
Received July 24, 2020, accepted August 23, 2020, date of publication August 31, 2020, date of current version September 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3020233

Task Allocation Mechanism of Power Internet of
Things Based on Cooperative Edge Computing
QIANJUN WANG , SUJIE SHAO , (Member, IEEE), SHAOYONG GUO ,
XUESONG QIU , (Senior Member, IEEE), AND ZHILI WANG
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding authors: Sujie Shao (buptssj@bupt.edu.cn) and Zhili Wang (zlwang@bupt.edu.cn)

This work was supported in part by the Beijing Natural Science Foundation through the Research on Adaptive Fault Recovery Mechanism
for Electric Power IoT under Grant 4194085, and in part by the Fundamental Research Funds for the Central Universities under Grant
2019RC08.

ABSTRACT Edge computing can be widely used in unmanned aerial vehicle (UAV) inspection, field
operation control, power consumption information collection and other businesses in the power Internet
of Things scene. Edge computing offloads functions such as data processing and applications to network
edge nodes near the terminals to provide low-latency services and ensure service quality. However, with
the explosive growth of business terminals, the capacity of single edge node is limited and it is difficult to
meet all business requirements at the same time. Therefore, this article proposes a task allocation mechanism
based on cooperative edge computing. Firstly, a task allocation model based on cooperation of two edge
nodes is established to minimize the average task completion delay while meeting business requirements.
Secondly, the Two-edge-node Cooperative-task Allocation based on Improved Particle Swarm Optimization
(TCA-IPSO) algorithm is proposed, which applies the crossover and mutation strategy in genetic algorithm
to improve the particle swarm optimization algorithm, and solves the problem that the task allocation scheme
in cooperation is prone to fall into a local optimum. Finally the simulation results show that the proposed
TCA-IPSO algorithm reduces the average task completion delay by 53.8% and 36.0% compared to the
benchmark and QoS-based Task Distribution (QBTD) algorithm.

INDEX TERMS Cooperative edge computing, power Internet of Things, task completion delay, task
allocation.

I. INTRODUCTION
The power Internet of Things is the application of the internet
of things (IoT) in the smart grid. It effectively integrates com-
munication infrastructure resources and power system infras-
tructure resources, realizes the interconnection of all things
in the power system, comprehensive state perception and
efficient information processing. Power Internet of Things is
an example of Energy Internet [1] in power companies. They
aim to build a new open and shared energy ecology. But they
have different perspectives. The power Internet of Things
starts from electricity and then goes into the comprehensive
energy beyond electricity. Energy Internet starts from the
energy nodes such as power network and natural gas network,
and interconnects them to form a shared network.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ting Wang .

The power Internet of Things provides various services
such as video monitoring, sensing detection and equipment
inspection [2], [3]. Generally, these business requirements
are diversified, such as video monitoring and equipment
diagnosis, which require high resources while smart meter
monitoring and inspection robots are sensitive to delay and
require timely calculation results. With the construction and
continuous development of the power Internet of Things,
the amount of business terminals’ data has shown explosive
growth. As a result, the pressure on network transmission and
cloud center load has increased under the cloud computing
model. Processing delays are also difficult to meet most
business requirements.

In order to solve the problem, edge computing has been
applied in the power Internet of Things as an extended solu-
tion of cloud computing [4]. The power Internet of Things
architecture based on edge computing is shown in Figure 1.
Deploy edge nodes with computing and storage capabilities

158488 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-5810-561X
https://orcid.org/0000-0003-3945-0706
https://orcid.org/0000-0003-2033-8431
https://orcid.org/0000-0002-7899-539X
https://orcid.org/0000-0002-7223-8849

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

FIGURE 1. The power IoT structure based on edge computing.

such as wireless access points, routers, software defined net-
work (SDN) switches, and edge servers at the edge of the
network. Power business terminals are connected to edge
nodes through wired, Wi-Fi, micro-power wireless, 4G / 5G,
and low-power wide area networks. Putting computing tasks
at the edge nodes can reduce network transmission and cloud
load.

Compared with the cloud center, the resources of edge
nodes are still very limited. As the number of business ter-
minals grows, it is difficult for edge nodes to simultaneously
meet the different needs of power IoT services. At the same
time, there are differences in load between edge nodes. First,
the geographical distribution of business terminals is unbal-
anced when they connected to edge nodes. Second, in sudden
situation a large number of information collection terminals
upload data for processing. As a result, some edge nodes need
to process lots of business requests while other edge nodes
are relatively idle. Therefore, the unbalanced time and space
distribution of business requests will further exacerbate the
severity of the problem.

In order to solve the problems, the cooperative edge com-
puting can be adopted. The tasks of the single business ter-
minal are offloaded to multiple edge nodes for computing so
as to optimize resource usage and reduce the service delay.
In video data analysis services, video acquisition terminal
uploads a large amount of video data when a substation is in
a sudden fire situation. Multiple edge nodes can cooperate to
process large amounts of video data. In intelligent inspection
services, when multiple inspection robots access to the same
edge node, the edge node resources are insufficient to meet
requirements of multiple robots at the same time. So other
edge nodes are required to cooperate to process the collected
data. The work in [5], [6] shows that cooperative computing
of edge nodes is better than offloading tasks to a single edge
node. References [7], [8] propose cooperative computing of
edge nodes, in which the main concern is how to perform

optimal task allocation and resource allocation for reducing
task completion delay. Reference [9] focuses on network
traffic scheduling while considering task scheduling issues,
and it models the joint issues to minimize overall completion
latency. Reference [10] integrates the horizontal offloading
of edge nodes in the cloud-edge-end three tier computing
offloading framework to improve resource utilization. Ref-
erence [11] considers the dependencies between tasks in
task assignment and proposes a complete polynomial time
approximation scheme to solve the optimal task assignment.
In these literatures, horizontal cooperation balances com-
puting load and reduces business service delays. However,
the above methods do not consider the multiple require-
ments of business at the same time, including computing
resource requirement, storage resource requirement and delay
requirement. Some literatures only consider how to compute
cooperatively for a single request instead ofmultiple requests.

Aiming at the problem of limited edge node resources and
unbalanced load that make business requirements difficult to
meet in the power IoT scenario, we propose a task allocation
mechanism based on cooperative edge computing to mini-
mize the average task completion delay under the constraints
of business requirements. More specifically, the main contri-
butions are as follows:
• In order to make better use of edge node resources
and reduce business completion delay, a task allocation
model based on cooperation of two edge nodes is pro-
posed. In the model, the business request and resource
model and delay model are established respectively, and
then cooperative computing model is built, including
three types: independent computing of access points,
cooperative computing of access point and neighbor
edge nodes, and cooperative computing of neighbor
edge nodes, which aim to shorten the average task com-
pletion delay under the constraints of business require-
ments.

• The model is transformed into an integer non-linear
programming problem, and the TCA-IPSO algorithm is
proposed for solving. The algorithm uses the crossover
and mutation operations of the genetic algorithm to
improve the particle update strategy in the particle
swarm optimization algorithm. While the particles
maintain learning ability, the diversity of the particle
population is improved and precocity is prevented from
falling into a local optimum.

The rest of the paper is organized as follows: The chapter II
reviews the related work of cooperative edge computing. The
chapter III establishes the task allocation model based on the
cooperative edge computing. The chapter IV introduces the
TCA-IPSO algorithm. The chapter V shows the performance
of proposed algorithm by simulation. The chapter VI summa-
rizes the paper and draws conclusions.

II. RELATED WORK
Cooperative edge computing mainly studies how business
requests are allocated and completed in the edge network

VOLUME 8, 2020 158489

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

to provide satisfactory services. Aiming at the problems of
insufficient resources at the edge of the network, uneven
time and space distribution of business requests, unreasonable
task allocation and insufficient life span of edge nodes, there
are four types of edge cooperation study: 1) Edge coop-
eration with latency as the optimization goal. It is mainly
targeted at service scenarios with high delay requirements.
2) Edge cooperation technology with energy consumption as
the optimization goal. It mainly considers that some edge
devices have limited battery capacity due to their portability.
It focuses on the energy consumption problem and aims to
minimize the overall energy in the case of business response
time constraints. 3) Edge cooperation technology that starts
from service response time and energy consumption. It real-
izes joint optimization of factors such as delay and energy
consumption. 4) Edge computing with network performance
as optimization goal including network throughput, load bal-
ancing of edge nodes.

Latency is a key point in the research of cooperative edge
computing. Reference [10] proposes a cooperative offloading
framework in a three-tier mobile edge computing network.
At the same time, it focuses on horizontal offloading between
edge nodes. Through the joint optimization of offloading
decisions and computing resource allocation, it minimizes the
average task duration in the case of limited equipment power.
Reference [11] studies the task assignment problem with task
dependency, minimizes service delay under the constraint of
resource cost, and finally provides an approximate polyno-
mial algorithm to solve the problem.Aiming at the problem of
computing offload in fog computing networks, [12] proposes
a fog node (FN) cooperation strategy for offloading prob-
lem, which translates the offloading problem into a workload
allocation problem for minimizing services delay at a given
power efficiency. Then a parallel optimization framework
based on alternating direction method of multipliers is used
to solve the problem and improve the network performance
of fog computing. Reference [13] proposes a task allocation
mechanism based on edge computing, which assigns different
types of tasks to the corresponding virtual machines (VM) in
each cloudlet, and finds the optimal VM resource allocation
strategy to minimize the average response delay of the appli-
cation.

Although allocating tasks on edge devices for process-
ing can guarantee the real-time advantages of edge com-
puting environments, generally mobile edge devices have
limited battery capacity. For this reason, the energy consump-
tion of devices need to be optimized. Reference [7] con-
siders a three-node mobile edge computing (MEC) system
including user nodes, auxiliary nodes, and access point (AP)
nodes.Then it develops an energy-saving design framework
for partial and binary offloading. Reference [14] studies the
cooperation between mobile devices and MEC in the use
scenario of wearable devices, and builds a two-layer task
unloading model to minimize the energy consumption of
Mobile devices and MEC under the constraint of service’s
delay. Reference [15] studies cooperative communication

method in thewireless transmissionMEC system of two users
to minimize AP transmission energy, and a two-stage method
is proposed to obtain the optimal resource allocation strategy.

Cooperative edge computing should not only consider
the time delay of task completion, but also consider the
energy consumption factor of edge node as the same time.
Reference [16] establishes a cooperative computing system
to handle user offloading work. They share fog network
resources through FN cooperative forwarding. Then a joint
energy and time cost minimization problem is proposed.
Finally it designs a low complexity of fairness cooperation
algorithm (FCA) to solve the optimization problem. Refer-
ence [17] proposes Mobile Edge Computing-Base Station
(MEC-BS) cooperation strategy, which offloads queued tasks
on MEC to other MEC-BS directly connected to enhance
service satisfaction, and finally converts it into the prob-
lem of maximizing the total time and energy consumption.
Reference [18] proposes a lightweight computing offloading
method, which can improve the performance of wearable
devices and reduce energy consumption by distributing com-
puting tasks of wearable devices to multiple nearby mobile
devices.

There are also some literatures that take network through-
put and load balancing as optimization goals. Reference [8]
proposes a communication-aware chained task scheduling
method that takes into account the large amount of commu-
nication costs in dispersed computing. It proposes a virtual
queuing network that encodes the state of the network, and
uses the Max-Weight type scheduling strategy to achieve
optimal network throughput. Finally, the scheduling prob-
lem is extended to the directed acyclic graph (DAG) task
model. Reference [19] proposes a two data center cooperation
scheme for fog or edge computing environments. When the
data center buffer is full, the upcoming tasks are migrated
to adjacent data center. At the same time, each data center
adopts the same strategy to handle the task, which minimizes
the blocking state of each edge node.

In addition, there are some literatures discussing col-
laborative edge computing from some novel perspectives
recently. Reference [20] proposes an edge computing frame-
work to enable cooperative processing on resource-abundant
mobile devices for delay-sensitive multimedia IoT tasks.
It optimally forms mobile devices into video processing
groups and dispatch video chunks to proper video processing
groups. Reference [21] studies the multi-hop computation-
offloading problem for the Industrial Internet of things (IIoT)-
edge-cloud computing model and adopts a game-theoretic
approach to achieving quality of service (QoS)-aware com-
putation offloading in a distributed manner. The proposed
algorithm offers a stable performance gain for IIoT in various
scenarios. Reference [22] considers the problem of coop-
erative computation offloading for UAVs, which optimizes
the transmission data rate and resource allocation to satisfy
different QoS requirements. The proposed algorithm can
efficiently utilize heterogeneous edge servers in a cooper-
ative manner. Reference [23] proposes a novel Intelligent

158490 VOLUME 8, 2020

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

Cooperative Edge (ICE) computing framework, which real-
izes the complementary integration of edge computing and
artificial intelligence (AI) in the IoT environment from
two aspects: edge-based AI and AI-enabled edge. Refer-
ence [24] studies the joint optimization of the CPU frequen-
cies, the offloading bits, the transmit power, and the UAV’s
trajectory of the UAV-enabled wireless powered cooperative
MEC system. An optimization problem is formulated to
minimize the required energy of UAV. A successive convex
approximation (SCA)-based algorithm-based algorithm and
a decomposition and iteration (DAI)-based algorithm are
proposed to tackle the nonconvex problem. Reference [25]
proposes a novel paradigm of socially-motivated cooperative
mobile edge computing, which leverages the social tie struc-
ture among mobile and wearable device users for achieving
effective and trustworthy cooperation in task executions.

Particle Swarm Optimization (PSO) is a random search
algorithm based on group cooperation, which is developed by
simulating foraging behavior of birds. The algorithm is often
used in the optimization problem recently. Reference [26]
proposes nonlinear exponential inertia weight PSO algorithm
which is used to get solution in the edge-cloud collabora-
tive multi-task computing unloading model. By dynamically
adjusting the inertia weight, the algorithm can make up for
the convergence premature defect of the standard PSO, and
effectively avoid falling into the local optimal solution. Ref-
erence [27] proposes a task offloading scheme merely relying
on vehicle-to-vehicle communication, which is further solved
by the PSO algorithm. The standard particle position update
formula is used, and the problem of particles not meeting the
constraints is solved through adjustment. Reference [28] pro-
poses ILCDPSO algorithm which improves the convergence
speed of particle swarm algorithm by adding local search
strategy and chaotic sequence. Genetic algorithm (GA) is also
widely used in solving optimization problems. Reference [29]
proposes an improved GA in which the crossover probability
and mutation probability are dynamically adjusted accord-
ing to the change of individual fitness, and the convergence
speed of the algorithm is accelerated. A number of hybrid
algorithms of GA and PSO also have been proposed. Refer-
ence [30] designs a suboptimal algorithm named as hierar-
chical GA and PSO-based computation algorithm, in which
GA and PSO are executed alternately until the number of iter-
ations is satisfied. Reference [31] proposes HGAPSO algo-
rithm based on the idea of updating particle positions in the
particle swarm. The next generation chromosome is modified
by recording the historical optimality of each chromosome
and population optimality, which is applied to change the
mutation operation rule.

III. TASK ALLOCATION MODEL BASED ON
COOPERATION OF TWO EDGE NODES
The flowchart of the task allocation mechanism based on
the cooperative edge computing is shown in Figure 2. First,
a task allocation model based on cooperation of two edge
nodes is established based on all business requests and the

TABLE 1. Definition of variables used in the article.

idle resources of the edge nodes at a certain moment. We ana-
lyze business requests, resources, delay and cooperative com-
puting separately. Then we build task allocation problem
to minimize the average task completion delay. Finally we
propose the TCA-IPSO algorithm to solve the problem. The
TCA-IPSO algorithm improves the standard particle swarm
algorithm and introduces the crossover and mutation oper-
ations into the particle update strategy so that the particles
approach the optimal solution.

A. BUSINESS REQUEST AND RESOURCE
Assume that the number of user end (UE) and edge node (EN)
in the network are N , M respectively. EN is an edge device
with computing and storage capabilities. N = {1, 2, . . . ,N }
and M = {1, 2, . . . ,M} denote UE set and EN set respec-
tively.

The task request of a UE is cooperatively completed by
EN collection. Considering that multiple EN cooperation will
bring certain communication overhead, we adopt two ENs
cooperation method. The decision of the cooperative ENs is
represented by R. All the subtask of UE i is completed by EN
set Ri = {ri1, ri2 ∈M}.

The subtask set requested by UE i is Ti, where the subtask
j is represented by wij = (cij, eij, dij, tij, λij). cij represents the
computing resource requirement, eij represents the storage
resource requirement, dij represents the amount of input data,
tij represents the computing delay if the resource requirement
is met, and λij represents the ratio of the result data amount
to the input data amount. There is no temporal dependency

VOLUME 8, 2020 158491

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

FIGURE 2. Flowchart of the whole method.

between subtasks, so they can be completed independently.
t̂i represents the delay constraint of Ti. Considering the
resources of edge nodes are heterogeneous, we use container
and virtualization technologies to support the implementation
of resource allocation. The amount of required resources is
represented by the number of virtual resource units.

Assume that all UE requests are sent simultaneously at a
certain time. (Ck ,Ek) represents the idle resources of EN k .
Ck and Ek indicate the number of idle virtual computing units
and idle virtual storage units respectively. The task allocation
decision X = {xijk} is specified as follow,

xijk =

{
1 if subtask j of UE i is allocated to EN k
0 else

(1)

A subtask of UE i can only be executed by one EN in Ri,
so it has the following constraints∑

k∈M
xijk = 1 (2)

j ∈ Ri, ∀xijk = 1 (3)

EN needs to meet the computing and storage resource
requirements of the subtasks that allocated to itself. SumcompR,X ,k

and SumstoR,X ,k represents the amount of EN k computing
and storage resource units that should be satisfied under
cooperative node decision R and task allocation decision X .
Therefore, the constraints is as follow,

SumcompR,X ,k =
∑
i∈N

∑
j∈Ti

cijxijk ≤ Ck , k ∈M (4)

SumstoR,X ,k =
∑
i∈N

∑
j∈Ti

eijxijk ≤ Ek , k ∈M (5)

B. DELAY
Each UE accesses the nearest EN. We assume that ENs and
UEs will not move. EN ui ∈M represents the access point of
UE i, so the UE set associated with EN k can be represented
as Nk = {i : i ∈ N , ui = k}.
The bandwidth resource of EN k is Bk Hz. We default

that EN bandwidth is allocate by the UEs associated with
the EN evenly. There is no other interference between UEs
when they connect to the same EN. We denote the uplink
spectral efficiency between UE i and EN ui as ηi. It can be
approximated by Shannon’s formula ηi = log(1 + yi). The

uplink signal-to-noise ratio of UE i is yi =
pihi,ui
σ 2 , where

158492 VOLUME 8, 2020

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

pi is the transmission power of UE i, hi,ui is channel gain
between UE i and ENui, and σ 2 is additive white Gaussian
noise power. Therefore when the UE i accesses the EN ui,
the uplink transmission rate of the UE i for radio access can
be given by

vi =
Bui
|Nui |

log(1+ yi) (6)

where |Nui | denotes the number of UEs that connected to the
EN ui.

Similar to [32], [33], the downlink bandwidth of the UE
i is much higher than the uplink bandwidth, and data size
after task processing is usually much smaller than it before
processing, so we ignore the downlink transmission delay of
sending the task results from ENs ui to UE i.

We denote the data transmission rate from EN k to EN
k ′ as vk,k ′ . Similar to [34], [35], it is assumed that the data
transmission rate can be obtained by measurement.

C. COOPERATIVE COMPUTING
The subtasks of UE i are completed cooperatively by EN set
Ri = {ri1, ri2 ∈ M}. ri1 and ri2 process part of them. The
subtask results are aggregated at single EN in Ri and finally
returned to the access point EN ui. According to whether EN
ui participates in cooperation, there are three types of coop-
eration methods: 1). Access point computing independently,
ri1 = ri2 = ui.2). Cooperative computing of access point and
neighbor EN, ri1 = ui, ri2 6= ui 3). Cooperative computing
of two neighbor ENs, ri1 6= ui, ri2 6= ui, ri1 6= ri2. The three
cooperation methods are shown in Figure 3. In the two-edge-
nodes cooperation, the cooperative nodes are the nodes which
participate in the task computing, excluding the nodes for task
and processed result forwarding.

Figure 3(a) shows the cooperation method 1, in which
access point completes the subtasks T1, T2 and T3 sent by the
UE. Figure 3(b) shows the cooperationmethod 2, in which the
access point completes the subtask T1 and T2, and another
neighbor EN completes the subtask T3, and the processed
results finally are merged in the access point. Figure 3(c)
shows the cooperation method 3, in which two neighbor ENs
complete, and one merges the processed results and returns
them to access point.
T finishi,ri1,ri2

represents the cooperative completion delay of UE
i, which includes the communication delay of task input data
sent from EN ui to EN ri1 and ri2, the computing delay on EN
ri1 and EN ri2, and the delay of results merging and returning
to EN ui.

1) ACCESS POINT COMPUTING INDEPENDENTLY
The subtasks of the UE i are all completed by the EN ui, so the
cooperative completion delay of the UE i is

T finishi,ri1,ri2
= T compi,ui =

∑
j∈Ti

tij = 1 (7)

FIGURE 3. Three cooperation methods.

2) COOPERATIVE COMPUTING OF ACCESS POINT EN ui
AND NEIGHBOR EN ri2
First, the EN ui completes some subtasks of the UE i, and
another part are sent to the neighbor EN ri2 for computing.
After the subtask computing on the EN ri2 is completed,
the results are returned to the EN ui for merging. The comput-
ing delays of the subtasks on EN ui and EN ri2 are T

comp
i,ui =∑

j∈Ti
tijxijui , T

comp
i,ri2
=

∑
j∈Ti

tijxijri2 .

The data transmission delay from EN ui to EN ri2 is

T commi,ui,ri2
=

∑
j∈Ti

dijxijri2
vui,ri2

, and the transmission delay of the

VOLUME 8, 2020 158493

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

computing result back to ui is T commi,ri2,ui
=

∑
j∈Ti

λijdijxijri2
vri2,ui

. So the

cooperative completion delay of the UE i is

T finishi,ri1,ri2
= max{T compi,ui ,T commi,ui,ri2 + T

comp
i,ri2
+ T commi,ri2,ui} (8)

3) COOPERATIVE COMPUTING OF TWO NEIGHBOR EN
EN ui divides the subtasks into two parts and forwards them to
EN ri1 and ri2 respectively. Finally, the processed results are
merged on ri1 or ri2 and sent back to EN ui. The results are
merged on the last EN that completes its subtask. We denote
the EN as ri1.
The communication delays of EN ui sending the subtasks

of to EN ri1 and ri2 are T commi,u1,ri1
=

∑
j∈Ti

dijxijri1
vui,ri1

and T commi,ui,ri2
=

∑
j∈Ti

dijxijri2
vui,ri2

respectively.

The computation delays on EN ri1 and ri2 are T compi,ri1
=∑

j∈Ti
tijxijri1 , T

comp
i,ri2
=

∑
j∈Ti

tijxijri2 respectively.

The communication delay for sending subtask result from

the EN ri2 to the EN ri1 is T commi,ri2,ri1
=

∑
j∈Ti

λijdijxijri2
vri2,ri1

, and the

communication delay for all the subtask results from the EN

ri1 to the EN ui after merging is T commi,ri2,ui
=

∑
j∈Ti

λijdij
vri1,ui

.

The subtask results merging time depends on themaximum
value of time when the subtask is completed on EN ri1 and
the time when the subtask result computed by EN ri2 has been
sent to EN ri1, so the cooperative completion delay for UE is

T finishi,ri1,ri2
= max{T commi,ui,ri1 + T

comp
i,ri1

,T commi,ui,ri2 + T
comp
i,ri2

+T commi,ri2,ri1} + T
comm
i,ri1,ui (9)

D. PROBLEM MODEL
The total delay from the time when the UE i sends the task
request to the time when it receives the calculation result is

Ti = tupi,ui + T
finish
i,ri1,ri2

+ T downi,ui = T upi,ui + T
finish
i,ri1,ri2

(10)

where T upi,ui =
∑
j∈Ti

dij
vi

represents the delay of uploading

imput data and T downi,ui represents the delay of returning the
processing result from EN ui to the UE i. As described above,
the delay is small and ignored, and the computing delay of
execution decision and the transmission delay of returning
decision data are also ignored. Therefore, the average com-
pletion delay of tasks for all UEs is

T =
1
N

∑
i∈N

Ti (11)

This article describes the task allocation problem as minimiz-
ing the average completion delay of tasks. We hope that the
model can consider all users and realize the global optimiza-
tion of the system. The task allocation decision of the UE is

represented by (R,X), R = {Ri, i ∈ N }. Therefore, the task
allocation problem in this article is described as follows,

P1 : MinimizeT

s.t.
∑
i∈N

∑
j∈Ni

cijxijk ≤ Ck , k ∈M C1

∑
i∈N

∑
j∈Ni

eijxijk ≤ Ek , k ∈M C2

Ti ≤ t̂i, i ∈ N C3

Ri = {ri1, ri2 ∈M}, i ∈ N C4

k ∈ Ri, ∀xijk = 1, i ∈ N , j ∈ Ti,
k ∈M C5∑
k∈M

xijk = 1, i ∈ N , j ∈ Ti C6

xijk ∈ {0, 1}, i ∈ N , j ∈ Ti, k ∈M C7 (12)

C1 and C2 indicate that EN needs to meet the subtask’s
computing and storage resource requirements in task alloca-
tion. C3 indicates that each task is to be completed within
the time constraint. C4 and C5 indicate that each subtask of
the UE i can only be completed by the EN in Ri. C6 means
that each task can only be completed by one EN. C7 indicates
whether the subtaskwij is completed on EN k , xijk = 1 means
yes, xijk = 0 means no.
It is a challenge to ensure that the task allocation scheme

meets the resource and delay constraints. That is to say, for
each EN it is necessary to ensure that EN can all meet the
resource requirements of the tasks assigned to it, and the task
allocation decision should meets the task delay requirements.
This is an important premise for us to minimize the average
delay.

IV. TCA-IPSO ALGORITHM
Standard PSO algorithm is difficult to solve the discrete opti-
mization problem. The initial position and speed of particle
are continuous variables, and the particle’s position update
formula in the algorithm is only suitable for continuous vari-
ables. However, the problem proposed in this article is in
discrete space. We propose TCA-IPSO algorithm to solve P1,
in which crossover and mutation operations in the GA are
used to improve the update formula in PSO. The crossover
and mutation operations can handle discrete variables well.
Reference [28] does not fuse GA and PSO, and the algo-
rithm still retains GA and PSO’s own problems such as slow
convergence and difficulty in achieving global optimum. The
TCA-IPSO embeds the crossover and mutation operations
of the genetic algorithm into the PSO algorithm. While pre-
serving the historical memory of particle, the crossover and
mutation operations improve the diversity of the population
and can better converge to the global optimum.

TCA-IPSO encodes the decision variablesR,X in (12), and
each particle represents a task allocation scheme. We estab-
lish particle update strategy and particle Fitness function
based on the input of the problem in (12) (resources of EN,
requirements of UE, etc.), which are used to make the parti-

158494 VOLUME 8, 2020

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

cles evolve towards the optimal direction. Firstly, we encode
the problem P1. Secondly we define the Fitness function for
evaluating particle quality. Thirdly we describe the particle
update strategy, and finally we give the TCA-IPSO algorithm
flow.

A. PROBLEM ENCODING
Assume the particle population size is Y . The lth particle
represents D-dimensional position vector, denoted as S l =
(sl1, s

l
2, . . . , s

l
D). The optimal position of the lth particle so

far is the individual optimal value, denoted as PS lbest =
(pl1, p

l
2, . . . , p

l
D), and the optimal position of the whole par-

ticle swarm so far is the global optimal value GSbest =
(g1, g2, . . . , gD).

We adopt the discrete coding strategy to generate candidate
particles, and each particle represent a cooperation decision
and task allocation decision. If X = {xijk} is directly used
as the position vector of particles in the TCA-IPSO, the vec-
tor dimension will be relatively high, which will affect the
efficiency of the algorithm. We recode the position vector of
particles. The position vector of lth particle after t iteration is
expressed as

S l(t) = (Rl(t),Z l(t))

= (r l11(t), r
l
12(t), . . . , r

l
N1(t), r

l
N2(t), z

l
11(t), z

l
12(t), . . . ,

zlN |TN |(t)) (13)

where r li1(t), r
l
i2(t) ∈ [1,M] means the EN r li1(t) and r

l
i2(t)

cooperate to complete the task Ti of UE i. So the constraint
C4 is met. zlij(t) ∈ {1, 2} represents the subtask j of the UE i
executed on r l

izlij
(t) so the contraints C5, C6 and C7 are met.

So in fact S l(t) is equivalent to the decision vector X = {xijk}
of a task allocation scheme. For the sake of convenience,
we unify the symbols,

S l(t) = (sl1(t), s
l
2(t), . . . , s

l
D(t)) (14)

where D = 2N +
N∑
i=1
|Ti|.

B. FITNESS FUNCTION
The Fitness function is used to evaluate particle quality and
is also an optimization goal in TCA-IPSO algorithm. Since
there are constraints in the problem P1, but the evolutionary
algorithm is an unconstrained search technology. It cannot
guarantee that every particle is always in the feasible region.
It is necessary to combine constraint processing technology
in the process for solving constrained optimization problem.
We construct a constraint violation function through con-
straint C1-C3 and integrate it into the Fitness function. The
constraint violation degree function is as follows,

G(S) =
∑
k∈M
{max{SumcompS,k − Ck , 0} + max{Sum

sto
S,k

−Ek , 0}} +
∑
i∈N

max{Ti − t̂i, 0} (15)

G(S) represents the sum of constraint violations of all EN’s
computing resources, storage resources and delay. When the
particle is within the feasible region, G(S) = 0, that is, all the
particles satisfying G(S) = 0 constitute the feasible region of
the search space. When particle is not in the feasible region,
G(S) > 0. In order to ensure that the problem in (12) can
be solved and the constraint C1-C3 are met at the same time,
we merge the constraint C1-C3 into the Fitness function. The
Fitness function is defined as follow,

Fitness(S) =
1

(1− γ)T (S)+ γG(S)
(16)

Larger G(S) or T (S) value will result in smaller fitness
value which will influence the flight direction of particle.
We usually set γ close to 1, in order to ensure that when the
constraints C1, C2, and C3 are not satisfied the fitness value
will tend towards 0.

C. UPDATE STRATEGY
In the update strategy particles obtain information from his-
torically optimal particles and globally optimal particles.
It makes the particles evolve towards the optimal direc-
tion.The globally optimal particle obtained is the optimal task
allocation scheme. Since the particle uses the discrete encod-
ingmethod, the update strategy in the standard particle swarm
optimization algorithm is no longer applicable. In this article,
the crossover and mutation operations in genetic algorithm
are used to update the particle position.

S l(t + 1) = δ2 ⊕Mutate(c2, δ1 ⊕ Cross(c1, δ0 ⊕ Cross(c0,

S l(t),PS lbest),GSbest)) (17)

whereCross() andMutate() represent crossover operation and
mutation operation respectively. The specific crossover and
mutation processes are shown in Figure 4. In Figure 4 (a), Ŝ
represents the individual optimal particle PS lbest or the global

FIGURE 4. Crossover and mutation operation.

VOLUME 8, 2020 158495

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

optimal particle GSbest . It selects some crossover points to
cross particle S and Ŝ. In Figure 4(b), some mutation points
are selected from S for mutation.

Through crossover operation, each particle can obtain the
position information from the historical optimal particle and
the global optimal particle directly, thereby converging to the
historical optimal and global optimal. Themutation operation
can improve the diversity of particles and prevent them from
falling into local optimum.

1) CROSSOVER
Cross(c0, S l(t),PS lbest) represents that S

l(t) and PS lbest cross,
and Cross(c1, δ ⊕ Cross(c0, S l(t),PS lbest),GSbest) represents
that GSbest cross with the crossover result of S l(t) and PS lbest .
c0 and c1 are learning factors, which represent the number of
crossover points with PS lbest and GSbest respectively. In this
article, crossover points are selected by random strategy. The
symbol⊕means to cross or mutate with a certain probability,
as shown below,

δ0 ⊕ Cross(c0, S l(t),PS lbest)

=

{
Cross(c0, S l(t),PS lbest) r0 < δ0

S l(t) else
(18)

δ1 ⊕ Cross(c1,U l(t),GSbest)

=

{
Cross(c1,U l(t),GSbest) r1 < δ1

S l(t) else
(19)

where δ0 and δ1 are constants within the range (0,1). U l(t) =
δ0 ⊕ Cross(c0, S l(t),PS lbest), r0, r1 are random numbers
within the range [0, 1]. when r0 < δ0, S l(t) and PS lbest cross.
(19) is the same.

2) MUTATION
Mutate(c2, S l(t)) represents the mutation operation where c2
is the number of mutation points. The random strategy is
adopted to select c2 mutation points. In S l(t), partial values
of r l(t) are randomly changed to value within [1, |M|], and
zl(t) is randomly changed to the value within [1, 2].

δ2 ⊕Mutate(c2, S l(t))=

{
Mutate(c2, S l(t)) r2 < δ2

S l(t) else
(20)

r2 is the random number within [0, 1].when r2 < δ2
the mutation operation is carried out. The specific process
of TCA-IPSO algorithm is as follows. The output of the
algorithmGSbest is the optimal task allocation scheme, which
is equivalent to the optimal solutionX = {xijk} in problem P1.

In every crossover and mutation, the expectation of the
crossover and mutation points are c0r0 + c1r1 + c2r2, so the
complexity of crossover andmutation isO(c0r0+c1r1+c2r2).
The complexity of G(S) and T (S) in Fitness function are

respectively O(N + M) and O(
N∑
i=1
|Ti|). So the complexity

of Fitness function is O(N + M +
N∑
i=1
|Ti|). The number

Algorithm 1 TCA-IPSO
Input: N ,M, Ti,wij,t̂i, Ck , Ek .
Output: GSbest
1: Initialize the position of each particle.
2: for t = 1 to n do
3: for l = 1 to Y do
4: S l(t + 1) = δ2 ⊕ Mutate(c2, δ1 ⊕ Cross(c1, δ0⊕
Cross(c0, S l(t),PS lbest),GSbest))

5: Fitness(S) = 1
(1−γ)T (S)+γG(S)

6: if Fitness(S l(t)) > Fitness(PS lbest) then
7: PS lbest = S l(t)
8: if Fitness(PS lbest) > Fitness(GSbest) then
9: GSbest = PS lbest

10: end if
11: end if
12: end for
13: end for

of particles and iteration are Y and n. The computational
complexity of TCA-IPSO algorithm is O(Y × n× (N +M +
N∑
i=1
|Ti| + c0r0 + c1r1 + c2r2)).

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. SIMULATION STEPS
In this section, the proposed algorithm is simulated and its
performance is verified.

Step 1: Simulate the TCA-IPSO algorithm, then study the
influence of different parameters on the convergence effect of
the algorithm.

Step 2: Study the impact of UE’s number on the coopera-
tion method in TCA-IPSO algorithm.

Step 3: Two intelligent optimization algorithms, PSO and
GA, are used to solve P1 problem, and then the convergence
effect was compared with TCA-IPSO algorithm.

Step 4: In order to verify the superiority of coopera-
tive computing in TCA-IPSO algorithm, the Benchmark and
QBTD method [36] are selected for comparison. In the
Benchmark method each task has a fixed resource require-
ment. And the tasks sent by UEs are only completed by the
access point independently. There is no cooperation between
the edge nodes. If the access point has insufficient resources,
the tasks enter the queue for queuing. In order to reduce the
task completion delay, [36] proposes a QoS-based task dis-
tribution (QBTD) approach, designed to minimize business
completed time delay. Tasks can be executed on any edge
node that meets QoS requirements.Finally the task allocation
problem is transformed into a mixed integer linear program-
ming problem.

B. SIMULATION SETTINGS
It is assumed that the simulation environment is a square
area with side length of 1km. The area contains 10 ENs
and 50 UEs, and the positions of EN and UE are randomly

158496 VOLUME 8, 2020

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

generated in the area. The CPU frequency (GHz) and storage
size (GB) of each edge node obey normal distribution, which
are Ñ1(10, 2×102) and Ñ2(102, 3×102) respectively. We set
virtual computing unit to be 0.1GHz and virtual storage unit
to be 0.5GB. The data transmission rate (KB/s) between two
edge nodes follows the normal distribution Ñ3(3× 103, 102).
The number of subtasks of each UE follows a uniform distri-
butionU (1, 5). The computing delay, the requirements of vir-
tual computing resource unit and virtual storage unit follow
poisson distribution. The mean values of poisson distribution
are λ3 = 40, λ1 = 8, λ2 = 10. Same as [33], [37] the
channel gain is expressed as follows: h = 127+ 30logd(d in
kilometers), other parameters are set as shown in the Table 2.

TABLE 2. Simulation parameters.

C. SIMULATION RESULTS
1) THE IMPACT OF DIFFERENT PARAMETERS ON THE
CONVERGENCE PERFORMANCE OF THE TCA-IPSO
ALGORITHM
The TCA-IPSO algorithm includes four important parame-
ters: population size Y , crossover probability with individ-
ual optimal particles δ0, crossover probability with global
optimal particles δ1, and mutation probability δ2. Different
parameters’ value has certain effects on search efficiency and
solution quality, as shown in Figure 5.

Figure 5 (a) shows the convergence of the TCA-IPSO
algorithm under different population numbers. It can be seen
that the larger the population size is, the better the quality of
the searched solution is and the faster the convergence speed
is at the early stage. when Y = 10, 20, 30, it converges to
125, 97, and 76 ms respectively. When Y is small, the pos-
sibility of falling into a local optimal solution is high due
to poor population diversity, and the convergence speed is
slow. As the population size increases, the diversity of the
population increases. So the probability of finding the optimal
solution and the convergence speed increases.

Figure 5 (b) shows the convergence of the TCA-IPSO
algorithm under different crossover probabilities δ0. When
δ0 is 0.4, 0.6, 0.8, it converges to 125, 82, and 92 ms,
respectively. The TCA-IPSO algorithm easily converges to
the local optimal solution when δ0 is too large or too small.
Smaller crossover probability δ0 has less impact on popula-
tion diversity which causes small probability of converging
to the global optimum. When δ0 is larger the probability of

FIGURE 5. Convergence of TCA-IPSO with different parameters.

local optimum also becomes larger, resulting in poor solution
quality.

Figure 5 (c) shows the convergence of the TCA-IPSO
algorithm under different crossover probabilities δ1. Same as
δ0, when the crossover probability with the global optimal
particle δ1 is too large or too small, the quality of the solution
will be reduced and is easy to fall into a local optimum solu-
tion. The population diversity will decrease when δ1 is too
small, and the solution will easily fall into local optimization
when δ1 is too large.
Figure 5 (d) shows the convergence of the TCA-IPSO

algorithm under different mutation probabilities. When δ2 is
0.05, 0.1, 0.15, the TCA-IPSO algorithm converges to 121ms,
89ms and 103ms respectively. And it works best at 0.1. The
reason is that the small mutation probability has little effect on
the improvement of population diversity while large mutation
probability leads to the instability of fitness value of particles,
which affects the final convergence result. Taking appropri-
ate mutation probability can prevent premature convergence
from producing local optimum.

In addition we try to find the best performance of the pro-
posedmethod under the joint impact of these four parameters.
In the experiment the range of the four parameters of Y , δ0, δ1
and δ2 are {10, 20, 30}, {0.4, 0.6, 0.8},{0.3, 0.4, 0.5}, {0.05,
0.1, 0.15}.We performed simulation experiments on 81 cases
of four parameter value combinations. The experiment shows
that the convergence result is best when Y = 30, δ0 =
0.6, δ1 = 0.4, δ2 = 0.05. It converges to 75ms.

2) THE IMPACT OF UE’s NUMBER ON RATIO OF THREE
COOPERATION METHODS
Figure 6 shows the ratio of the three cooperation meth-
ods under different numbers of UE. As the number of UE
increases, the ratios of UE using cooperation method 2 and
method 3 increase while the ratio of UE using cooperation
method 1 decreases. For example, when the number of UE is

VOLUME 8, 2020 158497

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

FIGURE 6. Three cooperation methods’ ratio with different number of
UEs.

50, the ratios of UE number in cooperation method1,2,3 are
0.76, 0.16 and 0.8. respectively. When the number of UE is
small single EN can meet the requirement. As the number
of UE increases, due to limited resources some EN need to
cooperate with their neighbor ENs to complete tasks to meet
the business requirements. When it continues to increase, part
of EN’s remaining resources are consumed. In order to meet
the business requirements and reduce the business completion
delay, cooperation 3 method is adopted.

3) COMPARISON OF CONVERGENCE PERFORMANCE OF
DIFFERENT INTELLIGENT OPTIMIZATION ALGORITHMS
PSO and GA were used to solve the P1 problem, and the con-
vergence effect was compared with the proposed TCA-IPSO
algorithm, as shown in Figure 7.

FIGURE 7. Convergence performance of different intelligent optimization
algorithms.

We can see that the performance of TCA-IPSO is the best,
and the convergence result is 74ms, while the convergence
results of PSO and GA are 111ms and 131ms. GA updates
chromosome through selection, crossover and mutation to
improve population diversity. However, memory is not pre-
served in iterations, and previous knowledge is destroyed

with population change. It is easy to converge to the local
optimal solution. PSO algorithm preserves historical mem-
ory, and updates particles by using the sharing mechanism
of historical information of individuals in the group. How-
ever, the method of update strategy is not good for discrete
optimization problems, which affects the quality of solutions.
Simultaneously PSO algorithm prematurely converges, and
the local optimization ability is poor. TCA-IPSO applied
crossover and mutation strategy to improve PSO. It enhances
the renewal ability of particle swarm and jumping out of
the local optimum. It improves the problem of premature
convergence and local optimization.

4) COMPARISON OF DIFFERENT TASK
ALLOCATION METHODS
TCA-IPSO is compared with Benchmark and QBTDmethod.
The average delay of the three methods under different UE’s
number, CPU frequency, storage size and UE distribution
unbalance degree were compared respectively.

FIGURE 8. Average delay of task allocation method with different number
of UE.

Figure 8 shows the average delay comparison of three
task allocation mechanisms, TCA-IPSO, Benchmark and
QBTD under different UE’s numbers. With the increase of
the number of UE, the average delay increases gradually,
and TCA-IPSO has the best effect. In Benchmark method,
tasks can only be completed on access point EN. If the access
point has insufficient free resources, the task will enter the
queue for queuing. As the number of UE increases, it is
difficult for a single EN to meet the all task requirements
at the same time. Therefore, tasks need to be queued on EN
for completion, resulting in an extremely increased average
completion time. QBTDmethod distributes tasks among edge
nodes to avoid excessive load on some ENs, so it reduces
queuing delay. TCA-IPSO segments the task to subtasks and
distributes them to two ENs. Therefore, with the increase of
the number of UE, the average delay increases slowly. When
UE’s number is 50, compared with Benchmark and QBTD
mechanism, the average delay decreases by 29.3% and 10.3%
respectively, and when UE’s number is 70, it decreases by
53.8% and 36.0% respectively.

158498 VOLUME 8, 2020

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

FIGURE 9. Average delay of task allocation method with different CPU
frequencies.

FIGURE 10. Average delay of task allocation method with different
storage size.

Figure 9 and Figure 10 respectively show the average
delay of the three task allocation mechanisms under different
CPU frequency and storage size. It can be seen that the
average delay of the three methods gradually decreases with
the increase of resources. The average delay of TCA-IPSO
has been kept to the minimum, because when EN load is
too high and the remaining resources are unable to meet the
business requirement, some subtasks are diverted to other idle
EN to meet the business requirement through cooperation.
In Benchmark method, for the heavily loaded EN the task
can only queue in the access point’s queue until there is
enough free resources. With the increase of computing and
storage resources of edge node, some tasks in the queue can
be directly completed. It avoids part of waiting delays in
the queue. Therefore, the average completion delay is sig-
nificantly reduced. However, considering the different load
degree in the ENs, some tasks still need to wait in the queue
on the heavily loaded EN, so the effect is worse than that of
TCA-IPSO and QBTD. In QBTD, the tasks cannot be divided
and need to be assigned to other nodes, which brings more
communication delay.

FIGURE 11. Average delay of task allocation whit different UE
distribution unbalance degree.

Figure 11 shows the average delay of the three task allo-
cation mechanisms under different UE distribution unbal-
ance degree. The distribution unbalance degree is represented
by the variance σ of number of UEs associated with EN,

σ =

√
1
M

M∑
k=1

(|Nk − µ|)2,µ =

M∑
k=1

(|Nk |)

M . It can be seen that

the average delay of the three task allocation mechanisms
increases when σ increases. The average delay of TCA-IPSO
is lower than QBTD and Benchmark. For example,when σ =
2.5 the average delay of TCA-IPSO, QBTD and Benchmark
is 75ms, 81ms and 93ms respectively. Benchmark has the
highest average delay because the higher load EN does not
divert tasks to other EN. It causes tasks to queue and task
completion delay increases. QBTDmechanism performs task
assignment in the edge network, avoiding the phenomenon
of task queuing and reducing the task completion delay.
TCA-IPSO divides the task into subtasks, which are executed
in parallel on two nodes to further reduce the average delay.

VI. CONCLUSION
The resources of edge nodes in the power IoT scene are
limited, so it is necessary to meet all the increasing business
processing demands timely through the cooperation of edge
nodes. For the issue that edge node resource is limited and
business requirements cannot be met at the same time in the
power IoT scene, task allocationmechanism based on cooper-
ative edge computing is proposed. First of all, task allocation
model based on cooperation of two edge nodes is build.
In the model business request, resource and delay are ana-
lyzed. According to whether the access point participates in
cooperation the three cooperation methods are proposed. The
model aims to minimize the average completion delay under
the constraints of business requirements, and it describes
the problem as an integer nonlinear programming problem.
Then we propose TCA-IPSO algorithm, which improves
the particle swarm optimization algorithm by applying the
crossover and mutation strategy in the genetic algorithm to

VOLUME 8, 2020 158499

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

solve the problem. Finally the simulation results show that the
TCA-IPSO algorithm reduces the average task completion
delay by 53.8% and 36.0% compared to the benchmark and
QBTD algorithm. TCA-IPSO algorithm can be applied in
power IoT scene with massive business terminals and limited
edge node resources to solve the problems of insufficient edge
node resources and business processing capacity.

The TCA-IPSO algorithm proposed in this article is a
heuristic algorithm. Due to the uncertainty of the heuristic
algorithm, its complexity cannot be accurately measured, and
the efficiency of solving the task allocation problem in the
power IoT still can be improved. In the future, we will explore
new hybrid algorithm and parallel optimization algorithm to
further improve the algorithm search efficiency.

REFERENCES
[1] B. Huang, Y. Li, H. Zhang, and Q. Sun, ‘‘Distributed optimal co-multi-

microgrids energy management for energy Internet,’’ IEEE/CAA J. Auto-
matica Sinica, vol. 3, no. 4, pp. 357–364, Oct. 2016.

[2] Y. Zhang, K. Liang, S. Zhang, and Y. He, ‘‘Applications of edge computing
in PIoT,’’ in Proc. IEEE Conf. Energy Internet Energy Syst. Integr. (EI2),
Nov. 2017, pp. 1–4.

[3] X. Niu, S. Shao, C. Xin, J. Zhou, S. Guo, X. Chen, and F. Qi, ‘‘Workload
allocationmechanism forminimum service delay in edge computing-based
power Internet of Things,’’ IEEE Access, vol. 7, pp. 83771–83784, 2019.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[5] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, ‘‘Collaborative mobile
edge computing in 5G networks: New paradigms, scenarios, and chal-
lenges,’’ IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.

[6] M. Jia, J. Cao, and W. Liang, ‘‘Optimal cloudlet placement and user to
cloudlet allocation in wireless metropolitan area networks,’’ IEEE Trans.
Cloud Comput., vol. 5, no. 4, pp. 725–737, Oct. 2017.

[7] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, ‘‘Joint computation and
communication cooperation for energy-efficient mobile edge computing,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4188–4200, Jun. 2019.

[8] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, ‘‘Communication-aware
scheduling of serial tasks for dispersed computing,’’ IEEE/ACM Trans.
Netw., vol. 27, no. 4, pp. 1330–1343, Aug. 2019.

[9] Y. Sahni, J. Cao, and L. Yang, ‘‘Data-aware task allocation for achieving
low latency in collaborative edge computing,’’ IEEE Internet Things J.,
vol. 6, no. 2, pp. 3512–3524, Apr. 2019.

[10] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou, ‘‘Cooperative
task offloading in three-tier mobile computing networks: An ADMM
framework,’’ IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2763–2776,
Mar. 2019.

[11] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, ‘‘Hermes: Latency
optimal task assignment for resource-constrained mobile computing,’’
IEEE Trans. Mobile Comput., vol. 16, no. 11, pp. 3056–3069, Nov. 2017.

[12] Y. Xiao andM.Krunz, ‘‘QoE and power efficiency tradeoff for fog comput-
ing networks with fog node cooperation,’’ in Proc. IEEE INFOCOM-IEEE
Conf. Comput. Commun., May 2017, pp. 1–9.

[13] Q. Fan and N. Ansari, ‘‘Application aware workload allocation for
edge computing-based IoT,’’ IEEE Internet Things J., vol. 5, no. 3,
pp. 2146–2153, Jun. 2018.

[14] Y. Li, G. Xu, J. Ge, X. Fu, and P. Liu, ‘‘Communication and computa-
tion cooperation in wireless network for mobile edge computing,’’ IEEE
Access, vol. 7, pp. 106260–106274, 2019.

[15] H. Ju and R. Zhang, ‘‘User cooperation in wireless powered commu-
nication networks,’’ in Proc. IEEE Global Commun. Conf., Dec. 2014,
pp. 1430–1435.

[16] Y. Dong, S. Guo, J. Liu, and Y. Yang, ‘‘Energy-efficient fair cooperation
fog computing in mobile edge networks for smart city,’’ IEEE Internet
Things J., vol. 6, no. 5, pp. 7543–7554, Oct. 2019.

[17] W. Fan, Y. Liu, B. Tang, F. Wu, and Z. Wang, ‘‘Computation offloading
based on cooperations of mobile edge computing-enabled base stations,’’
IEEE Access, vol. 6, pp. 22622–22633, 2018.

[18] M. Safar, I. Ahmad, and A. Al-Yatama, ‘‘Energy-aware computation
offloading in wearable computing,’’ in Proc. Int. Conf. Comput. Appl.
(ICCA), Sep. 2017, pp. 266–278.

[19] R. Beraldi, A. Mtibaa, and H. Alnuweiri, ‘‘Cooperative load balancing
scheme for edge computing resources,’’ in Proc. 2nd Int. Conf. Fog Mobile
Edge Comput. (FMEC), May 2017, pp. 94–100.

[20] J. Du, L. Zhao, J. Feng, and X. Chu, ‘‘Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee,’’ IEEE Trans. Commun., vol. 66, no. 4, pp. 1594–1608,
Apr. 2018.

[21] C. Long, Y. Cao, T. Jiang, and Q. Zhang, ‘‘Edge computing
framework for cooperative video processing in multimedia IoT
systems,’’ IEEE Trans. Multimedia, vol. 20, no. 5, pp. 1126–1139,
May 2018.

[22] S. Zhu, L. Gui, J. Chen, Q. Zhang, and N. Zhang, ‘‘Cooperative computa-
tion offloading for UAVs: A joint radio and computing resource allocation
approach,’’ inProc. IEEE Int. Conf. Edge Comput. (EDGE), San Francisco,
CA, USA, Jul. 2018, pp. 74–79, doi: 10.1109/EDGE.2018.00017.

[23] C. Gong, F. Lin, X. Gong, and Y. Lu, ‘‘Intelligent cooperative edge com-
puting in the Internet of Things,’’ IEEE Internet Things J., early access,
Apr. 8, 2020, doi: 10.1109/JIOT.2020.2986015.

[24] Y. Liu, K. Xiong, Q. Ni, P. Fan, and K. B. Letaief, ‘‘UAV-assisted wireless
powered cooperative mobile edge computing: Joint offloading, CPU con-
trol, and trajectory optimization,’’ IEEE Internet Things J., vol. 7, no. 4,
pp. 2777–2790, Apr. 2020, doi: 10.1109/JIOT.2019.2958975.

[25] X. Chen, Z. Zhou, W. Wu, D. Wu, and J. Zhang, ‘‘Socially-motivated
cooperative mobile edge computing,’’ IEEE Netw., vol. 32, no. 6,
pp. 177–183, Nov. 2018, doi: 10.1109/MNET.2018.1700354.

[26] J. Wu, Z. Cao, Y. Zhang, and X. Zhang, ‘‘Edge-cloud collaborative com-
putation offloading model based on improved partical swarm optimization
in MEC,’’ in Proc. IEEE 25th Int. Conf. Parallel Distrib. Syst. (ICPADS),
Tianjin, China, Dec. 2019, pp. 959–962.

[27] C. Chen, L. Chen, L. Liu, S. He, X. Yuan, D. Lan, and Z. Chen,
‘‘Delay-optimized V2 V-based computation offloading in urban vehicular
edge computing and networks,’’ IEEE Access, vol. 8, pp. 18863–18873,
2020.

[28] B. Y. Cheng, H. Lu, X. Xu, and W. Shen, ‘‘Improved local-search-based
chaotic discrete particle swarm optimization algorithm for solving trav-
eling salesman problem,’’ J. Comput. Appl., vol. 36, no. 1, pp. 138–142,
2016.

[29] Y. Guangming, Z. Yunfei, D. Chengjun, and Z. Peng, ‘‘AGV path planning
based on improved genetic algorithm,’’ J. Beijing Union Univ., vol. 32,
no. 1, pp. 65–69, 2018.

[30] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, ‘‘An efficient compu-
tation offloading management scheme in the densely deployed small cell
networks with mobile edge computing,’’ IEEE/ACM Trans. Netw., vol. 26,
no. 6, pp. 2651–2664, Dec. 2018.

[31] R. Miao, W. Yan, and S.-R. Li, ‘‘Novel hybrid GA based on
position displacement idea of PSO and its application,’’ Jisuanji
Gongcheng yu Yingyong(Comput. Eng. Appl.), vol. 43, no. 15, pp. 37–40,
2007.

[32] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, ‘‘Multi-hop coop-
erative computation offloading for industrial IoT–edge–cloud comput-
ing environments,’’ IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 12,
pp. 2759–2774, Dec. 2019.

[33] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing in
software defined ultra-dense network,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018, doi: 10.1109/JSAC.2018.2815360.

[34] X. Chen and J. Zhang, ‘‘When D2D meets cloud: Hybrid mobile task
offloadings in fog computing,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Paris, France, May 2017, pp. 1–6, doi: 10.1109/ICC.2017.7996590.

[35] H. Shah-Mansouri and V.W. S. Wong, ‘‘Hierarchical fog-cloud computing
for IoT systems: A computation offloading game,’’ IEEE Internet Things J.,
vol. 5, no. 4, pp. 3246–3257, Aug. 2018, doi: 10.1109/JIOT.2018.2838022.

[36] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, ‘‘An approach to QoS-
based task distribution in edge computing networks for IoT applications,’’
in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Honolulu, HI, USA,
Jun. 2017, pp. 32–39, doi: 10.1109/IEEE.EDGE.2017.50.

[37] Y. Sun, S. Zhou, and J. Xu, ‘‘EMM: Energy-aware mobility management
for mobile edge computing in ultra dense networks,’’ IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2637–2646, Nov. 2017, doi: 10.1109/JSAC.
2017.2760160.

158500 VOLUME 8, 2020

http://dx.doi.org/10.1109/EDGE.2018.00017
http://dx.doi.org/10.1109/JIOT.2020.2986015
http://dx.doi.org/10.1109/JIOT.2019.2958975
http://dx.doi.org/10.1109/MNET.2018.1700354
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/ICC.2017.7996590
http://dx.doi.org/10.1109/JIOT.2018.2838022
http://dx.doi.org/10.1109/IEEE.EDGE.2017.50
http://dx.doi.org/10.1109/JSAC.2017.2760160
http://dx.doi.org/10.1109/JSAC.2017.2760160

Q. Wang et al.: Task Allocation Mechanism of Power Internet of Things Based on Cooperative Edge Computing

QIANJUN WANG is currently pursuing the M.E.
degree with the State Key Laboratory of Network-
ing and Switching Technology, Beijing Univer-
sity of Posts and Telecommunications. His current
research interests include the power Internet of
Things and edge computing.

SUJIE SHAO (Member, IEEE) received the
Ph.D. degree from the Beijing University of
Posts and Telecommunications, Beijing, China,
in 2015. He is currently a Lecturer with the Bei-
jing University of Posts and Telecommunications.
His research interests include edge computing,
the Internet of Things, smart grids, and commu-
nication network management.

SHAOYONG GUO received the Ph.D. degree
from the Beijing University of Posts and Telecom-
munications, Beijing, China, in 2013. He is cur-
rently an Associate Professor with the Beijing
University of Posts and Telecommunications. His
research interests include blockchain, the Internet
of Things, ubiquitous networks, and smart grids.

XUESONG QIU (Senior Member, IEEE) received
the Ph.D. degree from the Beijing University of
Posts and Telecommunications, Beijing, China,
in 2000. He is currently a Professor and a
Ph.D. Supervisor with the State Key Laboratory
of Networking and Switching Technology, Bei-
jing University of Posts and Telecommunications.
He has authored about 100 SCI/EI indexed articles.
He presides over a series of key research projects
on network and service management, including

the projects supported by the National Natural Science Foundation and the
National High-Tech Research and Development Program of China.

ZHILI WANG is currently an Associate Pro-
fessor with the Beijing University of Posts and
Telecommunications, where he was engaged in
research and standardization work in communica-
tion networks and computer science, and technol-
ogy. He wrote more than eight ITU-T international
standards. His main research interests include net-
work management, communications software, and
interface testing. He won one National Science
and Technology Progress Award. He serves as the

Working Party 2 Chairman for the ITU-T Study Group 2.

VOLUME 8, 2020 158501

