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ABSTRACT Automatic screening and diagnosis of lung abnormalities from chest X-ray images has
been recently drawing attention from the computer vision and medical imaging communities. Previous
studies of deep neural networks have predominantly demonstrated the effectiveness of lung disease binary
classification procedures. However, large numbers of medical images—which can be labeled with a variety
of existing or suspected pathologies—are required to be interpreted and reported upon daily by an individual
radiologist; this poses a challenge in maintaining a consistently high diagnosis accuracy. In this paper,
we present a competitive study of knowledge distillation (KD) in deep learning for classification of
abnormalities in chest X-ray images. This method aims to either distill knowledge from cumbersome teacher
models into lightweight student models or to self-train these student models, to generate weakly supervised
multi-label lung disease classifications. Our approach was based on multi-task deep learning architectures
that, in addition to multi-class classification, supported the visualizations utilized in saliency maps of the
pathological regions where an abnormality was located. A self-training KD framework, in which the model
learned from itself, was shown to outperform both the well-established baseline training procedure and the
normal KD, achieving the AUC improvements of up to 6.39% and 3.89%, respectively. Through application
to the publicly available ChestX-ray14 dataset, we demonstrated that our approach efficiently overcame the
interdependency of 14 weakly annotated thorax diseases and facilitated the state-of-the-art classification
compared with the current deep learning baselines.

INDEX TERMS ChestX-ray14, deep neural networks, knowledge distillation (KD), multi-class
classification, saliency maps, self-training KD.

I. INTRODUCTION
With the potential to escalate simple thoracic ailments into
cancers, lung diseases are one of the leading causes of death
worldwide. Chest radiography is the most common medical
imaging technique used to diagnose them, owing to its effi-
ciency in the identification and detection of cardiothoracic,
pulmonary, and interstitial diseases; it currently occupies
a significant role in lung disease treatment practices [1].
Accurate analysis of the large quantities of patient health
information represents a major challenge for radiologists
because the timely reporting of potential findings is necessary
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for effective treatment. The overlapping of tissue structures in
the X-ray images or the low contrast resolutions with which
they need to distinguish the lesion and surrounding tissues
greatly increase the complexity of interpretation. This results
in a certain number of missed detections and diagnoses. The
wide applicability and interpretational difficulties of chest X-
ray images have led to the introduction of computer-aided
detection (CAD) systems into medical imaging practices.
CAD systems are predominantly divided into four steps:
preprocessing, Region of Interest (ROI) segmentation, ROI
feature extraction, and disease identification; however, there
is a vital need for them to not only automatically process large
numbers of medical images, but also enhance the certainty of
accurate disease prediction.
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The extensive and successful developments of artificial
intelligence (AI), alongwith the accumulation of large numbers
of medical images, have opened up the promising possibility
of building a CAD system integrated AI techniques. In partic-
ular, deep learning-based methods have achieved remarkable
performances in various image-recognition tasks, includ-
ing image classification [2]–[5] and semantic segmentation
[6]–[9]; these methods have been proposed for re-application
on anatomical and pathological medical imaging domains.
Advanced deep learning, in combination with the construc-
tion of large medical databases, has recently enabled these
algorithms to surpass the performances of conventionally
medical techniques, particularly in tasks such as pulmonary
nodule detection [10], detection of lymph node metastases
in breast cancer [11], cerebral micro-bleeding detection [12],
[13], skin cancer classification [14], [15], pneumonia diag-
noses from radiographs [16], diabetic retinopathy detection
[17], cardiologist-level arrhythmia classification [18], and
cerebral micro-bleeding identification [19].

Whilst the general trend for deep learning models such as
convolutional neural networks (CNNs), which learn features
in an end-to-end manner with respect to millions of param-
eters, is towards deeper, wider, and more complex architec-
tures, the expensive computation costs limit the capability of
a deep learning solution in real-world applications. That is,
the weights are transferred from a pre-trained model to a new
network with a need of matching the network architecture in
case of transfer learning. This means that the new network
should be as sophisticated as the old one. Hence, it is arduous
to deploy a cumbersome model to many applications. For
instance, self-driving vehicles and mobile robots have limited
memory and power resources. Even when these are in abun-
dant supply, for example when a data system is hosted in a
network cloud, effective deep networks serving clients at a
lower cost are still necessary. However, data privileges or pri-
vacy issues can restrict access to the source data domain in
real transfer learning problems. Therefore, it is essential to
transfer the knowledge of a network trained on the data by
accessing only the training data of the target domain.

Therefore, a recent study [20] proposed a knowledge
distillation (KD) procedure to capture and transfer the knowl-
edge of a trained teacher model to a student model. Typically,
a teacher network exhibits a greater learning capacity and
higher performance and can be used to teach a lower-capacity
student network by providing soft-targets. Dark knowledge
describing the similarity of privileged information from dif-
ferent classes can be transferred from these soft-targets, to
enhance the performance of the student model. This pro-
cess guides the training of a student network, and further
uses an additional distillation loss to encourage the stu-
dent model to mimic some aspects of the teacher model.
Originally motivated by resource-efficient neural network
compression tasks [20], KD procedures have found a vari-
ety of applications in such areas as adversarial defense
[21], privileged learning [22], and learning with noisy data
[23]. To extend this idea of mimicking the softened class

scores provided by the teacher model, Fit-Nets [24] added
hints to guide the intermediate layers’ training. Liu et al.
[25] introduced a supervisory signal for KD in the form
of spatial attention, by computing the sum of squared
activations along the channel dimension; this intuitively
encouraged the student model to produce similar normalized
spatial attention maps to the teacher model. As expected,
recent works have expanded the scope of KD, for exam-
ple by using semi-supervised adaptive distillation for a
learning-efficient detector [54], knowledge adaptation for
segmenting sematic regions [55], and a teacher assistant
(an intermediary between teachers and students) for KD
improvements [56]. With these new findings from the deep
learning community, it is of great interest and importance to
find ways of exploiting KD performances in medical imaging
fields.

Meanwhile, the manual marking of the pathologically
abnormal areas of X-ray images, performed by expert radi-
ologists, typically requires more effort than simply labeling
them. In other words, the bounding boxes for disease local-
ization tasks are much more descriptive and informative than
a single class label. As a consequence, chest X-ray datasets
such as ChestX-ray8 and ChestX-ray14 [26] have recently
been published. These provide comprehensive disease labels
along with a small subset of abnormal region annotations,
which are suitable for weakly supervised learning problems.
Therefore, designing models for such small numbers of anno-
tated masks is a crucial step toward clinical applications.
Many attention-based mechanisms have recently been devel-
oped and have demonstrated the feasibility of the localization
and recognition of multiple objects, in spite of using only
simple class labels during training [27]. In addition, identify-
ing regions containing unexpected and unique abnormalities
within an image is of critical importance. Saliency mapping
techniques [28], [29] identified such regions as being dis-
tinctive by using primitive signature features such as texture,
shape, and color. Rendered as a heat-map inwhich hot regions
correspond to a considerable impact on the model’s final
decision, saliency maps represent an important step toward
understanding chest X-ray images and further improving
models’ classification performances.

For the first time in thorax multi-class classification (to the
best of our knowledge), we address this problem by using
the promising performances of KD approaches to support
the automatic classification of 14 abnormalities appearing
in chest X-rays, along with saliency map visualizations to
ensure the accurate identification of abnormal regions. The
main contributions of this paper are summarized as follows:
• We utilized a variety of saliency mapping techniques,
including vanilla/guided back-propagation, smooth gra-
dients, and SmoothGrad integrated gradients to better
understand our deep learning model’s decision-making
process.

• We proposed different KD training approaches,
including original basic training, standard KD (deeper
teachers teach lower-cost students), reversed KD
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(lower-cost students teach deeper teachers), defective
KD (teachers trained over the first 50 iterations teach
lower-cost students), and self-training KD (models
teach themselves); we then compared their respective
classification performances.

The remainder of the paper is organized as follows.
Section 2 describes the relevant recent works on chest X-ray
lesion classification. In Section 3, we describe our proposed
approaches for saliency map visualization and different KD
training methods for thorax multi-classification. In Section 4,
we introduce the ChestX-ray14 dataset and summarize our
obtained results. The paper concludes in Sections 5 and 6with
a discussion and suggestions for future works, respectively.

II. RELATED WORKS
Asides from the various screening methods applied to detect
suspected lung diseases, the promising results obtained from
implementing deep learning techniques in chest X-ray image
analysis tasks have recently attracted much attention [30],
[31]. Several open-access datasets of chest X-ray images
have allowed scientists to train, verify, fine-tune, and evalu-
ate their new deep learning algorithms; these datasets have
included chest X-rays with and without lung cancer nod-
ules from the Japanese Society of Radiological Technology
[32], frontal and lateral chest radiographs of disease anno-
tations from the Indiana dataset [33], two databases (from
Montgomery County and Shenzhen Hospital) to improve
the CAD of pulmonary diseases [34], normal versus tuber-
culosis cases from the Royal Tropical Institute [35], and
ChestX-ray14—the largest publicly available database cur-
rently available, containing annotations of 14 different lung
diseases [26]. The TUNA-Net framework was proposed by
[36] for pneumonia recognition on two public chest X-ray
datasets; this model adapted the labeled adult chest X-rays
in the source domain such that they appeared as though they
had been taken from pediatric X-rays in an unlabeled target
domain. TUNA-Net achieved a 96.3% AUC (the area under
the receiver operating characteristic (ROC) curve) value in
binary pediatric pneumonia classification. Salehinejad et al.
[37] employed deep convolutional generative adversarial net-
works (DCGAN) to generate artificial images from five com-
mon pathological classes, then applied it to chest X-rays.
The authors reported that data augmentation using these
synthesized images increased the diversity of the training
data, substantially improving the generation performance and
classification of unseen data.

There have been many deep learning models proposed to
achieve outstanding classification results on the ChestX-ray14
dataset. Rajpurkar et al. [30] proposed CheXNet - a 121-layer
convolutional neural network for pneumonia classification.
A 14-disease classification task was also attempted and com-
petitive results were obtained under their proposed method.
They also compared the performances of four radiologists on
a subset of 420 annotated images against the CheXNet model
and found that CheXNet exceeded the average radiologist
performance, as measured by the F1metric. A unified weakly

supervised multi-label image classification and localization
framework was introduced by Wang et al. [26] to evalu-
ate the ChestX-ray8 dataset. After implementing a variety
of pre-trained deep models and excluding the fully con-
nected and soft-max layers, a transition layer, global pooling
layer, prediction layer, and loss layer were all inserted. This
approach facilitated the identification of plausible spatial
regions due to the combination of activations from the tran-
sition layer and weights from the prediction inner-product
layer. Their initially quantitative classification and localiza-
tion results were promising, despite the procedure remaining
too computationally strenuous for full implementation as an
automated high-precision CAD system.

More recently, a variety of deep learning-based techniques
have sought to approach the ChestX-ray14 problem.
ChestNet [38] contained two main branches: a classification
branch, which served as a unified network with a pre-trained
ResNet-152 model to manage the complexities of handling
local handcrafted features; and an attention branch, which
explored the correlations between different disease labels
and allowed for the localization of abnormal regions. In its
performance comparison, it was shown to outperform three
state-of-the-art deep learning models employing official
patient-wise splits without extra training data. TieNet [39]
was introduced to first classify ChestX-ray14 images by
extracting distinctive X-ray images and embedded texts
from corresponding reports; it was later converted into a
chest X-ray-reporting system in a simulation, to output dis-
ease classifications with a preliminary report. It achieved
an average AUC of over 90%, which was an improve-
ment of 6 % compared to the baseline on an unseen and
hand-labeled OpenI dataset. A multi-level attention model,
implemented as an end-to-end trainable CNN-recurrent neu-
ral network (RNN) to highlight the meaningful regions, was
also built in this study.

A fully convolutional recognition network [40] improved
AUC scores in classifications of most diseases compared to
the reference models, as well as remarkable prediction scores
of disease localizations. Wang et al. [57] introduced Thorax-
Net, which contained two branches for 14-label predic-
tion and abnormality localization. The classification branch
used a pre-trained ResNet-152 and the attention branch was
equipped with several convolutional layers and the gradient-
weighted class activation mapping (Grad-CAM) module.
This procedure yielded AUC scores of 0.788 and 0.896 by
using the patient-wise official split and image-wise random
split, respectively. It obtained higher AUCs compared to
other deep models training with no external data. Ho and
Gwak [41] proposed a pre-trained DenseNet-121 model to
localize pathologically abnormal areas and a handcrafted,
deep feature integration approach to classifying 14 dis-
ease classes. The authors demonstrated that their proposed
methods could efficientlymanage interdependencies between
class annotations and achieved superior classifications to
the then-current reference baseline on the ChestX-ray14
dataset.
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From the existing reports on ChestX-ray14, the transferal
of features extracted from pre-trained models is seen to be
preferable. However, the trends in model compression—in
which a larger pre-trained model is built to allow the smaller
model to learn complex features whilst minimizing the com-
putation and memory costs—has not yet been investigated
for X-ray datasets. In particular, a large and complex network
or an ensemble model is first trained and extracts important
feature information from the given data, thereby producing
targeted predictions. A small network is then trained with
the help of this more cumbersome model. The small model
is able to produce comparable results or replicate the cum-
bersome model’s results. Therefore, we propose different KD
training strategies for 14-disease classification, as well as a
variety of saliency mapping techniques for abnormal feature
visualizations in X-ray images.

III. PROPOSED APPROACHES
We conducted extensive experiments to examine both the
dominant features visualized by saliency maps and the
common features of dark knowledge in KD.

A. SALIENCY MAPS
As the most common technique for interpreting deep neural
networks (DNNs), saliency maps [42], [43] represent the
gradient of the output class with respect to the input, based
on a score function. They note how the changes in the output
correspond to changes in input image pixels. The output
value is increased under small changes in the pixels or exclu-
sively positive values in the gradients. Thus, visualizing these
gradients provides an intuitive measure of attention. In our
design, using an input vector x ∈ Rd and a model with
the function S : Rd → R14 results in an explanation
map of S : Rd → Rd , which maps inputs to particular
objects of the same shape. Each dimension is then associ-
ated with the relevance or importance of the final output’s
dimension.

1) GRADIENT [44]
The gradient of the scalar logit for a specific class for the input
is expressed as

EG (x) =
∂S
∂x
. (1)

2) GUIDED BACK-PROPAGATION (GBP) [45]
GBP indicates the change in how the back-propagated
gradient varies with ReLU. Using

{
f l, f l−1, . . . , f 0

}
as the

feature maps derived during the forward pass of a DNN
and

{
Rl,Rl−1, . . . ,R0

}
as the intermediate representation

obtained during the backward pass (more concisely, f l =
relu

(
f l−1

)
= max(f l−1, 0) and Rl+1 = ∂f out

∂f l+1
), GBP aims

to achieve zero outputs for all negative gradients; the mask is
then computed as

Rl = 1Rl+1>01f l>0R
l+1, (2)

where 1Rl+1>0 retains only positive gradients and 1f l>0
retains only positive activations.

3) INTEGRATED GRADIENTS (IG) [46]
The gradient saturation is addressed by summing over-scaled
values of the input. IG for an input x is defined as:

EIG (x) = (x − x̄)×
∫ 1

0

∂S(x̄ + α(x − x̄))
∂x

dα, (3)

where x̄ is typically set to zero and is the baseline input
representing an absence of features in the input sample xi.

4) SMOOTHGRAD (SG) [47]
SG seeks to alleviate noise and visual diffusion by averaging
over all explanations of noisy versions of an input. Given an
explanation E and a sample x, the SG explanation ESG is
defined as

ESG (x) =
1
N

N∑
i=1

E(x + gi), (4)

where the noise vectors gi ∼ N (0, σ 2) are drawn
independently and identically distributed from the normal
distribution.

B. KNOWLEDGE DISTILLATION (KD)
In the standard KD model [20], knowledge is encoded and
transferred based on the forms of the softened class scores.
The total loss of the student model’s training is given by

L = (1− α)LCE (y, σ (zs))+ 2αT 2LCE (σ
( zs
T

)
, σ (

ZT
T

)),

(5)

where LCE (., .) represents the cross-entropy; y represents the
one-hot vector of ground truths; σ is the soft-max function;
zs and zT are the output logits of student and teacher models,
respectively; α is a balancing hyper-parameter; and T is the
temperature hyper-parameter. In (5), the first term denotes the
cross-entropy loss using ground truth labels whilst the second
term encourages the student model to mimic the softened
class scores from the teacher model.

As shown in the standard KD from Fig. 1, the student
model was trained using the predictions of the teacher model
along with the ground truth hard labels. A variant of the
soft-max function including a temperature parameter T was
used to produce the soft labels as

sofmax(IL ,T ) =
exp(I

/
T )∑

i
exp(Ii

/
T )
, (6)

where I is the input logits to the soft-max layer, and a higher
value of T produces a smoother probability distribution over
the 14 classes.

Thus, the total loss function L is a combination of the KD
loss (soft loss) Lsoft , the cross-entropy loss between the soft
predictions of the teacher and students, and the hard loss
Lhard , given as:

Lsoft = H (softmax (IT ,T ) , softmax(IS ,T )),

Lhard = H (YS ,YGT ) = H (softmax (IS , 1) ,YGT ),

L = Lsoft + Lhard . (7)
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FIGURE 1. Standard KD – a student model learns from the teacher model’s guidance (soft loss) and ground-truth labels (hard loss).

FIGURE 2. The proposed training strategies on the ChestX-ray14 dataset: (a) - Base training, (b) - Standard KD, (c) - Reversed KD, (d) - Defective KD,
and (e) - Self-training KD.

However, it is commonly understood that if we reverse the
KD operation, the teacher will not be significantly improved
because the student model is too weak to learn and transfer
useful knowledge. Also, using a poorly-trained teacher model
that has been trained on 50 first epochs may yield worse
performances than normal KD or reverse KD procedures.
Finally, if we self-train the model, it may achieve better
results compared to all of the above strategies. For example,
the model would learn from its softened-class targets with a
10% error when being trained from itself with a 90% accu-
racy criterion. To address these concerns, we followed the
KD procedure illustrated in Fig. 1 and conducted all exper-
iments pertaining to the five main training strategies: base
training—simply training normal DNNs in an end-to-end
manner; standard KD—training a teacher model to teach
a student model; reversed KD—training a student model
to teach a teacher model; defective KD—poorly training
a teacher over the first 50 epochs to then teach a student
model; and self-training KD—training a model to teach itself
(Fig. 2). To feasibly conduct all KD training approaches,
we selected six types of DNN models—with identical input

sizes—to examine our proposed training methods, including
MobileNet-v2 [2], VGG-19 [3], ResNet-32, ResNet-50, and
Resnet-152 [4], and DenseNet-121 [49]. The first four mod-
els (MobileNet-v2, VGG-19, ResNet-32, ResNet-50) were
used as student models; they are all relatively small and
simple models, though sufficiently powerful to either learn
X-ray features from both themselves and more complex
teacher models (ResNet-152, DenseNet-121) or to transfer
the distilled knowledge to deeper networks.

IV. EXPERIMENTAL RESULTS
A. CHESTX-RAY14 DATASET
We evaluated our proposed approaches on the publicly
available, recently published ChestX-ray14 dataset [26];
this is considered to be the largest collection of up-to-date
front-view chest radiographs, containing a total of 112,120
X-ray images acquired from 30,805 unique patients. Each
image is marked with a single or multiple pathological
labels denoting 14 diseases, based on radiology reports
with over 90% accuracy. In addition, there were 984 anno-
tated images provided by board-certified radiologists.
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FIGURE 3. 14 random samples associated with 14 thorax diseases in the Chestx-ray14 dataset.

Fig. 3 shows 14 examples of common thorax diseases.
The original 1024 × 1024 PNG images were downscaled
to 224 × 224 PNG images for all KD experiments and
229 × 229 PNG images for InceptionV3 [48] saliency map
visualizations—these were normalized into the range [-1,1]
based on the mean and standard deviation.

It is greatly important to consider the data division step
for proper evaluation of our proposed methods. On the
patient-wise official split considered, all images from the
same patient are only present in one of the training, validation,
and testing subsets. Meanwhile, the image-wise random split
would randomly divide all X-ray images into three subsets
without considering on which subject an X-ray image was
acquired. In other words, there is an average of 3.6 images per
patient. The radiographs from the same subject are likely to
appear in both training, validation and testing sets simultane-
ously leading to achieve much better performance than using
the patient-level split. However, this should not be accepted in
pattern classification tasks since it is burdensome to establish
consistent benchmarks or sometimes known as ‘‘cheating’’
if patient samples from testing sets appear in the training
data. Plus, because of the impact of randomness, it is required
to conduct experiments multiple times to average the AUC
scores. Concerning these sorts of problems, we thereby solely
utilized the patient-level split which formulates more proper
criteria to evaluate any models in thorax disease prediction.

Using the patient-wise official split, we divided the data
from 30,805 unique patients into 70% for training, 10%
for validation, and 20% for testing. We also augmented
the training and validation datasets using randomized hori-
zontal flipping procedures. Python 3.6.10 with Tensorflow
2.1.0, CUDA 9, and cuDNN 7.5 deep learning dependen-
cies were used for implementing both (i) the visualizations

from the different saliency mapping techniques and (ii) the
14-category classifications based on the five KD training
strategies. We conducted our experiments within a total com-
putation time of one week, using an i7-4770K 4-core CPU,
a GeForce GTX 1070 GPU, and 32G of memory.

B. SALIENCY MAP VISUALIZATION
In this section, we discuss three selected saliency mapping
techniques, including GBP, SmoothGrad, and SmoothGrad
integrated Gradients. We assessed their efficacy in visu-
alizing distinguishable thorax diseases. The main purpose
of this saliency mapping task was to attempt to visualize
the measure of attention for abnormal regions that were
not originally annotated in the 984 ground-truths from our
dataset. The findings from our saliency mapping algorithms
may significantly help radiologists make decisions concern-
ing the locations of abnormal regions, despite the lack of
prior annotations for the X-ray images. From our observa-
tion, the InceptionV3 model was seen to better visualize
the hot attention areas on the ChestX-ray14 dataset (with
higher AUC scores) than other deep models (both other
students and teacher models). Fig. 4 shows four exam-
ples of the thorax abnormalities—without any ground-truth
annotations—identified by the InceptionV3 model, with
AUC scores of 0.854 for Effusion, 0.739 for Fibrosis,
0.762 for Hernia, and 0.768 for Nodule classes. Concerning
the efficacy of the saliency mapping methods, the integration
of SmoothGrad and Gradients outperformed others; it pro-
duced more easily obtainable and clearer images for further
disease analysis.

Our knowledge of thorax symptoms, along with the
observations from Panel (d), demonstrated that the gener-
ated pleural effusion images indicated a hot attention region
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FIGURE 4. Several abnormal thorax images and their generated results from different saliency mapping techniques. Panel (a) shows the
original chest X-ray images; Panels (b), (c), and (d) show the saliency maps generated by GBP, SmoothGrad, and SmoothGrad integrated
Gradients, respectively.

localized in the lower right-hand side, where the hot region
was seen to track along the lateral wall and the right
costophrenic angle was obscured by a meniscus. This finding
was correctly noted by experienced radiologists as the true
screening analysis of the chest X-ray images. Similarly, pul-
monary fibrosis (Row 2) exhibited an increase of subpleural
reticular markings with lower lobe predominance across both
lungs. In Row 3, there was amild opacification of the bilateral
right-hand lobes, with an air-fluid level consistent with a
hiatal hernia. The upper left-hand lobe pulmonary nodule
was slightly marked in Row 4 of Fig. 4. The foci of the
saliency maps were indeed on abnormally affected regions,
and the disturbance effects and noises were reducible. These
findings from the SmoothGrad integrated Gradients saliency
mapping method were remarkably conducive to the analysis
and distinguishing of different thorax diseases, even when the
absence of annotation labels was taken into account.

To validate the potential of saliency mapping techniques,
SmoothGrad integrated Gradients, in particular, we com-
pared its aptitude of localizing abnormal regions with our

previous study [4] using class activation map (CAM), which
extracted the weight activations from the last convolutional
layers of the pre-trained DenseNet-121 model (see Fig. 5).
The blue bounding boxes denoted the ground truths in a total
of 984 available annotations from the ChestX-ray14 dataset.
Although we formally verified the ability of CAM meth-
ods, inaccurately abnormal region localizations from several
instances were inevitable. Those abnormal instances, never-
theless, could be situated with the relatively high certainty by
our proposed saliency map technique. In specific, we showed
eight samples that were wrongly located by the precedent
CAM method (the red area represented the most indicative
pathology region while the blue indicated normal regions),
except for cardiomegaly sample while it was clearly able to
see that all eight samples were precisely highlighted in the
SmoothGrad integrated Gradients method when comparing
with the ground truths. This first demonstrated the signifi-
cant improvement of saliency maps compared to previously
baseline disease visualization techniques and further could be
extended in the extensive X-ray analysis.
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FIGURE 5. Eight abnormal thorax samples generated by CAM (first and third rows) and SmoothGrad integrated
Gradients (second and fourth rows) methods. The blue bounding box represents the ground truths available from the
ChestX-ray14 dataset.

C. THORAX MULTI-CLASS CLASSIFICATION RESULTS
In this section, we describe the extensive experimental
results for the 14 thorax disease category classification using
base training and three KD training strategies. In Table 1,
results are shown for the six pre-trained deep models
used for normal transfer learning (referred to as base
training). DenseNet-121 obtained the best average AUC
score with 80.97%, followed by ResNet-152 (79.01%),
VGG-19 (76.17%), ResNet-50 (71.66%), MobileNet-v1
(67.10%), and ResNet-32 (66.05%). This suggests that the
more complex and deeper models outperformed other smaller
and simpler models when dealing with the challenging
multi-class classification of chest X-ray images.

As expected, Standard KD at first outperformed the
base training method. The student model was significantly
improved by learning from the teacher. In particular,
MobileNet-v1, VGG-19, ResNet-32, andResNet-50 achieved
7.02%, 1.22%, 8.01%, and 3.86% AUC improvements,
whereas a decrease of 0.21% was observed when
DenseNet-121 was taught by ResNet-152. Similarly, when

DenseNet-121 acted as a teacher model, it significantly
improved upon all performances of the student models
(7.84%, 2.5%, 10.36%, and 7.03% improvement accuracies
with MobileNet-v1, VGG-19, ResNet-32, and ResNet-50,
respectively); it even outperformed the ResNet-152 teacher
model. This sheds light on the perspective that the weak
student models could be significantly enhanced by superior
teacher models.

Meanwhile, as aforementioned, we assumed that as
the teacher model becomes more accurate, soft probabil-
ities will extensively capture the underlying target class
distribution and therefore deliver better supervision to the
student model. That is, the smaller and less accurate mod-
els cannot be good teacher models. We, thereby, conducted
Reversed KD experiments to settle this issue. The major-
ity of experiments reported that the teacher models were
not improved by Reversed KD training strategies (teachers
were taught and trained by students), except in the case of
Reversed ResNet-152/DenseNet-121. Therefore, we confi-
dently confirm our hypothesis that the student models were
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TABLE 1. The average classification AUC score using base training and KD training approaches.

incapable of transferring effective knowledge to the teacher
models. Moreover, we explored the Defective KD training
strategies, in which the teacher model was trained over the
first 50 iterations, with the defective knowledge transferred
to student models; we observed that student models could
be greatly improved even with distilled knowledge from
poorly-trained teacher models. For instance, MobileNet-v2,
ResNet-32, and ResNet-50 student models were improved
(by 3.08%, 3.60%, and 1.12% AUC, respectively) with
ResNet-152, whilst it also achieved 5.08%, 8.11%, and 7.1%
AUC score improvements compared to the base training
with DenseNet-121. Although the poorly-trained teacher
model performed less accurately than the Standard KD
(as expected), the capacity for transferring knowledge to
lower-cost student models was evaluated as of a higher level
compared to both base training and Reversed KD in most of
the experiments. Defective KD could be used to generate the
soft targets of the model, where these learned soft targets then
guide the teacher model’s regularization processes.

To better demonstrate the distillation approach, we
considered updating the output distribution of the teacher
model using information from itself or simpler models,
this is the so-called Self-training KD framework, in which
there is no teacher model. The self-training KD method was
applicable to the cases in which either a teacher model is
unavailable or limited computation resources are provided.
Concretely, themodel was first assigned to train in the normal
way to obtain a pre-trained model, it was then used for
self-training by transferring the soft-targets, as described in
Eq. (5). Formally, we minimized the Kullback-Leibler (KL)
divergence of the logits between modelM and its pre-trained
modelM t , using the loss function

Lself−train = (1− α)H (q, p)+ αDKL(ptτ , pτ ), (8)

where DKL is the KL divergence; q is the ground-truth label;

p and ptτ = softmax
(
ztk
)
=

exp(z
t
k
/
τ )

K∑
i=1

exp(z
t
i
/
τ )

(zt is the output

logits of pre-trained models) are the output probabilities of

M and M t , respectively; τ is the temperature; and α is the
weight parameter used to balance the two terms.

We trained five baseline models, including MobileNet-v2,
VGG-19, ResNet-32, ResNet-50, and DenseNet-121. The
baseline models were trained for 200 iterations with an
initial learning rate of 0.1, an SGD optimizer (with a
momentum of 0.9 and a weight decay of 5e-4), and a grid
search for finding the optimum hyper-parameter values.
Column 3 in Table 1 shows that Self-training KD consis-
tently outperformed the base training approach. For exam-
ple, MobileNet-v2, VGG-19, ResNet-32, ResNet-50, and
DenseNet-121 increased their accuracy performances by
3.58%, 0.98%, 3.29%, and 3.35%, respectively. However,
Standard KD outperformed the self-trainingmethods because
the weak models by themselves transferred inefficient knowl-
edge, except in the case of DenseNet-121. From our obser-
vations, Self-training KD with DenseNet-121 obtained the
highest average AUC (82.56%), followed by Reversed KD
with ResNet-152/DenseNet-121 (80.97%), andDefective KD
with DenseNet-121/DenseNet-121 (80.21%). Fig. 6 shows
the stable and accurate performance of Self-training KD
with DenseNet-121 via the training and validation accuracies,
as well as the accuracy improvement compared with the base
training method.

Although we acknowledge that KD frameworks (standard
KD and defectiveKD) demonstrated significant improvements
compared to stand-alone model (base models), it is insuffi-
cient to train a student model with rich input information to
obtain a well-trained teacher model, as we observed results
from the reversed KD approach. In addition, it is undoubt-
edly noted that the training performance of the Self-training
framework accumulated a higher degree of time-consuming,
computational costs, and resource burdens compared to any
simply base trained methods. Table 2 denotes the execution
time for each approach (base training and three types of
KD approaches). In general, the training time of each
KD approach using the teacher model (ResNet-152) is
lesser than which of the teacher model (DenseNet-121).
Moreover, among six base models, the base training approach
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TABLE 2. The training time of each KD approach (unit: minute).

FIGURE 6. (left) Training and validation accuracies of Self-training KD and (right) the training accuracy comparison
between Self-training KD and its base training from the DenseNet-121 model during 200 iterations.

using stand-alone models obtained the smallest amount of
training time (approximately 258 minutes trained on the
base DenseNet-121) while the Self-train KD (Self-train
DenseNet-121) consumed the highest amount of training time
(approximately 508 minutes). Despite showing the training
accuracy of self-trained and base trainingmethods in 200 iter-
ations (Fig. 6 - right), the amount of time costs differently
for each iteration of two frameworks. DenseNet-121-based
self-trained KD consumed twice as the amount of training
time as the base training, which sometimes even led our
computational resources to be exhausted.

To justify the potential of the proposed methods, we
compared our best results achieved by the Self-training
DenseNet-121 model with five state-of-the-art deep learning
frameworks on the ChestX-ray14 dataset by evaluating on the
per-class AUC scores and the average AUC scores, as shown
in Table 3. The highest AUC score was punctuated in boldface
for each row. Although the works of Guendel et al. [58] and
Wang et al. [57] yielded another exceptional classification
result by utilizing the image-wise random split - without
consideration onwhich subject a radiographwas acquired and
the radiographs from the same subject thus could be appeared
in both training and testing concurrently, we disregarded their
phenomenal results in Table 3. Instead, we included results of
studies using the patient-wise official data split deemed to be
a fairer and more proper evaluation of CAD on the classifica-
tion of thorax diseases. Note that the work of Guendel et al.
[58] trained their model not only on the ChestX-ray14 dataset
but also on an external set of 180,000 images from the PLCO
dataset [59]. The diagnosis performances presented in Table 3

indicate that our proposed framework obtained very compet-
itive results with the highest per-class AUC scores in seven
disease classes and the highest average AUC score.

V. DISCUSSION AND FUTURE WORKS
We demonstrated the suitability of saliency mapping
techniques for visualizing the abnormal regions of chest
X-ray images, as well as the competitive distilling perfor-
mance achieved by transferring knowledge both from the
large, highly regularized models into smaller ones and from
the model into itself, to classify 14 pathological thorax dis-
eases. However, our work has several notable limitations.
First, although we attempted to evaluate a comprehensive
machine-human annotated chest X-ray dataset, simulating the
practical clinical challenges of handling over 100,000 images,
it was difficult to correctly visualize and discriminate the
14 classes by applying a deep learning framework when the
database was unbalanced and weakly supervised. The appear-
ance of a thorax disease is usually accompanied by other
related diseases visible in chest X-ray images; for instance,
pneumothorax is often associated with pneumonia. The low
rate of agreement betweenmultiple radiologists in this dataset
revealed a large bias; and the diagnoses should be voted
upon by the majority of these experts. Therefore, there is a
need to utilize external training datasets and an independent
validation, such as MIMIC-CXR [60] or PLCO [59] to verify
the generalizability of our proposed frameworks.

Second, we analyzed the output of saliency maps,
SnoothGrad integrated Gradients in particular, which offered
a good visual representation of isolating the abnormal regions
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TABLE 3. Per-class AUC of proposed and other five methods in the ChestX-ray14 literature using the patient-wise official split.

and could further assist the deep network in classification
decisions. However, there was no certainty that saliency map
results (Fig. 4) could be correctly localized abnormalities due
to the lack of disease annotations from ChestX-ray14. This
means we were not able to make a comparison between our
outcomes with real ground truths. Plus, we solely evaluated
its aptitude on very limited numbers of annotated X-ray
images which might lead to generating a huge tendency of
localization. That is, the integration of center bias and back-
ground information was not always helpful for cases in which
the abnormal areas (saliency targets) were unidentifiable in
the margins of the X-ray images, or in cases where there were
multiple diseases in the X-ray image. Thus, it is critically
important to design an attention visualization model not only
to facilitate generalization but also to help diagnosis the
models’ failures by identifying biases or fair and bias-free
outcomes from the datasets, as was done in [51].

Third, our extensive experiments demonstrated the
potential of KD strategies in chest X-ray disease classifications.
Althoughwe demonstrated the outperformance of Self-training
KD in terms of classification results compared with
base-training and standard-training KD, the time-consuming
and enormous costs of computation presented substantial
shortcomings of the Self-training KD framework. Besides,
our KD model independently extracted instance features as
the distilled knowledge from specific layers of the teacher
models, without considering the instance’s relationship to
the student models or the inference procedure. It is difficult
for student models to directly fit all the layer outputs from
teachers. Therefore, it is necessary to create new KD designs
that can help reduce the intra-class variances and magnify
inter-class differences in the feature space, as well as prevent
the occurrence of significant performance drops when both
teachers and students have different architectures, as seen
in [52]. It might also be better to replace the process of
mimicking the teacher’s representation space with that of

preserving the pairwise similarities in the student’s own
representation space [53].

Lastly, there are 60,412 normal images and 51,708 images
with at least one or more labels that yield to the problem of
interdependency among labels. For example, an image, which
is indicated with the presence of edema, possibly includes the
presence of both consolidation (air space opacification) and
pleural effusion (the pleural space with the abnormal fluid).
This generated much disturbance for our proposed models to
be trained and produced lower AUC scores since the proposed
method recognized the potential of these interdependencies
and further predicted pathological outcomes across all tho-
rax categories ineffectively. Therefore, an approach, which
allows the distillation at different internal points across the
teacher and entitles the student to learn and compress the
abstraction in the hidden layers systematically, is necessar-
ily required. With proper internal representations, the stu-
dent may outperform its conventional approach on either
ground-truth labels, soft-labels, or both. From our observa-
tion, the poorly-trained teacher could remarkably enhance the
student itself (as results shown by Defective KD), it is justifi-
able to interpret KD as a regularization term and to scrutinize
KD from the perspective of Label Smoothing Regularization
(LSR) [62]. LSR can mitigate the over-confidence problem
and improvemodel calibration by replacing the one-hot labels
with smoothed labels. The smoothed label can be split into
two parts: the first part is the ordinary cross-entropy (one-hot
label) distribution and the output; the second part corresponds
to the virtual teacher to provide soft-targets by a uniform dis-
tribution. This indeed furnishes efficient regularization for the
student and feasibly overcome the issue of interdependency
among thorax labels.

VI. CONCLUSION
In this work, we proposed KD training strategies along with
three types of saliency mapping techniques, with the aim of
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correctly classifying and visualizing 14 pathological thorax
diseases from the public ChestX-ray14 datasets. Our experi-
ments demonstrated the feasibility of implementing different
KD training strategies, suggesting that the targeted models
into which the distilled knowledge is transferred can be
enhanced by the self-training KD method when difficulties
arise in choosing superior teachers or when limited computa-
tion resources are available. Also, the results of the saliency
mapping algorithms show promise in highlighting abnormal
regions, despite featuring unbalanced and limited annotations
of pathologies. Its capabilities can further represent a power-
ful tool with which clinicians or radiologists can review and
interpret the decision-making processes of CAD algorithms
in thorax disease diagnoses.
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