṙTn+1, . . . , ṙ

T
n+m

]T
.

According to Definition 4 and Lemma 1, the convex
weighted average of the leader’s position and velocity is

rd = −
(
L−1F LFL ⊗ I3

)
rL

ṙd = −
(
L−1F LFL ⊗ I3

)
ṙL

rd and ṙd respectively represent the desired position and
desired velocity of followers.
Furthermore, the velocity of leaders relative to reference

frame is ṙL = 0, that is ṙd = 0. Then the desired position and
desired velocity of followers could be also written as

rd = −
(
L−1F LFL ⊗ I3

)
rL

ṙd = 0

Control force ui is used to solve orbit containment
control problem with multiple leader-follower structure. The
position of followers(from 1 to n) asymptotically enter into
the convex hull formed by leaders (from n + 1 to m),
and velocity converge to 0 from any initial state. That is
lim
t→∞
‖ri (t)− rd (t)‖ = 0, lim

t→∞
ṙi = 0, ∀i ∈ F . Then we

say it has achieved orbital containment control of large-scale
cluster of spacecraft.

III. DISTRIBUTED ORBITAL CONTAINMENT CONTROL
BASED ON INFORMATION TOPOLOGY DESIGN
In this section, the distributed orbital containment control
problem of large-scale cluster spacecraft based on topology
is investigated. The containment control problem will be
investigated in two aspects, respectively: 1) Parameter
design of orbital containment controller, 2) Convergence and
convergence rate analysis. The study will provide a general
orbital containment control method for large-scale cluster
flight spacecraft and theoretical reference for how to obtain
a satisfactory convergence rate using less control force and
simpler information topology design.
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A. ORBITAL CONTAINMENT CONTRL STRUCTURE DESIGN
AND CONVERGENCE ANALYSIS
In order to realize orbit containment control of large-scale
cluster spacecraft, the members are required to track the
desired position rd and desired velocity ṙd , meanwhile it
maintains a certain formation configuration during control
process. Based on consensus theory and Ref. [21], a general
orbital containment control algorithm is given for followers
of large-scale cluster, so that followers can exponentially
converge to the stationary convex hull formed by leaders
under complex topology.

1) DISTRIBUTED ORBITAL CONTAINMENT CONTROLLER
In order to analyse the influence of information topology
on system performance, a general distributed orbital contain-
ment control method based on local information interaction
is given: each spacecraft generates its own control protocol
based on its own absolute state information and relative state
information of its neighbours.

uxi = −3ω
2xi−2ωẏi−αẋi−

∑
j∈Ni

aij[γ0(xi−xj)+ γ1(ẋi − ẋj)]

uyi = 2ωẋi − αẏi −
∑
j∈Ni

aij[γ0(yi − yj)+ γ1(ẏi − ẏj)]

uzi = ω
2zi − αżi −

∑
j∈Ni

aij[γ0(zi − zj)+ γ1(żi − żj)] (2)

aij is the (i, j) entry of the adjacency matrix A which
associated with the graph G. If the ith spacecraft can
access state information from the jth spacecraft, aij = 1,
else aij = 0. Control gain coefficients α, γ0, γ1 respectively
represent absolute velocity, relative position and relative
velocity feedback term weight.
Remark 2: Distributed orbital containment controller (2)

mainly consists of two parts: absolute motion control term
and relative motion control term. The controller has a very
clear structure. [−3ω2xi − 2ωẏi − αẋi, 2ωẋi − αẏi, ω2zi−
αżi]T is absolute motion control term, and the absolute
motion represents the state of followers relative to the
reference frame.−

∑
j∈Ni

aij[γ0(ri− rj)+γ1(ṙi− ṙj)] is relative

motion control feedback term. Relative motion control is
used to control relative position and relative velocity between
cluster spacecraft, which makes the cluster composed of
multiple independent spacecraft more integrated. Where
relative position control feedback term −

∑
j∈Ni

aijγ0(ri − rj)

is necessary in containment controller design for the needs of
driving followers into the convex hull formed by leaders, that
is γ0 > 0. Relative velocity control term −

∑
j∈Ni

aijγ1(ṙi − ṙj)

is used to drive relative velocity between neighbours to the
desired state. Relative motion control term could improve
control performance and reliability of the whole cluster
system.

Remark 3: The distributed characteristics of large-scale
cluster spacecraft orbital containment control strategy (2)
are mainly reflected from the following aspects: 1) For the
ith follower, ui is composed of its own and neighbors’
information. 2) Neighbors’ relative position and velocity
information can be obtained by measuring elements on
satellites. 3) Neighbors’ controller information can be
obtained by communication equipments among satellites.
Remark 4: For large-scale cluster spacecraft system, the

control input ui are produced by thrusters. In practical
engineering, it is necessary to consider the output saturation
of the thrusters, which is discussed in numerical simulations.

According to controller (2), the motion of each follower is
affected by its neighbors, so control performance of the whole
cluster system is closely related to the cluster information
topology.

Since the neighbor spacecraft set of cluster members is
not limited in controller (2), a general cluster information
topology is considered instead of a specific ring or tree
structure. Thus, cluster information topology is a quantity
that can be designed according to the requirements of cluster
control performance.

2) CONVERGENCE ANALYSIS
Theorem 1 and Theorem 2 will give convergence analysis
for orbital containment control of large-scale cluster system
without considering external disturbances, model uncertain-
ties, time delay, etc.

Substituting controller (2) into dynamics equation (1),
it can be obtained that[
ṙF
r̈F

]
=

[
0 In ⊗ I3

−γ0LF ⊗ I3 − (αIn + γ1LF )⊗ I3

] [
rF
ṙF

]
+

[
0 0

−γ0LFL ⊗ I3 −γ1LFL ⊗ I3

] [
rL
ṙL

]
(3)

where

0 =

[
0 In ⊗ I3

−γ0LF ⊗ I3 − (αIn + γ1LF )⊗ I3

]
(4)

Let the initial position and initial velocity of followers are
rF (0) and ṙF (0) respectively, then integrating (3), we can get[
rF
ṙF

]
= e0t

[
rF (0)
ṙF (0)

]
+

∫ t

0
e0(t−τ )dτ

[
0 0

−γ0LFL ⊗ I3 −γ1LFL ⊗ I3

] [
rL
ṙL

]
= e0t

[
rF (0)
ṙF (0)

]
+ (e0t0−1 − 0−1)

[
0

(−γ0LFL ⊗ I3) rL

]
(5)

Theorem 1: If Assumption 1 holds, then followers can
be driven into convex full formed by leaders asymptotically
using orbit containment controller (2) if and only if all
eigenvalues of 0 have negative real parts.
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Proof:

a: SUFFICIENCY
Since all eigenvalues of 0 have negative real parts, then
e0t → 0 , it can be obtained that[

rF (t)
ṙF (t)

]
→−0−1

[
0

− (γ0LFL ⊗ I3) rL

]
(6)

It can be calculated that

0−1

=

[
−

(
α
γ0
L−1F +

γ1
γ0
In
)
⊗ I3 −(γ0LF ⊗ I3)−1

In ⊗ I3 0

]
(7)

−0−1
[

0
− (γ0LFL ⊗ I3) rL

]
=

[
−

(
L−1F LFL ⊗ I3

)
rL

0

]
(8)

Furthermore

lim
t→∞

[
rF (t)
ṙF (t)

]
→

[
−

(
L−1F LFL ⊗ I3

)
rL

0

]
(9)

That is, followers enter the convex hull formed by
the leaders asymptotically. And the velocity of followers
converges to 0 relative to reference frame.

b: NECESSITY
If there exists an eigenvalue λ of 0, satisfies Re (λ) ≥ 0, then
e0t90. Therefore, it can not be guaranteed that for any initial

value rF (0) and ṙF (0),
[
rF (t)
ṙF (t)

]
→

[
−

(
L−1F LFL ⊗ I3

)
rL

0

]
holds on. This contradicts controller (2) achieving contain-
ment control asymptotically.

Now Theorem 1 has been proved.
It will be proved in Theorem 2 that all followers

can converge to the convex hull formed by leaders with
exponential convergence rate.

To facilitate convergence analysis, state variables are
introduced

η = ξF + QξL (10)

where ξF =
[
rTF ṙTF

]T
, ξL =

[
rTL ṙTL

]T , Q =

0−1
[

0 0
−γ0LFL ⊗ I3 γ1LFL ⊗ I3

]
. Then it can be derived

that η̇ = 0η.
Theorem 2: If Assumption 1 holds, and all eigenvalues of

state matrix0 have negative real parts. Then under the control
of orbital containment control algorithm (2), all followers
of cluster system will enter into the convex full formed
by leaders with exponential convergence rate. Moreover
lim
t→∞

rF →−L−1F LFLrL , lim
t→∞

ṙF → 0.
Proof: Consider the following Lyapunov candidate

V =
1
2
η2 (11)

Taking the derivative of Eq.(11)

V̇ = ηη̇

= 0η2

=
1
2
ηT
(
0 + 0T

)
η (12)

All eigenvalues of0 have negative real parts, themaximum
eigenvalue is denoted as λmax (0) < 0, then we can obtain

V̇ = ηT0η ≤ λmax (0) ‖η‖
2 < 0 (13)

It can be seen that V̇ ≤ 0, the cluster system can
asymptotically converge to the target area.

Then the Eq.(13) can be rewritten as

dV
dt
− 2λmax (0)V ≤ 0 (14)

Integrating equation (14) and we can obtain

V (η (t)) ≤ V
(
η0
)
e2λmax(0)t (15)

According to (11), we can obtain

‖η (t)‖ ≤
∥∥η0∥∥ eλmax(0)t (16)

Because λmax (0) < 0, we can get eλmax(0)t → 0. The
system satisfies the conditions of exponential convergence,
and lim

t→∞
η (t)→ 0.

Then lim
t→∞

rF = −
(
L−1F LFL ⊗ I3

)
rL , lim

t→∞
ṙF = 0.

In a word, all followers will exponentially converge to the
convex hull formed by leaders. As can be seen, the orbital
containment control algorithm (2) can make the position and
velocity of the system decay exponentially, and exponential
convergence rate is a ≥ −λmax (0).

Now Theorem 2 has been proved.

B. CONTROL GAIN COEFFICIENT DESIGN
1) CONVERGENCE CONSTRAINTS
It can be concluded from Theorem 1 that followers can be
driven into convex full formed by leaders if and only if
all eigenvalues of 0 have negative real parts. Eigenvalue
distribution of 0 depends on information topology G of
cluster system and control gain coefficients α, γ0, γ1 . As can
be seen, convergence, convergence rate of cluster system are
closely related with information topology and control gain
coefficients. Whereas eigenvalues structure of the Laplacian
matrix is actually an algebraic representation of cluster
system’s information topology structure. In the following
we will analyze the influence of information topology
structure and control gain coefficients on convergence
and convergence rate, providing a way to obtain better
control performance with less communication/measurement
pressure.
Theorem 3: If Assumption 1 holds, then under the action

of orbital containment controller (2), followers can be driven
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into convex full formed by leaders asymptotically if and only
if

α > max
i
(piγ1)

0 > max

(
γ 2
0 q

2
i

(α − piγ1)2
−

γ0γ1q2i
α − piγ1

+ piγ0

)
(17)

where µi (i = 1, . . . , n) are eigenvalues of LF . pi =
Re {µi}, qi = Im {µi}.

Proof: Let eigenvalues of 0 are λi (i = 1, . . . , n), then
polynomial fµi (λi) = (λi)2+(α−γ1µi)λi−γ0µi. Eigenvalues
of −LF have negative real numbers according to Lemma 1,
suppose that 0 > µ1 ≥ µ2 ≥ . . . ≥ µn.

According to Lemma 2 and Theorem 1 in Ref.[37], we can
see that every root of fµi (λi) lies in the open left-half
complex plane if and only if every root of the real coefficient
polynomial fµi (λi) fµ̄i (λi) does, since fµi

(
λ̄0
)
= fµ̄i (λ0) for

any complex number λ0. Let ai = α− piγ1,bi = −piγ0,ci =
qiγ1 and di = qiγ0 Then we can get

fµi (λi) fµ̄i (λi) = λ
4
i + a1iλ

3
i + a2iλ

2
i + a3iλi + a4i

where a1i = 2ai, a2i = a2i + 2bi + c2i , a3i = 2aibi +
2cidi, a4i = b2i + d

2
i .

According to Hurwitz stability criteria, all the eigenvalues
have negative real parts if and only if

11i = 2ai > 0, 12i =

∣∣∣∣ a1i 1
a3i a2i

∣∣∣∣ > 0

13i =

∣∣∣∣∣∣
a1i 1 0
a3i a2i a1i
0 a4i a3i

∣∣∣∣∣∣ > 0, 14i =

(
b2i + d

2
i

)
13i > 0

They can be rewritten as

ai > 0, bi >
cidi
ai
− a2i − c

2
i

bi >
d2i
a2i
−
cidi
ai
, b2i + d

2
i 6= 0

By further calculation, (17) can be derived.
Thus we can obtain that all eigenvalues of 0 have negative

real parts. Then according to Theorem 1, we can conclude
that followers asymptotically enter the convex hull formed
by the leaders if and only if (17) holds.

The proof has been completed.
Collary 1. If Assumption 1 holds, the flow of information

from leaders to followers is unidirectional and information
interaction between followers is bidirectional. Thus eigenval-
ues of −LF are all negative real numbers. Then, under the
action of control protocol (2), followers can be driven into
convex full formed by leaders asymptotically if and only if

α > max
i
(µiγ1)

γ0 > 0

Collary 2: If spacecraft i can not measure relative velocity
information, that is γ1 = 0. Then the sufficient and necessary
condition for controller (2) to realize orbital containment

control of cluster spacecraft is α > maxi

√
γ0q2i
−pi

, γ0 > 0. If
spacecraft i can not measure absolute velocity information,
that is α = 0. Then the sufficient and necessary condition for
controller (2) to realize orbital containment control of cluster
spacecraft is γ0 > 0, γ1 > 0, γ0q2i + piγ 2

1

(
p2i + q

2
i

)
< 0.

(i = 1, 2, · · · , n)

2) CONVERGENCE RATE CONSTRAINT
In this subsection, constraints of asymptotic convergence
and convergence rate on information links and control gain
coefficients under undirected topology are given. There is
no information interaction between leaders, and the flow of
information from leaders to followers is unidirectional while
the flow of information among followers is bidirectional. The
control gain coefficients which achievemaximal convergence
rate are obtained.

It can be calculated that eigenvalues of 0 are

λi1 =
−(α − γ1µi)+

√
(α − γ1µi)2 + 4γ0µi
2

λi2 =
−(α − γ1µi)−

√
(α − γ1µi)2 + 4γ0µi
2

(i = 1, . . . , n)

(18)

Let a be maximum convergence rate of cluster system, then
it can be obtained that

a = −max{Reλij|i = 1, . . . , n; j = 1, 2} (19)

Because Re{λi1} ≥ Re{λi2}, the maximum convergence
rate can be written as

a = −max{Reλi1|i = 1, . . . , n} (20)

The second inequality in Theorem 3 shows that γ0 6= 0.
Furthermore, because pi = Re(µi) < 0, according to the first
inequality in Theorem 3, we can let either γ1 or α be 0 and
the other is positive. Therefore, controller (2) must contain
relative position information of spacecraft, while relative
velocity between neighbor spacecraft and absolute velocity
of spacecraft may not be obtained due to failure of sensors or
limited communication bandwidth.

In the following, two different cases are investigated
respectively:

1) Absence of absolute velocity feedback. If spacecraft i
can not measure absolute velocity information of itself, that
is α = 0.
2) Absence of relative velocity feedback. If spacecraft i can

not measure relative velocity information of its neighbors,
there does not exist relative velocity feedback term in
controller (2), that is γ1 = 0. The influence of control gain
coefficients on convergence rate under undirected topology
can be obtained as Table 1.

According to Eqs. (18)-(20), convergence rate of cluster
system under undirected topology is related to minimum
nonzero eigenvalue −µ1 of submatrix LF corresponding
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TABLE 1. The influence of contrl gain coefficients on convergence rate under undirected topology.

to followers in system Laplacian matrix. The minimum
nonzero eigenvalue −µ1 of submatrix represents algebraic
connectivity of the subgraph. The bigger −µ1 is, the faster
systemmaximal convergence rate is. Therefore, theminimum
nonzero eigenvalue−µ1 can be increased (at least will not be
decreased) by adding information links between spacecraft.

According to Wely Theorem [38], it can be proved that
edge addition method can increase the minimum eigenvalue
of submatrix. Information topology of spacecraft cluster
system still needs to satisfy Assumption 1 after adding
edges.
Remark 5: There are two ways to add edges, one is to

add bidirectional edges between followers, the other is to add
directed edges from leaders to followers. It has been proved
that the convergence rate of new system after adding edges
is faster than original system[21]. Then for fixed contol gain
coefficients α, γ0, γ1, adding bidirectional information inter-
action between followers or directed information interaction
from leaders to followers can improvemaximum convergence
rate of cluster system.
Remark 6: It can be seen that increasing the weight of

information links can also improvemaximal convergence rate
of large-scale cluster spacecraft system. The Laplacianmatrix
obtained by increasing the weight on an edge can also be seen
as it is obtained from original Laplacian matrix plus a positive
semi-definite matrix.
Remark 7: Usually, to keep the control force as small

as possible, a smaller relative position feedback term γ0 is
selected. While according to Table 1, γ0 cannot be too small,
otherwise it will affect convergence rate of cluster system.

Although adding information links can increase the
maximum convergence rate of cluster system, meanwhile
it also increases the communication pressure of cluster
system and wastes limited measurement, communication and
computing resources on board. Information interaction may

also be subject to external interference in complex space
environment. We need to design appropriate information
interaction topology to balance system convergence rate and
communication pressure.

When information links between followers are directed,
GF is directed graph, then LF has eigenvalues with non-zero
imaginary parts. In general, it is difficult to obtain a regular
result on convergence rate using eigenvalues of 0 under
directed topology.

IV. COLLISION AVOIDANCE BASED ON INFORMATION
TOPOLOGY DESIGN
For large-scale cluster flight missions, one of the problems to
be considered is collision avoidance among cluster members.
If two satellites appear in a certain position at the same time,
a collision will occur and the satellites will be disabled. In
order to ensure normal operation of the satellites, collision
avoidance must be considered in coordinated orbit control of
cluster satellites.

It indicates in [34] that the steady state of each follower
is a convex combination of states of the leaders that can
reach, and the combination coefficient is a quantity related
to the system Laplace matrix. It can be concluded that the
distribution of followers in the target region is determined
by system information topology (including the weights that
assigned to edges).

Note that the interactions between spacecraft need not be
bidirectional in practice due to communication bandwidth
or sensor capability. Constrained by inter-spacecraft distance
and performance of sensors, only parts of followers can
receive information from leaders directly.

In this section, approaches from graph theory to investigate
influence of information topology on the distribution of
followers are presented to provide a reference for collision
avoidance.

164644 VOLUME 8, 2020



S. Zhang et al.: Orbital Containment Control Algorithm and Complex Information Topology Design

A. THE CONSTRAINT OF LEADER REACHABLE SET ON
STEADY STATE OF FOLLOWERS
According to the definition of reachable set [39], the follower
i is reachable from leader n+j, then there exists a directed path
from n+j to i, namely, themotion of follower iwill be affected
directly or indirectly by leader n + j. If there doesn’t exist
directed path from n+j to i, themotion of iwill not be affected
by leader n+ j, thus the steady state of follower i is not related
to n+ j. If follower i is reachable from multiple leaders at the
same time, the motion of i is affected by multiple leaders, and
its stable state is correspondingly determined by the states of
these leaders together.

Denote C = −L−1F LFL as coefficient matrix of steady
state of followers with respect to the state of leaders, where

0 ≤ cij ≤ 1,
m∑
j=1

cij = 1. It reflects the relationship between

system information topology and steady state of followers.
If and only if follower i is reachable from multiple leaders
including n + j,0 < cij < 1. If follower i is only reachable
from leader n+ j, cij = 1. If follower i is not reachable from
leader n+ j,cij = 0.

Let Rj (j = 1, 2, . . .m) is reachable set of leader n + j,
H j = Rj\ ∪j6=i Ri is a set of all followers which is
only reachable from leader n + j.Y j = F\Rj represents
unreachable set from leader n + j. Set P j = Rj\H j, and
H̃ j = H j\ {n+ j}.
Then LF and LFL can be written in the following block

matrix forms

LF =

 LH̃j 0 0
LPjH̃ LPj LPjYj
0 0 LYj

 , LFL = [δ1 . . . δm] (21)

where δj =
[
LTH ,n+j L

T
Pj,n+j 0

]T
.

Theorem 4: Assume all leaders have converged to the
steady states rdn+1, r

d
n+2, . . . , r

d
n+m Then under the control of

orbital containment control algorithm (2), all followers of
cluster system (1) will asymptotically converge to the steady

state rdi =
m∑
j=1

cijrdn+j, i ∈ F .

Proof: Since

LH̃1H̃j + LH̃ ,n+j = 0 (22)

we have

L−1
H̃j
LH̃ ,n+j = −1H̃j (23)

we can obtain that

−L−1F δj = −

 L−1
H̃j
LH̃j,n+j

−L−1Pj LPjH̃j,n+j + L
−1
Pj LPj,n+j

0


=

 1H̃j
L−1Pj

(
LPjH̃j1H̃j + LPj,n+j

)
0

 (24)

TABLE 2. Orbital elements of reference spacecraft.

Further, each entry of L−1Pj

(
LPjH̃j1H̃j + LPj,n+j

)
is positive.

Otherwise LPjH̃j1H̃j + LPj,n+j = 0, which means P j doesn’t
have neighbors in H j, which contradicts to the definition
of P j.
Now Theorem 4 has been proved.

B. THE CONSTRAINT OF GRAPH DIFFERENTIATION
ON FOLLOWERS’ DISTRIBUTION
In large-scale cluster flying spacecraft mission, each member
obtains the information of neighbours by communication
or relative state measurement. Due to the difference in the
performance of relative measurement sensors and communi-
cation equipment, and relative distance between members,
neighbour spacecraft sets which each cluster member can
be sensitive to or communicate with are different. However,
there may exist some commonalities among cluster mem-
bers in information interaction, according to which cluster
members can be divided into several subsets, and dynamic
behaviour of cluster members belonging to the same subset
may also have commonalities.
Although steady state of followers can be roughly esti-

mated based on leader reachable set, collision avoidance
design needs further analysis on state of followers. The steady
state of followers can be described by using π1 partition
and π2 partition of cluster information topology. These two
graph theory tools can divide the cluster member spacecraft
into several subsets, and the number of neighbours in other
subsets of cluster members belonging to the same subset has
a certain commonality, providing theoretical basis for system
information topology of collision avoidance.

At first, we prove that the satellites in the same cell
partition belonging to π1

{H1,...,Hm}
partition have same steady

state.
Theorem 5: For orbital containment control algorithm

(2) of large-scale cluster system which satisfies rdF =

−L−1F LFLrL if system information topology G has a cell
partition π1

{H1,...,Hm}
= {C1, . . . ,Ck}, then all the followers

that belong to the same cell C i (i = 1, . . . k) have the same
steady state.

Proof: Suppose π1
{H1,...,Hm}

= {C1, . . . ,Ck} is a cell
partition of V (G) with C1 = H1, . . . ,Cm = Hm, then
according to the cell partition of V (G) by ordering the
vertices appropriately, the graph Laplacian can be written in
the following form

L =



LC1C1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · LCmCm 0 · · · 0

LCm+1C1 · · · LCm+1Cm LCm+1Cm+1 · · · LCm+1Ck
...

. . .
...

...
. . .

...
LCkC1 · · · LCkCm LCkCm+1 · · · LCkCk
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TABLE 3. Initial state of followers.

FIGURE 1. Initial position of followers and target area.

The block matrix at the lower left corner and the
lower right corner are denoted by A,B, respectively.
Since Lrd

F
= 0,ArdH + Br

d
F̄
= 0 is obtained. Then by

Lemma 2 in [34], rd
F̄
= −B−1Ard

H
. Assuming that each vertex

in Ci has sij number of neighbors in C j (i, j = 1, . . . k, i 6= k),
then, according to the definition of π1 partition each row
sum of the submatrix LCiCj (i, j = 1, . . . , k, i 6= j) equals sij.

Combining with Corollary 1 in [34], it is given that

ArdH =

−sm+1,11rm+1...

−sk,11rk

 rdn+1
+ · · · +

−sm+1,m1rm+1...

−sk,m1rk

 rdn+m
where ri is the cardinality of i C i (i=m+1, . . . ,k)

It follows that

rd
F̄
= B−1

 sm+1,11rm+1...

sk,11rk

 rdn+1
+ · · · + B−1

 sm+1,m1rm+1...

sk,m1rk

 rdn+m
By using Lemma 3 in [34], it can be concluded that all the
followers that belong to the same cell Ci(i= 1, . . . ,k) have
the same steady state.

Now Theorem 5 has been proved.
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FIGURE 2. System information topology.

Then, another cell partition, π2
{H1,...,Hm}

partition is pro-
vided to prove that satellites in the same cell partition
belonging to π2

{H1,...,Hm}
partition have the same steady

state.
Theorem 6: For containment control algorithms satisfying

rdF = −L
−1
F LFLrL , if the system information topology G has

a cell partition π2
{H1,...,Hm}

= {C1, . . . ,Ck} with C i ⊆ H j
or C i ⊆ F,i = 1, . . . , k, j = 1, . . . ,m, then all the followers

that belonging to the same cellC i (i = 1, . . . k) have the same
steady state.

Proof [34]: Construct the deduced unweighted graph
Ḡ2 of G as follows: use a follower ī to represent cell C i
draw an edge from j̄ to ī is a neighbor cell of C i. Then, Ḡ2

has m reaches according to Assumptions 1. Let L̄2 be the
Laplacian matrix of the deduced graph Ḡ2, it can be derived
that L̄

2
r̄F = 0 with r̄i = rdn+j if C i ⊆ H j has unique solution.

LF =



3 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
−1 3 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 − 1 2 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 − 1 2 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 − 1 2 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 − 1 3 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 − 1 2 − 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1 3 − 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1 2 − 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 − 1 3 − 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 − 1 2 − 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 − 1 2 − 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 − 1 3 − 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 − 1 2 − 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 3 − 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 2 − 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 3 − 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 2 − 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 2 − 1
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 2



, LFL =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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FIGURE 3. Simulation results for γ0 =
1

1600 , γ1 = 0.0438.

Finally, it can be verified that rdFCi = r̄i1Ci is the solution
of L̄r̄dF = 0.

Now Theorem 6 has been proved.

V. SIMULATION RESULTS
In this section, simulations for a multiple leader-follower
spacecraft cluster are presented to illustrate effectiveness
of the proposed control approach and information topology
design. In most Earth-orbiting cluster flying spacecraft, J2
disturbance is the dominant perturbation force by two orders
of magnitude [22], [24], and thus in the simulations only
the effects of J2 disturbance are considered, whereas the
effect of other disturbance forces result from atmospheric
drag, solar radiation, and third-body effects are not taken into
consideration here.

The J2 disturbance force expressed as

fJ2 =
3
2
µ⊕J2R2⊕

[
5
rxr2z
r7
−
rx
r5
, 5
ryr2z
r7
−
ry
r5
, 5
r3z
r7
− 3

rz
r5

]T

where rx , ry, rz are the position vector components of
followers. J2 = 0.0010826, R⊕ = 6371km is the mean
equatorial radius of Earth. In addition, 10−6 order white noise
disturbance is considered in the simulation.

In this scenario, the proposed containment control algo-
rithm (2) is tested in an orbit motion simulation of a cluster
of 28 spacecraft. The 20 spacecraft, denoted by F =

{1, 2, . . . , 20}, should be controlled into a cuboid area formed
by 8 vertices which is denoted by L = {21, 22, . . . , 28}.

164648 VOLUME 8, 2020



S. Zhang et al.: Orbital Containment Control Algorithm and Complex Information Topology Design

FIGURE 4. Simulation results for γ0 =
1

1600 , γ1 = 0.2.

The position of leaders in reference coordinate frame
respectively are (unit:m)

r21 = [430,−360, 0]T r25 = [430,−360, 200]T

r22 = [430, 360, 0]T r26 = [430, 360, 200]T

r23 = [−430, 360, 0]T r27 = [−430, 360, 200]T

r24 = [−430,−360, 0]T r28 = [−430,−360, 200]T

Relative position of each follower to the target area at initial
moment is shown in Fig. 1. We can find that all the followers
are outside the convex hull formed by leaders initially.

Suppose that system information topology is shown as
Fig. 2, then Laplacian matrices respectively are LF ,LFL , as
shown at the bottom of the 11th page.

The initial state of followers in reference orbit coordinate
frame are respectively shown in Table 3.

It has been calculated that eigenvalues of LF are about
4.5221, 4.4631, 4.4203, 4.1649, 4.0333, 3.6328, 3.5697,
3.2651, 2.9336, 2.4152, 2.3667, 1.7002, 1.6311, 1.2005,
1.1821, 0.7862, 0.6865, 0.4017, 0.3480, 0.2771.

A. THE INFLUENCE OF INFORMATION TOPOLOGY DESIGN
ON CONTROL PERFORMANCE
1) THE INFLUENCE OF COEFFICIENT ON CONVERGENCE
RATE
To control all cluster members into the convex full formed
by leaders with a fast convergence rate using controller (2),
control gain coefficient needs to meet certain conditions.
The purpose of the simulation in this section is to verify
the constraint conditions of Theorem 3 and convergence
rate on control gain coefficient. The effects of control gain
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FIGURE 5. Simulation results for γ0 =
1

1600 , α = 0.0263.

coefficient on control performance are explained in detail
through simulation results.

2) CONTROLLER WITHOUT ABSOLUTE
VELOCITY CONTROL TERM
When α = 0, γ0 > 0, γ1 > 0, controller (2) does not
contain absolute velocity control term of member spacecraft
relative to reference spacecraft. The influence of control
gain coefficient on convergence and convergence rate is
analysed.

According to calculation of control gain coefficient
expression in Section III, If γ0 = 1

1600 , when γ1 = 0.0438
cluster system converges to convex full with the maximal
convergence rate. The simulation results in Fig. 3 show that
all followers will converge into the target area formed by the
leaders within 200s, and relative velocity converge to 0 within

400s. In the control process, followers will not collide with
each other.

As a comparison, γ0 = 1
1600 , γ1 = 0.2 are selected, and

simulation results are shown as Fig. 4. The simulation results
show that all followers will converge into the target area
formed by the leaders. But the convergence time be increased
to 900s, relative velocity converge to 0 within 1100s. In the
control process, followers will not collide with each other.

Simulation results show that these two control gain
coefficients can control these 20 followers into target area,
but a maximal convergence rate will be obtained at γ0 =
1

1600 , γ1 = 0.0438.

3) CONTROLLER WITHOUT RELATIVE
VELOCITY CONTROL TERM
The initial conditions of simulation remain the same. When
γ1 = 0, γ0 > 0, α > 0, controller (2) does not
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FIGURE 6. Simulation results for γ0 =
1

1600 , α = 0.015.

contain relative velocity control term of member spacecraft
relative to reference spacecraft. The influence of control
gain coefficient on convergence and convergence rate are
analysed.

If γ0 = 1
1600 , when α = 0.0263 cluster system converges

to the target area formed by leaders with the maximal
convergence rate. The simulation results in Fig. 5 show that
all followers will converge into the target area formed by the
leaders within 200s, relative velocity converge to 0 within
250s. In the control process, followers will not collide with
each other.

As a comparison, γ0 = 1
1600 , α = 0.015 are selected,

and simulation results are shown as Fig. 6. The simulation
results show that all followers will converge into the target
area formed by the leaders, but all followers will converge

into the target area formed by the leaders within 300s, relative
velocity converge to 0 within 400s. And the nearest distance
of followers will near 0m, collision may collide in the control
process.

Simulation results show that these two control gain
coefficients can control these 20 followers into target area,
but a maximal convergence rate will be obtained at γ0 =
1

1600 , α = 0.0263.

4) THE INFLUENCE OF INFORMATION TOPOLOGY ON
CONVERGENCE RATE
In this section, the influence of edge add method on
convergence rate is verified.

Edges from leaders to followers (21, 20), (22, 3), (23, 5),
(24, 7), (25, 9), (26, 12), (27, 14), (28, 18) are added on the
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FIGURE 7. Information topology after adding edges.

basis of original information topology (Fig. 2), then new
system information topology is shown as Fig. 7.

It has been calculated that eigenvalues of LF are about
4.8866, 4.7746, 4.7746, 4.4689, 4.4498, 4, 4, 3.5847,
3.2607, 2.8141, 2.8141, 2.3393, 2.0863, 1.6396, 1.6396,
1.2855, 0.9736, 0.7717, 0.7717, 0.6646. Obviously, all the
eigenvalues of LF are increased after adding edges.

Laplacian matrices respectively are LF , LFL , as shown at
the bottom of the page.

Control gain coefficient α = 0, γ1 = 0.0438 are
selected, then the followers will be driven into the target
area formed by leaders with maximal convergence rate when
γ0 = 5.9418 × 10−4. Simulation results in Fig. 8 show
that all followers will be driven into the target area formed

LF =



3 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
−1 3 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 − 1 3 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 − 1 2 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 − 1 3 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 − 1 3 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 − 1 3 − 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1 3 − 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1 3 − 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 − 1 3 − 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 − 1 2 − 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 − 1 3 − 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 − 1 3 − 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 − 1 3 − 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 3 − 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 2 − 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 3 − 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 3 − 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 2 − 1
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 3



, LFL =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
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FIGURE 8. Simulation results for γ0 = 5.9418× 10−4, γ1 = 0.0438.

FIGURE 9. Information topology.
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by the leaders, and the convergence time will be decreased
to 120s, relative velocity converges to 0 within 300s.
In the control process, followers will not collide with each
other. Comparing the motion trajectories of each follower
in Fig. 3, it can be seen that the maximal convergence
rate of system will be increased after adding information
links.

B. THE INFLUENCE OF INFORMATION TOPOLOGY
DESIGN ON DISTRIBUTION OF
FOLLOWERS
1) THE CASE OF COLLISIONS
Using Orbital containment control algorithm (2), control gain
coefficients are chosen as α = 0.05, γ0 = 1

/
1600, γ1 = 0 .

Safe collision avoidance distance is 10m.
Suppose that system information topology is shown

as Fig. 9, then Laplacian matrices respectively are
LF ,LFL . The relationship matrix between the follower’s
stable state and the leader’s state is C = −L−1F LFL , as
shown at the bottom of the page. Simulation results are
shown as Fig. 10.

Simulation results show that the shortest distance between
followers in the final stage is close to 0, thus collisions are

easy to occur. This case is due to the fact that information
topology shown in Figure 9 contains π2 differentiation.
Such as spacecraft 1,2,3 belong to C8 cell, spacecraft
4,5,6 belong to C9 cell, spacecraft 7,8 belong to C10 cell,
spacecraft 15,16,17 belong to C13 cell, spacecraft and
18,19,20 belong to C14 cell. According to Theorem 6,
the spacecraft belonging to the same cells will converge to
the same location in the target area and collide with each
other, respectively. In addition, spacecraft 9 only receives
information from virtual leader 23, its motion is influenced
by leader 23 and perturbation, thus spacecraft 9 will
converge into the target area and the position of it will near
leader 23.

According to Theorem 4, 5 and 6, and simulation
results of Fig. 9 and Fig. 10, if followers have
the completely consistent state coefficients, they will
converge to the same location in the control
process.

In order to avoid collisions among cluster
members, the original information topology needs
to be modified appropriately so that each space-
craft can make reasonable use of the received
information.

LF =



4 − 1 − 1 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 2 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 − 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 5 − 1 − 1 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 − 1 2 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 − 1 − 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 5 − 1 − 1 − 1 0 − 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1 3 − 1 0 − 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1 0 0 4 − 1 − 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 − 1 2 − 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1 0 0 − 1 − 1 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 − 1 0 0 4 − 1 0 − 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 − 1 − 1 4 − 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 − 1 − 1 − 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 2 − 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 − 1 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 4 − 1 − 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 2 − 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 − 1 2



, LFL =



−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



C = −L−1
F
LFL =



0.6 0.2 0.134 0.033 0.033 0 0 0
0.6 0.2 0.134 0.033 0.033 0 0 0
0.6 0.2 0.134 0.033 0.033 0 0 0
0.2 0.4 0.266 0.067 0.067 0 0 0
0.2 0.4 0.266 0.067 0.067 0 0 0
0.2 0.4 0.266 0.067 0.067 0 0 0
0 0 0.666 0.167 0.167 0 0 0
0 0 0.666 0.167 0.167 0 0 0
0 01 0 0 0 0 0
0 0 0.33 0.43 0.24 0 0 0
0 0 0.34 0.33 0.33 0 0 0
0 0 0.33 0.24 0.43 0 0 0
0 0 0.11 0.13 0.10 0.33 0.22 0.11
0 0 0.11 0.10 0.13 0.33 0.22 0.11
0 0 0 0 0 0 0.67 0.33
0 0 0 0 0 0 0.67 0.33
0 0 0 0 0 0 0.67 0.33
0 0 0 0 0 0 0.33 0.67
0 0 0 0 0 0 0.33 0.67
0 0 0 0 0 0 0.33 0.67
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FIGURE 10. Simulation results with Fig.9 as information topology.

FIGURE 11. Information topology.

2) THE CASE OF COLLISION AVOIDANCE
The modified information topology is shown in Figure 11.
Control gain coefficients are the same as the previous
subsection. The modified information topology no longer

contains π2 differentiation, which is verified by simulation.
Collisions will not collide for nano-satellite cluster under
modified information topology. Simulation results show that
the shortest distance among followers is around 11m.
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Laplacian matrices respectively are LF , LFL , as shown at
the bottom of the page.

The relationship matrix between the follower’s stable state
and the leader’s state is C = −L−1F LFL , as shown at the
bottom of the page.

C. THE PERFORMANCE OF POTENTION FUNCTION
METHOD
In Ref.[28], [40], the artificial potential energy method is
used to avoid collisions between spacecraft. Taking [40]
for example, coordinated orbital control algorithm based on
variable weight coefficient method is designed as follows.

uxi = −3ω
2xi − 2ωẏi − αẋi − β

(
xi − xdi

)
−

∑
j∈Ni

aij$ij[(xi − xj)− (xdi − x
d
j )]

uyi = 2ωẋi − αẏi − β
(
yi − ydi

)

−

∑
j∈Ni

aij$ij[(yi − yj)− (ydi − y
d
j )]

uzi = ω
2zi − αżi − β

(
zi − zdi

)
−

∑
j∈Ni

aij$ij[(zi − zj)− (zdi − z
d
j )] (25)

where α > 0, β > 0, aij > 0 represent adjacent coefficients
between spacecraft. xdi , y

d
i , z

d
i respectively represent the

desired state of spacecraft i in three-axis. Construct variable
weight coefficient sum$ij as follows

$ij =

∣∣∣∥∥∥(ri − rj)− (rdi − rdj )∥∥∥− 2
(
δ +

∥∥∥rdi − rdj ∥∥∥)∣∣∣[∥∥∥(ri − rj)− (rdi − rdj )∥∥∥− (δ + ∥∥∥rdi − rdj ∥∥∥)]2
(26)

where δ > 0 is safe collision avoidance distance.

LF =



0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0
−1 − 1 − 1 0 − 1 0 0 0 0 0 0 0 0
4 − 1 0 − 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 4 − 1 − 1 0 0 0 0 0 0 0 0
0 0 − 1 2 − 1 0 0 0 0 0 0 0 0
0 0 − 1 − 1 4 0 0 0 0 0 0 0 0
0 0 − 1 0 0 3 0 0 − 1 0 0 0 0
0 0 0 0 − 1 0 3 − 1 0 0 0 0 0
0 0 0 0 0 0 0 4 − 1 − 1 − 1 0 0
0 0 0 0 0 − 1 0 − 1 3 − 1 0 0 0
0 0 0 0 0 0 0 − 1 − 1 2 0 0 0
0 0 0 0 0 0 0 − 1 0 0 4 − 1 − 1
0 0 0 0 0 0 − 1 0 0 0 − 1 3 − 1
0 0 0 0 0 0 0 0 0 0 − 1 − 1 2



, LFL=



−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 − 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − 1 0 0 0 0 0
0 0 0 − 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 − 1 0 0 0
0 0 0 0 0 − 1 0 0
0 0 0 0 0 − 1 0 0
0 0 0 0 0 0 − 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



C = −L−1F LFL =



0.516 0.188 0.198 0.049 0.049 0 0 0
0.412 0.215 0.249 0.062 0.062 0 0 0
0.464 0.201 0.223 0.056 0.056 0 0 0
0.190 0.335 0.317 0.079 0.079 0 0 0
0.254 0.256 0.328 0.081 0.081 0 0 0
0.163 0.217 0.414 0.103 0.103 0 0 0
0.011 0.015 0.650 0.162 0.162 0 0 0
0.045 0.060 0.597 0.149 0.149 0 0 0
0 0 1 0 0 0 0 0
0.006 0.007 0.325 0.431 0.231 0 0 0
0.006 0.007 0.325 0.331 0.331 0 0 0
0.006 0.007 0.325 0.231 0.431 0 0 0
0.002 0.003 0.137 0.179 0.099 0.420 0.116 0.044
0.002 0.003 0.125 0.097 0.158 0.385 0.167 0.064
0.001 0.001 0.050 0.059 0.043 0.154 0.500 0.192
0.001 0.002 0.085 0.107 0.066 0.260 0.346 0.133
0.001 0.002 0.067 0.083 0.054 0.207 0.423 0.163
0.001 0.001 0.048 0.045 0.053 0.148 0.231 0.473
0.001 0.002 0.079 0.066 0.095 0.243 0.205 0.310
0.001 0.002 0.063 0.055 0.074 0.195 0.218 0.392
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FIGURE 12. Simulation results with Fig.11 as information topology.

The variable weight coefficient can be guaranteed if∥∥∥(ri − rj)− (rdi − rdj )∥∥∥ > (
δ +

∥∥∥rdi − rdj ∥∥∥) is satisfied at
initial time. That is, under the control of controller (25),∥∥ri − rj∥∥ > δ, there are no collisions between members.
However, the principle of variable weight coefficient method
lies in: When the distance between neighbors approaches a
certain value, the system will suddenly increase control force
to increase the distance between neighbors, thus collisions are
prevented. However, due to the obvious increase of control
force in the process of collision avoidance, if the actual output
control force of spacecraft cannot meet the requirements,
the collision avoidance function may fail.

The potential function method is simulated as follows.
For simplicity, consider the case where there are only two
member spacecraft, and assume that two spacecraft can
obtain relative position information of each other. The initial
position,velocity and desired position of the two spacecraft in
reference orbit coordinate system respectively are

r1 = [430, 330, 210]Tm ṙ1 = [−0.6,−0.8,−0.7]Tm/s

r2 = [385, 355, 145]Tm ṙ2 = [0.5,−0.7, 0.6]Tm/s

rd1 = [420, 350, 200]Tm

rd2 = [410, 340, 180]Tm

Safe collision avoidance distance δ = 10m.
Control parameters are set as

α = 0.1, β = 0.01, a12 = 0.0001, a21 = 0.0001

Simulation results are shown as Fig.13. It can be seen from
Fig.13(a) and Fig.13(b) that the two spacecraft will converge
to the desired state, and the shortest distance between
spacecraft is always more than 10 meters in simulation
process(Fig.13(d)), so collisions will not collide. According
to Fig.13(c), contol force of spacecraft 1 will suddenly and
sharply increase in 8-9s, and control foce of spacecraft 2 will
increase in about 15s, which is caused by variable weight
coefficient closing to 0.

Compare with variable weight coefficient method,
the problem of excessive control force in collision avoidance
can be solved with rationally designing cluster information
topology. Control force and convergence rate can be
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FIGURE 13. Simulation results of potential function method.

adjusted in a reasonable range by using theory analysis in
Section III.

VI. CONCLUSION
This paper mainly studied coordinated orbit control problem
for large-scale cluster spacecraft system in the view of
information topology. A distributed orbital containment
control algorithm was given for large-scale cluster spacecraft
system to drive all followers into the convex hull formed by
leaders. The influence of information topology and control
gain coefficient on convergence and convergence rate of
cluster system was analyzed. All followers’ steady states for
containment control were investigated from graph theory.
Main research content of this paper is shown as follows:

1) For large-scale cluster flying spacecraft with leader-
follower architecture, a general distributed orbital contain-
ment control algorithm was given. The primary constraint
condition for containment control on cluster information
topology was that each follower can be reached from at
least one leader. The influence of information topology on
convergence and convergence rate of cluster system was also
analyzed, providing a theoretical reference for information
topology design which aims at improving the convergence
rate of the system. Simulation examples have been provided,
which showed the effectiveness of information topology
constraints.

2) The influence of control gain coefficient on system
convergence and convergence rate have been analyzed based
on graph theory. The formula of control gain coefficient
whichmake system to obtain maximum convergence rate was
given based on the eigenvalues of cluster Laplacian matrix,
providing methods for how to obtain a satisfactory conver-
gence rate using less control force. Numerical simulations
have been carried out to verify the validity of theory analysis.

3) The followers’ steady states for containment control
were investigated from graph theory. It was shown that the
steady state of each follower is influenced by the leaders that
can reach it, and two kinds of cell partitions were defined to
characterize system information topologies with the property
that the followers which belong to the same cell had the same
steady state, providing methods for how to avoid collisions.

For large-scale cluster satellite flight missions, the prob-
lems to be considered consist of external disturbance, model
disturbances, time-delay, etc. Initial state error and various
perturbation factors will cause the formation configuration to
drift, and satellite faults(such as thruster fault, sensor fault,
etc). Further the aforementioned problems in large-scale
cluster spacecraft will be discussed.
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