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ABSTRACT Cellular site planners have long used propagation models for optimizing an architecture
deployment strategy. The foundation of these models are a plethora of theoretical results that all contribute
to a probabilistic understanding of this phenomenon. In lower-band frequencies, coverage and propaga-
tion phenomena were sufficient considerations for legacy infrastructure deployment; however, as cellular
technology probes uncharted millimeter wave spectra and beyond, it is natural to inquire as to whether
other metrics could contribute to an informed infrastructure deployment. As the benchmark goals for
positioning accuracy grow more ambitious and location-aware communications becomes a reality, we argue
that localization accuracy should also play a prominent role in cellular infrastructure deployment planning.
To this end, we submit a new closed-form probability density function (PDF) to characterize the angular
difference of a pair of base stations and a mobile terminal. The importance of the angular difference
is demonstrated by showing that the Cramér-Rao lower bound for localization is solely a function of it
and measurement accuracy. Further, we submit a computationally tenable algorithm for producing the
required PDF. To demonstrate the power of the density, we show some base station deployments that are
guaranteed to yield geometrically favorable environments for positioning. Finally, we demonstrate how this
new distribution outperforms numerical analysis when planning wireless network architecture deployment
for location-aware communications.

INDEX TERMS 5G mobile communications, Cramér-Rao bounds, estimation theory, location estimation,
millimeter wave communication.

I. INTRODUCTION
5G New Radio (NR) promises to deliver an unparalleled
level of submeter location accuracy [1], [2]. This new access
to high precision information begs the question of how it
can be utilized and has drawn significant attention in the
research [1], [3]–[9]. Location information has its pedigree in
emergency services support [2], [10], but new hyper accurate
information has opened the aperture for what is possible.
A myriad of use cases across the protocol stack have been
proposed [1].

In the physical layer, it has been shown that large capacity
gains can be had via location-aware adaptive systems [11],
beam training can be improved [12], prediction of channel
quality is possible [13], and other notable gains in areas
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such as multiple input multiple output (MIMO) systems are
possible [9].

Innovative use cases for location information persist up
the protocol stack and include location-aware scheduling [9],
geographical routing [14], industrial internet-of-things [2],
and geriatric assisted living [8] among a plethora of others.

Indeed, to meet this growing appetite for decimeter-level
accuracy, multifarious methods of enabling location-services
in NR are being standardized in the NR positioning protocol
‘‘a’’ (NRPPa) [15]. To this end, the Third Generation Part-
nership Project (3GPP) has recycled legacy methods such as
uplink and downlink time difference of arrival and enhanced
cell ID. New functionality such as multicell round trip time
and uplink/downlink angle of arrival are poised to push the
accuracy, latency, and time-to-first-fix boundaries even fur-
ther. The 3GPP investment in location services, however,
doesn’t end with abstract functionality. A major network
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architectural change of including a radio access network
(RAN)-based location management component (LMC) has
been codified with the aim of advancing the aforementioned
localization metrics [16].

Given the significant architectural investment in the
so-called location-based services (LBS), informed
deployment of physical infrastructure becomes increasingly
important. In particular, it has been shown that significant
variability in positioning performance can result depending
on the underlying architecture due to the phenomenon of
geometric dilution of precision (GDoP) [17], which is inde-
pendent of the particular positioning methodology employed.
In other words, a sophisticated positioning system can be
made inaccurate by not being mindful of how positioning
architecture is physically deployed. Therefore, understanding
the best physical deployment strategy of such a system could
be the difference between meeting critical accuracy require-
ments or not. For applications where human life is a concern,
such as autonomous vehicles [1], [3], [18]–[20], the level of
confidence in location accuracy must be extremely high.

To this end, we contribute to a stochastic theory of
location-based Fisher information available in wireless net-
works. Here, we are specifically concerned with how to
best physically deploy nodes (e.g., next-generation node Bs
(gNBs) in 5G) in order to minimize geometric dilution of
position estimation accuracy. Since regular polygons are rela-
tively common in cellular architectures [21]–[24], we assume
that a cell is either polygonal or well-approximated by one.
Given this polygon P , within which users are expected to be
uniformly distributed, we then approach the question of how
to optimally place fixed measurement points pi (e.g., a gNB,
picocell, femtocell, or other complementary infrastructure)
by way of developing a probability density for the a novel
measure: angular difference. Angular difference serves as a
convenient proxy for GDoP. In fact, as will later be shown,
by choosing to utilize a proxy such as angular difference
insights to the geometric climate for positioning can be
gleaned which would otherwise be unavailable via standard
numerical methods. This is largely due to the highly sensitive
nature of GDoP. Indeed, we may make two points to be
located as close as we like while also making the difference
in their GDoPs as large as we like. This instability in the
objective function makes it insuitable for numerical methods.

In contrast, our exact and closed-form density completely
captures the required Fisher information and informs archi-
tectural deployment in networks, such as 5G, which lean
so heavily on location services. More specifically, this
work details an algorithm that yields the aforementioned
closed-form expression of the cumulative distribution func-
tion (CDF) of angular differences 1θ . From this follows a
probability density function (PDF) since closed-form deriva-
tives exist for all of the terms in the CDF. We demonstrate
the power of this density by presenting some base station
deployments which yield geometrically favorable climates
for location accuracy. Additionally, we demonstrate how
using this distribution can succeed in informing a better

architectural deployment for LBS where numerical methods
which calculate GDoP would otherwise fail.

We compose this correspondence of our work as follows.
In the subsequent section we begin by discussing selected
work related to our contribution. The related work can be
grouped into three categories, work related to distance distri-
butions, mathematical problems which relate to the problem
at hand, and localization research. In all cases, we endeavor
to make clear the differences in the existing literature and
our present contribution. Next, we develop the theory that
undergirds our algorithm in Section III. Specifically, we eval-
uate the Cramér-Rao lower bound (CRLB) for the given
scenario and develop its relationship to a closely related
and more analytically tractable measure: angular difference.
It is this angular difference for which we develop a distri-
bution with the understanding that it analogously describes
the GDoP phenomenon. With the aforementioned relation-
ship established we develop the theory of these dynamics in
Sections IV and V. In Section VI, we then discuss the calcula-
tions necessary for execution of the proposed algorithm. The
algorithm and its implications are presented subsequently in
Sections VII and VIII. Notable implications that we highlight
are the effect of several key geometries of infrastructure
deployment as well as a more clear picture of the geomet-
ric climate for positioning than calculating GDoP directly.
Finally, concluding remarks are given in our Section IX
dénouement.

II. RELATED WORK
Geometrically-motivated probability distributions have
enjoyed significant attention across a range of research
disciplines, which, in modernity, have included wireless
networks. The preponderance of the literature focuses on
distance distributions, due to a natural connection to path loss.
Example point processes for which distance distributions
have been described include the Poisson and binomial point
processes [25], [26]. Additionally, random node distance
distributions in arbitrary finite areas are dealt with in [27].
From a fixed relay point in a square, the joint distribution
of distances to a source and destination node are presented
in [28]. Finally, distance distributions for regular polygons
from a fixed point to the k th nearest neighbor are presented
in [24]. This work is closely related to ours. From [24],
we adopt the algorithmic framework and apply it to the prob-
lem of developing a density applicable to Fisher information.
Also closely related to our work is [29], which derives a lower
bound for GDoP utilizing a polygonal construct. While the
author described a specific bound where equality held only
in the center of the polygon, our work builds on theirs by
analogously describing the probability of a certain GDoP
(by way of angular differences) given a uniformly distributed
position for arbitrary fixed measurement point locations.
We believe that our results build on those presented in [29] by
presenting a more general picture of the expected geometric
effect on positioning in a given area by utilizing the novel
measure of angular differences.
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A similar search of the mathematics literature reveals clas-
sical problems closely related to the one presented here. For
instance, triangulations of planar surfaces have long been of
interest both in applied areas such as computer graphics and
also in pure math [30], [31]. The closest relation an existing
mathematical problem has to the present one is polygon tri-
angle picking. In this problem, regular polygons with N sides
are considered. Three points are chosen from random inside
the polygon with the goal of describing the distribution of the
area of the convex hull of the points (i.e., the resulting trian-
gle). Distributions are known for all N ≥ 3 [32], [33]. While
this problem is similar to the one considered by our research,
it is also fundamentally different in several ways. First, in our
application, two of the points are fixed (p1 and p2) and a
third is random (x) vice three random points. Second, as we
will soon see, we are interested in understanding a different
phenomenon than the distribution of areas.

Other research that shares in the vein of localization is
the vast amount of work that developed distance estimation
algorithms and position estimation. This is a mature field
with seminal works [34] from which have grown various
application-specific studies such as bistatic radar [35], [36].
In this research genre, the primary concern is estimating
some number of parameters, such as directions of arrival,
and fusing these parameter estimates into a position estimate.
In the case of fusion, all of the published methods are subject
to error magnification or, conversely, reduction, due to the
complementary physical position of the measurement nodes.
This geometric effect is well-understood under determinis-
tic constraints. For instance, if the relative locations of the
measurements nodes and the target are known, the geometric
contribution to the accuracy of the position estimate can be
precisely calculated [37]. Our work differs from this body of
research in that it pursues an extension of the deterministic
theory, which is agnostic to the method of parameter fusion
utilized. We therefore do not compare our work directly
with existing state-of-the-art methods in fusion or parameter
estimation.

In a cellular network various nodes are typically deployed
with coverage (or some other proxy) as the primary metric to
be optimized without exact knowledge of where a subscriber
is located. Coverage is then optimized over a particular area as
opposed to a specific location. However, as location services
grow in importance, we argue that the quality of the mea-
surement geometry should also be considered during network
deployment. To the best of our knowledge, what has not
been considered is how to optimally1 place measurement
nodes given a coverage area where the distribution of user
equipment (UE) requiring location-services is not known.
We approach this question by deriving a closed-form expres-
sion for the distribution of Fisher information which, in turn,

1Wemake note that here, and throughout the remainder of the manuscript,
when we qualify something as optimal we do so in the context of accurate
location-based services.

captures the GDoP given a set of measurement nodes with
known location.

III. THE RELATIONSHIP BETWEEN ANGULAR
DIFFERENCE DISTRIBUTIONS AND FISHER INFORMATION
In this section we highlight the novel relationship of the angu-
lar difference to the GDoP. This relationship is fundamental
to the remainder of the paper. By addressing this quantity
which runs parallel to GDoP we admit analytical tractability.

To begin, consider the impact of geometry on a localization
scenario involving K fixed points {p1,p2, . . . ,pK } ∈ R2

with known location. These fixed points make a position
estimate x̂ of an object at location x, all in some finite region
P ∈ R2. For our purposes, we consider a position estimate
based on time of arrival (ToA) such that each fixed point
supplies a distance estimate corrupted by zero-mean white
Gaussian noise [d̂1, d̂2, . . . , d̂K ]T from which the position
estimate x̂ is derived via some function f ([d̂1, d̂2, . . . , d̂K ]T ) :
RK
→ R2.

An important quantity required in the subsequent deriva-
tion requires us to admit the variable θpi,x ∈ R which is
the angle subtended by an arbitrary line passing through
pi and the line containing both pi and x such that for all
pi ∈ {p1,p2, . . . ,pK } the arbitrary lines are all parallel
(cf. Figure 1).

FIGURE 1. Given two fixed points p1 and p2 the set of all points where
1θ is constant is the boundary of the intersection or union of two disks.
When 1θ ∈ [−π,−π/2) only the arcs of the circles that form the lens is
valid. When 1θ ∈ (−π/2,0) the complement of the lens is valid. The area
computed by the integral in (12) is the hatched region of C% , hence its
preceding constant.

Definition 1: The angular difference between fixed points
pi and pj relative to x is given as 1θij = θpi,x − θpj,x.
The importance of angular difference to the present appli-

cation is central to this work and thus merits focus.
Theorem 1: Given an efficient unbiased estimator

f ([d̂1, d̂2, . . . , d̂K ]T ) = x̂ where var(d̂i) = ς2, the expected
value of |x̂− x| is only a function of 1θij.

Proof : Fisher information readily describes the best pos-
sible performance of an unbiased estimator. Given the con-
straints, the Fisher information matrix (FIM) is well-known
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to be [37]

I=
1
ς2

K∑
i=1

[
cos2(θpi,x) cos(θpi,x) sin(θpi,x)

sin(θpi,x) cos(θpi,x) sin2(θpi,x)

]
.

(1)

The trace of I−1 then gives the CRLB, a standard benchmark
for all unbiased parameter estimates [38]. Since the distance
measurement error is assumed to be independent and identi-
cally distributed (IID) across all fixed points the scaling factor
ς−2 can be pruned from (1) to yield the Fisher information
of only the underlying geometry. The trace of the inverse of
this matrix is commonly referred to as the GDoP, a purely
geometric analog to the CRLB. The required trace of the
inverse of this matrix is obtained as

Tr
(
ς2I−1

)
=

2K∑K
i=1

∑K
j=i+1

(
1− cos

(
21θij

)) , (2)

the exact derivation of which is presented in Appendix B.
From (2) it is clear that the subject quantity is only a function
of 1θij.
We pause here to emphasize the importance of (2) which

directly linksGDoP (themeasure of interest) to1θij our novel
metric. Throughout this manuscript we will demonstrate how
utilizing1θ as a measure in place of GDoP can better inform
wireless network infrastructure deployment when planning
such a deployment with LBS in mind.
Corollary 1: The expected value of |x̂ − x| is maximized

when the fixed points {p1,p2, . . . ,pK } are collinear with x.
To see this note that

lim
1θij→nπ

Tr(ς2I−1) = ∞ (3)

for any n ∈ Z since each of the summands in the denomi-
nator of (2), 1 − cos(21θij), is zero for the given condition.
ByDefinition 1, the referenced condition occurs when θpi,x =
θpj,x + nπ . Since all {p1,p2, . . . ,pK } ∈ P (i.e., the distance
between all points are finite), the subject angles are only equal
when the aforementioned collinearity is satisfied.
Corollary 2: The expected value of |x̂ − x| is minimized

when the fixed points {p1,p2} are orthogonal with x.
To see this, consider that (2) is minimized when

1θij = (2n+ 1)
π

2
(4)

for any n ∈ Z which occurs only when the convex hull of the
involved points is a right triangle such that the longest side `
is the one containing both p1 and p2 (i.e., the fixed points are
orthogonal to the point to be measured).

In an effort to scope the following results, we now restrict
our attention to the various geometries of {p1,p2, x} ∈ P and
how that geometry affects the GDoP environment within the
polygon P . Our choice of presenting the following analysis
for two fixed points is made in order to simplify the analysis
without sacrificing generality. To see this, consider (2) which
expresses GDoP as a function of pairwise angular differences
1θij. A method of expressing 1θij can then be iteratively

applied to achieve the desired distribution for K fixed mea-
surement points.

In order to inform optimal placement of the fixed points
for some x uniformly distributed in P , we now require a
distribution for angular difference 1θij.

IV. ANGULAR DYNAMICS
We begin our approach towards a distribution of 1θ12 with
some preliminaries. Specifically, we present angular behavior
in an infinite region P . This case is then extended in the
sequel to a finite P .
We then proceed by way of an area-based derivation

inspired by [24]. Specifically, we define an area where we
can guarantee that1θ12 will observe certain limits. The ratio
of this area to the area of P (in the finite case) gives way to
the required distribution.

A. ANGULAR TOPOGRAPHY
Without loss of generality, we subsequently drop the sub-
scripts of 1θ and limit 1θ ∈ [−π, 0).
Lemma 1: The set A1, that satisfies for all x ∈ A1 then

1θ ∈ [−π,−π/2), is the intersection of two disks D+ ∩D−
which both contain p1 and p2.

Proof : Let C% be a a circle of radius % such that
{p1,p2} ∈ C% and ` be the line that contains p1 and p2.
Referring to Figure 1, the inscribed angle theorem guarantees
that all the points in C% that lie on one side of ` result in a fixed
1θ for all x ∈ C% ⊂ A1. Note that for a given % that there
are two such C% that can contain both fixed points, thus for a
given 1θ , the set of x which satisfy Definition 1 is the union
of these two circular arcs (outlined by the blue boundary
in Figure 1). Here, we imbue each circle which contains the
arcs with an orientation ± for notational convenience. The
radius of these circles % ∈ [| ¯̀|/2,∞) (where | ¯̀| denotes
the magnitude of the line segment ¯̀ with p1 and p2 as its
endpoints) is parameterized by 1θ such that a larger 1θ
implies a smaller %. Therefore, we can extend the intersection
to include the interior of the circles which has a symmetric
lens shape. The width of the lens is parameterized by the
specific value of 1θ such that as it approaches −π the
circles increase in radius and their intersection approaches
the line segment which contains p1 and p2 as endpoints ¯̀.
Alternatively, as 1θ approaches −π/2 then the intersection
approaches a circle with p1 and p2 as antipodal points.
Lemma 2: The set A2 which satisfies for all x ∈ A2 then

1θ ∈ [−π/2, 0) is the union of two disks (D+∪D−)\D| ¯̀|/2.
Proof : We first have from Lemma 1 that for 1θ =

−π/2 that A1 = D
| ¯̀|/2 which we can clearly not include,

hence the set difference. The reasoning for the intersection
follows the same argument as the previous lemma. The result-
ing C = ∂A2 for which 1θ is constant in the required range
is given in green in Figure 1. The major difference here,
however, is that a larger 1θ implies a larger % and thus the
resultant disks are combined via union.
With these two lemmas we can fully describe the required

set A = A1 ∪A2.
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B. ANGULAR PARAMETERIZATION
Having established the general nature ofA, we now require a
mapping that relates1θ to each C%. As C% is parameterized by
both its radius % and its center c = [xc, yc]T , we first consider
the relationship between 1θ and c.
Lemma 3: The centers c− and c+ are given by

xc = x0 ± m cos(ϑ)/(2 tan (1θ))

yc = y0 ± m sin(ϑ)/(2 tan (1θ)) (5)

where ϑ is the angle between a horizontal axis and `⊥ (the
perpendicular bisector of ¯̀) and [x0, y0]T is the intersection
of ` and `⊥.

Proof : Note that the center of each C% will always lie on
the perpendicular bisector `⊥ of the radical line `. Proceeding
inductively, consider the special case where ` is x = 0 and
p1 = [0, 0]T . The perpendicular bisector `⊥ is then y = m/2
wherem =‖ p1−p2 ‖2. Now, combining the following three
equations that represent the angular difference, the circle
through p2, and the circle through p1, respectively

1θ = arctan
(
m− y
−x

)
− arctan

( y
x

)
, (6)

r2 = (x − xc)2 + (y− m/2)2, (7)

and

r2 = x2c + (m/2)2 (8)

we arrive at

xc =
±m

2 tan (1θ)
(9)

where the ± has been included to account for circle ori-
entation. Since yc = m/2 for all values of 1θ , we have
established the relationship between c and1θ for the special
case when ` is x = 0, p1 = [0, 0]T , and p2 = [0,m]T .
By interpreting (9) as the magnitude of the displacement
of c from the midpoint [x0, y0]T along `⊥ we can calculate
the vertical and horizontal components of that displacement
when ϑ 6= 0 via multiplication of (9) by sinϑ or cosϑ
respectively. Finally, adding themidpoint [x0, y0]T completes
the proof.
Lemma 4: The radius is related to 1θ via

% = −
m
2
csc (1θ) . (10)

Proof : The lemma quickly follows from substitution of
(9) into (8).
Theorem 2: The area of A is obtained by

|A| =
m2

2

(
(1θ + π ) csc2 (1θ)− cot (1θ)

)
, (11)

where 1θ ∈ [−π, 0).
Proof : Consider the hatched area in Figure 1. Making

use of polar coordinates, the area of A is calculated by

|A| = 4
∫ %

xc
r ′ arccos

(
−xc
r ′

)
dr ′ (12)

where the leading constant 4 takes the area of the subject
region and multiplies it to give the total area of A. Evaluat-
ing (12) and then substituting (5) and (10) appropriately gives
the area as per the theorem.

C. DYNAMICAL OBSERVATIONS
We have thus established the topology of A relative to 1θ .
By (5) the centers of C% displace from [x0, y0]T nonlinearly in
1θ . The magnitude of displacement from [x0, y0]T is infinite
when 1θ = −π , zero when 1θ = −π/2, and then infinite
again in the opposite direction when 1θ = 0. Thus when
1θ = −π then A is the line segment ¯̀. Similarly, when
1θ = 0 then A is the entire plane R2.

For all values of 1θ , both centers c± travel along `⊥. The
radius % also behaves nonlinearly in 1θ . At either extreme
of 1θ it is infinitely large and achieves its minimum m/2 at
1θ = −π/2.
Corollary 3: The area ofA is monotonically increasing on

the interval 1θ ∈ [−π, 0).
By evaluating the derivative of (11) as

d
d1θ
|A|

=
m2

2
[cot2(1θ )+csc2(1θ )−2

(1θ+π ) cos(1θ)

sin3(1θ )
+1], (13)

it can be seen that
d

d1θ
|A| > 0, ∀1θ ∈ [−π, 0). (14)

Themonotonicity of the area function is an important prop-
erty if we are to derive the distribution of angles. Consider
the problem of determining the probability that an angle is no
larger than a particular value, in other words, its cumulative
distribution F(1θ |p1,p2) is queried for the subject value. Let
P be the set of all points which we allow x to assume, and let
the probability that x be any given point in P be equal. From
this, it follows that the CDF

F(1θ |p1,p2) =
|A|
|P|

(15)

if

A ∩ P = A. (16)

Clearly, this equality will not hold for a finiteP and all values
of1θ . We therefore turn to the problem of calculating |A| for
arrangements where (16) is not satisfied.

V. CONSTRAINED DYNAMICS
It will be that A ∩ P 6= A for many values of 1θ if |P| is
finite, therefore an approach to calculating |A|when equality
in (16) does not hold is necessary.

A. CONSTRAINT DEFINITION
Let the subscript of Pρ represent the radius of the circum-
circle of P centered at the origin in R2. Recall the earlier
assumption that the region in question is a regular polygon.
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FIGURE 2. The instantaneous distances for σ1 are presented here for the
special case where d (σ1) 6= d (S1). This inequality is a result of the
positioning of the fixed points relative to S1.

Regular polygons are well represented in wireless networks
justifying their theoretical basis [23], [39]. In this case, P is
fully parameterized by its circumcircle radius ρ and its num-
ber of sides N . An example P is shown in Figure 2 for the
special case of N = 6. P has vertices v1 . . . vN numbered
anticlockwise where v1 = [ρ, 0]T . This family of polygons
enjoys many established results from which we will draw
on. Such results include formulations of its area |P|, interior
angle θι, and central angle θc.

B. DEFINITION OF DISTANCES
The rotational symmetries of regular polygons belong to
the dihedral group and, as noted by [24], provide a unique
opportunity for algorithmic exploitation. Development of this
strategy for the present application will require several pre-
liminaries that rest upon three different ideas of distance,
which we define subsequently.
Definition 2: The instantaneous distance d(·) is a

Euclidean distance from either of the centers c± to one of
three points2:
1) the closest point of the line σn containing vertex vn and

vn+1 (denoted d(σn)),
2) the closest point of the line segment Sn containing

vertex vn and vn+1 (denoted d(Sn)), or
3) the vertex vn (denoted d(vn)).
These distances are a function of the geometry of the fixed

points and 1θ and are presented graphically in Figure 2 for
an example1θ . Of particular note is that the equality d(Sn) =
d(σn) will not hold in general as is demonstrated in Figure 2.

2Note that subscript arithmetic for parts ofP is performed modularly such
that the subscript index is a member of {1, 2, . . . ,N }.

1) INSTANTANEOUS DISTANCES
To begin, let Rn : R2

→ R2 be a linear isometry which
applies a rotation about the origin with magnitude equal
to the central angle θc of P n times. In other words, this
transformation is a rotational member of the dihedral group
which cycles the order of the vertices n times. Points given by
the circle centers c± are thus mapped to coordinates c	n =

[x	n , y	n ]T . The map Rn can be represented as a matrix
operation via

c	n
± = R−1n c± (17)

where

Rn =

[
cos(nθc) − sin(nθc)

sin(nθc) cos(nθc)

]
. (18)

Lemma 5: The instantaneous side distance d(σn) is given
by

d(σn) =
∣∣(ρ − x	n

c ) sin(θι/2)− y	n
c cos(θι/2)

∣∣ . (19)

Proof : Proceeding inductively, the instantaneous side
distance of either center c± to the infinite line σ1 that contains
vertices v1 and v2 is

d(σ1) =
∣∣(ρ − x±c ) sin(θι/2)− y±c cos(θι/2)

∣∣ (20)

where [x±c , y
±
c ]

T is defined as in (5). To see this observe the
following geometry.

To complete the proof we now require generalization
of (20) to all the polygon sides. Following the strategy devel-
oped by [24], we can accomplish this via the rotational sym-
metries of the dihedral group. First we rotate c n times and
then apply (20).
Lemma 6: The instantaneous vertex distance d(vn) is

given by

d(vn) =
√
(ρ − x	n

c )2 + (y	n
c )2. (21)

Proof : Consider the specific vertex distance d(v1) which
is clearly given by

d(v1) =
√
(ρ − xc)2 + y2c . (22)
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Again exploiting the rotational symmetries of the dihedral
group (22) generalizes to (21).

Consider a line ln which is perpendicular to σn and contains
a point c. Denote the intersection of ln and σn as ln.
Definition 3: A constrained perpendicular projection ℘n

of a point c onto a line segment Sn is given as the point in Sn
which is closest to ln.
Note that under certain conditions ℘n will be a point in the
interior of Sn whilst in other circumstances ℘n will be an
endpoint of Sn. For example, consider Figure 2. The the
constrained perpendicular projection ℘1 of c+ onto S1 is v2.
Conversely, the intersection of S2 and a perpendicular line
containing c+ is nonempty and thus℘2 for c onto S2 is a point
between v3 and v2.
Lemma 7: The instantaneous segment distance d(Sn) is

given by

d(Sn) =‖ ℘n − c	n ‖2 . (23)

A constrained perpendicular projection can be expressed
as a parameterized vector

℘ = vn+1 + τ (vn − vn+1), (24)

where

τ = max(0,min(1, (c− vn+1)•̂(vn − vn+1))), (25)

where •̂ represents the vector dot product that is normalized
such that vn•̂vn = 1 for any |vn|. The maximum and mini-
mum functions ensure that 0 ≤ τ ≤ 1. The vector projection
performed by •̂, measures how far along σn, referenced to
vn+1 ℘n appears. By definition and the rotational symmetries
of the dihedral group the instantaneous segment distance is
established.
Here, we highlight that, since the centers travel along `⊥

according to 1θ , all of the aforementioned distances can be
thought of as being a function of 1θ . We will use this idea
subsequently for deriving important intervals of 1θ .

2) ABSOLUTE ANGULAR DISTANCES
We have previously established that as 1θ ranges from −π
to 0 that the set A grows. In the sequel, our derivation of the
distribution of Fisher information will be piecewise with each
region of the CDF being calculated according to the shape of
A∩P . These regions are found with the following notions of
distance.

Definition 4: The absolute angular distance D(·) is the
smallest value of 1θ where the intersection of the boundary
of A and the argument to D is not empty.
Lemma 8: The absolute angular side distance D(σn) is

given by a value of 1θ such that

d(σn) = % (26)

subject to the constraint that Sn (which is a subset of σn) is on
the same side of ` as the referenced c.

Proof : The required1θ is the onewhere the intersection
is exactly one point. When the intersection is exactly one
point it will also be that the radius of the circle on the affected
side will be the same as (19). Also, we again appeal to
the dihedral rotational symmetries (which in this case are
embedded in d(σn)).

A final qualifying constraint is required since A is not a
disk and so a pathological geometry could lead to an incorrect
result. To see this consider

where clearly d(σn) = %, yet per Definition 4 the intersection
∂A ∩ σn is not a single point. However, if ` is respected as a
boundary, the above pathology is easily discarded.

Note that (26) is transcendental, and thus has no
closed-form solution. The solution can, however, be effi-
ciently obtained via numerical solvers.
Lemma 9: The absolute angular vertex distance D(vn) is

given by the 1θ such that

d(vn) = % (27)

subject to the constraint that vn is on the same side of ` as the
referenced c.
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Proof : The proof of this lemma follows closely that of
the previous. From Definition 4 we are primarily concerned
about the boundary of A. Therefore, the subject intersection
will only be nonempty when the equality in (27) is satisfied.
Additionally, the usual reliance on the dihedral rotational
symmetries is required due to the inclusion of d(vn). The
final constraint is again needed in order to prevent pathologies
similar to those described in the proof to Lemma 8.
Lemma 10: The absolute angular segment distance D(Sn)

is given by

D(Sn) =

{
D(σn) if℘n /∈ {vn, vn+1}
min (D(vn),D(vn+1)) o.w..

(28)

Proof : The argument for this proof parallels the argu-
ment for Lemma 7. As the circle expands the first point on Sn
that it will touchwill always be℘n. Therefore, if℘n is a vertex
then D(Sn) is measured to that vertex. Alternatively, if ℘n is
not an endpoint of Sn then we measure the distance instead
to that point since it is the first one the circle will touch as it
grows.

3) ANGULAR HULL DISTANCE
Finally, for reasons which will later become apparent,
we require the1θ which marks when a center passes outside
of P .
Definition 5: The angular hull distance D(Hn) is the 1θ

where c is contained by σn and 1θ > −π/2.
Lemma 11: The angular hull distance is given by

D(Hn) = arctan
(

m cos(nϑ)

2 tan(±x	n
c ∓ x⊥)

)
(31)

subject to the constraint that −π/2 ≤ 1θ .
Recall that angular dynamics dictate that as1θ starts at−π

the centers will be outside of the circle, they will then enter
the circle along `⊥ and then exit again in opposite directions.
Since we are only concerned with when they exit, we omit
the first half of their journey with the constraint noted in the
lemma.

Having discarded half of the values of 1θ the required
distance is found by setting xc in (5) equal to the coordinate x⊥
of the intersection of `⊥ and σn. This equality is graphically
depicted here for the specific example of D(H1).
This could alternatively be accomplished with yc and

y⊥ to the same effect. Again, the dihedral symmetries are
required.

C. DATA STRUCTURE OF DISTANCES
The absolute distances play a central part in developing the
piecewise structure of the CDF. Thus the nature of their
organization requires attention.

Let the angular distances be stored in a vector
d = [dS,−,dS,+,dv,−,dv,+,dH ,−,dH ,+] where dS,± =
[D(S1), . . . ,D(SN )] corresponds to the absolute angular side
distances from c±. The other entries in d are similarly
represented. The vector d then contains 6N values, some
of which may be empty if no 1θ ∈ [−π, 0) satisfies the
distance function. For instance, in the example presented in
Lemma 11, D(S1) = D(σ1) = ∅ for the leftmost center c−.

VI. CONSTRAINED AREAS
In the sequel, we will calculate the areaA∩P by starting with
the area ofA and removing portions ofA that lie outside ofP .
The areas that need to be calculated in order to accomplish
this can be divided into two types: those when c is not a
member of the area being calculated and when it is a member
of that area.

A. WHEN c IS NOT A MEMBER OF THE AREA UNDER
CALCULATION
In this subsection we consider first only scenarios where c is
not part of the area which is being calculated. Formulation
of a partial set of the areas required in this region was first
introduced by [24]. However, proper calculation of the area
A∩P requires new derivation and introduction or adaptation.
As shown in Figure 3, these areas come in two general

types: B and C .
Definition 6: Bn is the annular segment which lies inside

C% and σn and does not contain c. Further, if d(Sn) 6=
d(σn) it does not contain any point closer to c than
min(d(vn), d(vn+1)).
The subject area Bn must be removed from the area of A
anytime a particular line segment Sn is breached by A since
this area lies outside A ∩ P . The annular nature described
when d(Sn) 6= d(σn) is an artifact of computation, but is
handled appropriately as described in the next section.
Lemma 12: The area of Bn is calculated via (29), shown

at the bottom of the next page.
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FIGURE 3. The two area types required to calculate the area of A ∩P
when c is inside the polygon are Bn and Cn. Note the annular shape of B1
and C1 (but not BN ) due to the position of c relative to v1.

By first integrating in polar coordinates with respect to θ ′

from the line that is a perpendicular bisector of σn to the point
where A intersects with σn. Along r ′ the integral extends
from d(Sn) to %. The preceding constant doubles this value
to arrive at the desired area.
Definition 7: Cn is the annular segment which lies inside

A, σn, and σn−1. Further, if d(Sn) 6= d(σn) it does not contain
any point closer to c than min(d(v), d(vn+1)).
This area is double counted when both Bn and Bn−1 are

subtracted fromA. Once calculated it can be used to account
for this phenomenon.
Lemma 13: The area of Cn is calculated via (30), shown

at the bottom of the page.
To calculate Cn, we first divide the desired region (shown

in Figure 3) into two separate regions with the line that con-
tains c and vn. These areas are described by the two integrals
in (30). In each integral the angular extent that should be inte-
grated over spans [φ1, arccos(d(σn)/r ′)] in the first integral

and [φ2, arccos(d(σn−1)/r ′)] in the second. In general neither
φ1 nor φ2 is known. However, in evaluating the integrals we
are left only with their sumwhich remains constant φ1+φ2 =
π − θι.

At times, our algorithm will require the area of the annular
hole cut by Cn.
Definition 8: The area of the annular hole cut by Cn is C̃n.
Lemma 14:

C̃n = 2
∫ d(Sk )

d(σk )

∫ arccos
(
d(σk )
r ′

)
0

r ′dθ ′dr ′ (32)

where the index k is given as

k =

{
i d(σn−1) < d(σn)
i− 1 o.w..

(33)

By observation, the required area is easily derived via the
presented double integral. The only item requiring special
care is identifying which line and side to use for the limits
of integration. This selection can be made based on whether
σn or σn−1 is closer to c. The rule presented in the lemma is
easily verified also by inspection.
Note that this area will be zero when d(Sn) = d(σn). The

closed-form expression of C̃n can be obtained as in B by
substituting the limits of integration and d(σk ) appropriately
into (29).

Consider now that (30) will not produce a result that is
easily interpreted when c is outside exclusively either σn or
σn−1 as seen in Figure 4. This is because when c is in the
subject region the φ1 and φ2 sum to a different constant,
namely θι. Therefore, a new area is required.
Definition 9: Dn is the area bounded by σn, σn−1, and A.
Lemma 15:

Dn = Cn +
π

N

(
%2 − d(vn)2

)
−
θι

2

(
%2 − d(vn)2

)
. (34)

The presented formulation removes the last term from Cn
(30) and replaces it with the last term in (34) in order to
correct for the new value of φ1 + φ2.

Bn = 2
∫ %

d(Sn)

∫ arccos
(
d(σn)
r ′

)
0

r ′dθ ′dr ′

= %2 arccos
(
d(σn)
%

)
− d(σn)

√
%2 − d(σn)2 − d(Sn)2 arccos

(
d(σn)
d(Sn)

)
+ d(σn)

√
d(Sn)2 − d(σn)2 (29)

Cn =
∫ %

d(vn)

∫ arccos
(
d(σn)
r ′

)
φ1

r ′dθ ′dr ′ +
∫ %

d(vn)

∫ arccos
(
d(σn−1)

r ′

)
φ2

r ′dθ ′dr ′

=
%2

2

(
arccos

(
d(σn)
%

)
+ arccos

(
d(σn−1)
%

))
−
d(vn)
2

(
arccos

(
d(σn)
d(vn)

)
+ arccos

(
d(σn−1)
d(vn)

))
+
d(σn)
2

(√
d(vn)2 − d(σn)2 −

√
%2 − d(σn)2

)
+
d(σn−1)

2

(√
d(vn)2 − d(σn−1)2 −

√
%2 − d(σn−1)2

)
−
π

N

(
%2 − d(vn)2

)
(30)
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FIGURE 4. The two area types (B̃n and Dn) required to calculate the area
of A ∩P when c is outside the polygon, but has not crossed two lines σn
and σm for n 6= m. In this example, c has crossed σN but not σ1. Note that
in this example calculating B̃N (the perimeter of which is outlined in bold
green above) involves also knowing BN . The area of B1 is calculated as
before per (29).

B. WHEN c IS A MEMBER OF THE AREA
When c is part of the region for which the area is being calcu-
lated, a different formulation is required. To begin, consider
the case depicted in Figure 4. We desire to subtract the area
outlined in green fromA; however, now that c is actually part
of this area, the current formulation given in (29) calculates
the area hatched in green.
Definition 10: Bn is the circular complement of Bn.
Lemma 16:

Bn = π%2 − Bn. (35)

The lemma easily follows by inspection.
Now, regard the case presented in Figure 5 where calcula-

tion of the area outlined in bold redCn is required. Evaluation
of (30) produces the area labeled C1 in Figure 5 which is not
required.
Definition 11: C is the area bounded by σn−1, σn, and C%

and also contains c.
Lemma 17:

Cn = π%
2
− Bn − Bn−1 + Cn

+ 2
∫ d(vn)

d(Sk )

∫ arccos
(
d(σk )
r ′

)
0

r ′dθ ′dr ′, (36)

where k is defined as before in (33).
The approach to calculating C is similar to that taken

to calculate B in that the existing calculation methods are
leveraged to achieve the required area. The only complication
is again addressing the annular circular center, and is handled
by the last double integral in the lemma.

Similar to (32), in the case where d(Sk ) = d(vn),
the last double integral in the lemma evaluates to zero.
The closed-form expression of the double integral is similar
to (29) after the appropriate substitution of limits and d(σk ).

FIGURE 5. Here, c is a member of the region to be calculated. Given this
scenario, C1 (whose perimeter is outlined in bold red) is calculated by
first subtracting Bn and Bn−1 from the total area of A and adding back in
Cn and the area of the annular hole.

C. SUMMARY
The present section represents the culminating point of math-
ematical tool development in our work. As these areas, which
when evaluated can all be given in closed form, represent the
building blocks of our final CDF we pause to consider an
important implication of the former fact.
Theorem 3: The PDF of 1θ has a closed-form represen-

tation.
The proof of this theorem follows from three facts. First,

each of the areas presented in this section have a closed-form
representation as given by the Leibniz integral rule. Second,
Given all of the subject areas, one is able to always construct
A ∩ P . Finally, the PDF is the derivative of the CDF and the
derivative of any closed-form expression is also guaranteed
to be closed form.
At this juncture we would also reiterate why such a distri-

bution is important. It is not that we desire to understand 1θ
directly, rather it is the relationship of 1θ to GDoP (cf. (2))
introduced in Section IV that makes it useful. By calculating
the distribution of angular distances we gain insight into the
more cumbersome problem of determining the distribution of
GDoP.

While we have now presented a calculus for obtaining the
required pieces of the puzzle, it remains to be understood
how they can be efficiently put together to obtain the required
areas parameterized by1θ . An algorithmic agglomeration of
the tools presented here is the main thrust of the next section.

VII. ALGORITHM
With all the necessary preliminaries addressed we now
present an algorithm, derivative of the one introduced by [24],
which produces the closed-form CDF (and by Theorem 3
implies the closed-form PDF) of the distribution of1θ given
two fixed measurement points {p1,p2} ∈ P . Recall that just
because the algorithm produces a distribution for two fixed
measurement points doesn’t mean that it is restricted to only
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two measurement points. Should K > 2 points be utilized the
algorithm can be implemented for each pair of the K points.

The algorithm is split into four parts: preliminary calcula-
tions, then determining the value of the CDF for three regions
of support which comprise all possible values of 1θ . The
regions of support are defined for each c separately. For exam-
ple, Region 1 could apply for c− and Region 2 for c+ given
a specific value of 1θ . Further,he t regions of support are
ordered, contiguous, and non-overlapping. Conventionally,
the ordering of the regions is such that we assume initially that
1θ = −π and is varied up to its maximum 1θ = 0. Along
this progression, regions 1 through 3 are encountered in order
while allowing for the non-existence of a region. In other
words, if Region 2 doesn’t exist then the Region 3 follows
Region 1.

Each region is broken into various subregions which have a
fixed method of calculation within their support. Subregions
are defined by the vector d′′ of ordered unique distances.
Once the boundary of each subregion is reached themethod of
calculation is updated. Similarly, the boundaries of the three
regions adapt the algorithm used to update the method of
calculation at each subregion.

A. ALGORITHM PREAMBLE
The algorithm first calculates the distance vector d
(cf. Section V-C) and sorts the entries in ascending order
into a new vector d′. By sorting convention, we define the
empty entry ∅ to be larger than any real-valued entry. The
original indices are preserved in a separate and similarly
permuted index vector l that will be utilized for dereferencing
each of the entries in the sorted distance vector d′ [24]. Let
gN : R×Z×c±→ {D(Sn),D(vn),D(Hn)} be a dereferencing
map for d′ such that

gN (d′n, l, c) =



D(Sn)|c− if ln ≤ N
D(Sn−N )|c+ ifN < ln ≤ 2N
D(vn−2N )|c− if 2N < ln ≤ 3N
D(vn−3N )|c+ if 3N < ln ≤ 4N
D(Hn−4N )|c− if 4N < ln ≤ 5N
D(Hn−5N )|c+ if 5N < ln ≤ 6N .

(37)

Given a distance entry in d′, gN essentially maps it to its type
and number.

B. REGION 1
In order to better illustrate the mechanics of the proposed
algorithm, we provide the specific geometry in Figure 6 as a
complementary example to the following discussion. While
this example is highlighted in the subsequent text, the multi-
media accompanying this manuscript also illustrates the CDF
development for this example via our algorithm. In particular,
the example geometry is prescribed a circumradius ρ = 1
and the fixed points are positioned such that P is symmetric
about `. Specifically, p1 = [0, 0]T and p2 = [−

√
3/4, 1/4]T .

Definition 12: Region 1 is the domain of 1θ that extends
from 1θ = −π to the first hull distance (cf. Definition 5).

FIGURE 6. Here, A is presented for d′′2 ≤ 1θ < d′′3 given the fixed point
placement specified in Section VII-B where all the areas required for for
calculation of F †

3 (1θ) are labeled.

Until the first entry in d′, the CDF is accurately represented
by |A|/|P|. After the first entry, 1θ ≥ d ′1, some area will
need to be subtracted from A in order to calculate the area
of A ∩ P . This is correctly done by subtracting Bn when
an entry dereferences to D(Sn) and adding Cn when an entry
dereferences to D(vn). Further, addition of the annular hole
C̃n is required if D(Sk ) = D(σk ). This continues as long as
the subsequent values of d′ are the same. For instance, it may
be that d ′1 and d ′2 have the same value, but dereference to a
different distance. When a new value in d′ is encountered,
a new subregion of F(1θ ) is defined and new areas are
additionally considered. These subregions are easily defined
by deriving a vector d′′ by taking only the unique ordered
values from d′.

Referring now to the companion example in Figure 6,
we note that the first two entries in d′ are equal and derefer-
ence via g6 to D(S1) and D(S4). The next four entries are also
equal and dereference toD(S1),D(S5),D(v2), andD(v5). This
process continues until 1θ ≥ −π/2 and c exits the polygon.
The resulting unnormalized CDF which corresponds the the
Region 1 support of 1θ would be

F†(1θ ) =



F†
1 (1θ ) = |A| −π ≤ 1θ < d′′1

F†
2 (1θ ) = |A|
−B1 − B4 d′′1 ≤ 1θ < d′′2

F†
3 (1θ ) = |A|
−B1 − B2 − B4 − B5
+C2 + C5 d′′2 ≤ 1θ < d′′3

F†
4 (1θ ) = |A|
−B1 − B2 − B4 − B5
+C2 + C5

−2B3 + C3 + C4 d′′3 ≤ 1θ < d′′4
...

(38)
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where we have indicated by the superscript † that normaliza-
tion by the area of the polygon is necessary to achieve a valid
CDF. In the present example 1θ = d′′4 corresponds to the
first hull distance and thus the start of Region 2.

C. REGION 2
Definition 13: The super-circumvertices (SCVs) of P are

the points of intersection of all σn and the star polygon they
form is the SCV hull.
Definition 14: Region 2 is supported by all 1θ greater

than the Region 1 support, but where c is still inside the SCV
hull.

The limits of Region 2 are efficiently found as the first
and second hull distance. An example is given in Figure 4
where c has crossed σN , but not σ1. Here, revisions of the pre-
vious calculations made in Region 1 are required based on the
dereferenced hull distance. A revision of Bn is made for every
D(Hn) encountered. The revision includes first replacing the
previously subtracted Bn and subtracting the correct area Bn.
Continuing in the same manner as in (38) the revision would
take the form

F†
j (1θ ) = F†

j−1(1θ )+ Bn − Bn. (39)

Revision of Cn (and potentially also Cn+1) will also be
necessary. The area is corrected as before by removing the
erroneous Cn and adding the correct Dn via

F†
j (1θ ) = F†

j−1(1θ )− Cn + Bn−1 − Dn. (40)

Revision of Cn+1 is also necessary if D(vn+1) is less than
the current last unique value of d′. This revision is accom-
plished via

F†
j (1θ ) = F†

j−1(1θ )− Cn+1 + Bn+1 − Dn+1. (41)

In the companion example Region 2 is defined via

F†(1θ ) =



...

F†
5 (1θ ) = |A|
− B1 − B2 − B4 − B5 − 2B3
+ (B1 − D2)+ (B5 − D5)
+ (B3 − D3)+ (B3 − D4)

d′′4 ≤ 1θ < d′′5
....

(42)

In this region c+ is inside the point of the star polygon
defined by {σ1, σ2, σ3} and c− is inside the point of the
star defined by {σ3, σ4, σ6}. Due to this positioning, B2 and
B5 are replaced with B2 and B5 (cf. (35)) via (39). With
the revision of B2 and B5 complete we now apply (40).
Specifically,C2 throughC5 are removed since the calculation
now doesn’t make sense given how (30) is defined. Further,
Next, D2 through D5 is calculated (cf. (34)) and applied
appropriately.

D. REGION 3
Definition 15: The SCV threshold γn is the 1θ where a

center has passed through both σn and σn−1.
Region 3 begins when an SCV threshold has been exceeded.

Note that by this definition, it is possible for c to be outside
the SCV hull but still within the SCV threshold. For instance,
in Figure 5 c has crossed both σN and σ1, thus it is outside
of the SCV hull. However, it has only crossed the SCV
threshold γ1.
In this region, B is still revised as in (39); however, if a

center has crossed γn, then Cn is revised differently than
in (40). Specifically,

F†
j (1θ ) = F†

j−1(1θ )− Cn + Cn. (43)

Again returning to the companion example illustrated
in Figure 6, and continuing from (42), the remainder of the
unnormalized CDF is given as

F†(1θ ) =



...

F†
6 (1θ ) = |A|
− B1 − B2 − B4 − B5 − 2B3
+ C2 + C5

+ (B3 − D3)+ (B3 − D4)
d′′5 ≤ 1θ < d′′6

F†
7 (1θ ) = |A|
− B1 − B2 − B4 − B5 − 2B3
+ C2 + C5

+ (B3 − D3)+ (B3 − D4)
− 2B6 + C6 + C5

d′′6 ≤ 1θ < 0.

(44)

F†
6 shows the result of revision of C2 and C5 since both

thresholds γ2 and γ5 have been exceeded. The final subregion
F†
7 accounts for A expanding to include v5 and v6 (cf. 7).

E. IMPLEMENTATION
The CDF generation process detailed previously can be prac-
tically implemented as shown in the Algorithm 1. After the
preamble, the outermost while loop indicates that the algo-
rithm will run until a ∅ is reached in d′. An empty entry is
guaranteed to be present in d′ since, for 1θ > −π/2, c can
pass through at most three lines σn. Therefore, there will be
at least N − 3 empty entries in each dH ,i.

The outermost if statement iterates through d′ until an entry
is found that is different from the previous entry. In this way,
unique entries in d′ define the jth subregion F†

j of the overall
CDF as shown in (38), (42), and (44).

The for loop builds F†
j (1θ ) for each subregion by start-

ing from |A| every iteration and adding and removing the
necessary elements based on the first j − 1 entries in d′.
The necessary elements to remove and add are identified by
dereferencing all j − 1 entries with gN . The result of the
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Algorithm 1 Angle Distributions in Regular Polygons
1: Calculate absolute distances and sort into d′

2: l = j = 1, d′0 = −π
3: while d′l 6= ∅ do
4: if d′l−1 6= d′l then
5: F†

j (1θ ) = |A| where d′l−1 ≤ 1θ < d′l
6: for each i ∈ {1, . . . , l − 1} do
7: if gN (d′i) = D(Sn) then
8: F†

j (1θ ) = F†
j (1θ )− Bn

9: else if gN (d′i) = D(vn) then
10: F†

j (1θ ) = F†
j (1θ )+ Cn

11: if D(Sk ) = D(σk ) then
12: F†

j (1θ ) = F†
j (1θ )+ C̃n

13: end if
14: else
15: F†

j (1θ ) = F†
j (1θ )+ Bn − Bn

16: if d′l > D(vn) & c < γn then
17: F†

j (1θ ) = F†
j (1θ )

18: −Cn + Bn−1 − Dn
19: else
20: F†

j (1θ ) = F†
j (1θ )

21: −1/2(Cn − Cn)
22: end if
23: if d′l > D(vn+1) & c < γn+1 then
24: F†

j (1θ ) = F†
j (1θ )

25: −Cn+1 + Bn+1 − Dn+1
26: else
27: F†

j (1θ ) = F†
j (1θ )

28: −1/2(Cn+1 − Cn+1)
29: end if
30: end if
31: end for
32: j = j+ 1
33: end if
34: l = l + 1
35: end while
36: F(1θ ) = |P|−1

⋃
j F

†
j (1θ )

dereferencing map dictates which part of the if/elseif/else
statement immediately inside the for loop is executed. If the if
statement is executed, thenA has extended beyond σn which
warrants removal of the circular sector Bn from the overall
area of A. This condition can be invoked in all of the three
regions.

If the else if clause is executed thenA has extended beyond
vn and, as discussed previously, the region Cn will be double
counted due to the removal of Bn−1 and Bn. This step fixes
the double removal of the area Cn from A. A further step is
sometimes necessary to add back in the annular hole via C̃n.
Similar to the if clause, the if else clause can be invoked in
any of the three regions.

When a distance dereferences to a hull distance D(Hn),
the else clause is invoked. This condition will only

execute in regions 2 and 3. When c exits the polygon
(and 1θ ≥ −π/2), a mandatory revision of Bn and optional
revisions of Cn and Cn+1 is required due to the position of
the center relative to the SCV thresholds and is handled by
the two nested if/else conditions. Note that in the case where
a hull distance is reached the implications for both vn and
vn+1 must be considered, hence the two if/else statements
(cf. (40) and (41)).

The first if indicates that the γn has not been exceeded
while the else statement indicates the complement. Note that
since two if/else statements are considered for every hull
distance that the factor of 1/2 is included when calculating
Cn so as not to double count it.
The final step after the while loop exits is a normalization

and union of the computed areas such that a valid CDF
is obtained. Since each Fj is defined only over its own
non-overlapping domain, the union of subregions is equiv-
alent to concatenation.

VIII. SOME EXAMPLE DISTRIBUTIONS
In this section we present CDFs for various geometries. Ini-
tially, geometries in N = 6 are explored due to the ubiquitous
nature of the regular hexagon in wireless architecture. Next,
a general equation and results for the CDF of a geometry
where fixed points are vertices of a more general Pρ,N are
presented. In both of these cases, analytical CDFs realized by
our algorithm precisely match empirically determined CDFs.
Finally, an example use case of the distribution and a sum-
mary of the results are presented in the last two subsections.

A. SPECIAL CASE: SYMMETRIES OF THE DIHEDRAL
GROUP
Here, we fix N = 6 and present results based on symmetries
in the dihedral group of regular polygons with six sides. Since
the rotational group members are exploited in the algorithm,
the group members which are reflections are considered.
As can be seen in Figure 7, there are two unique families of
reflection generators: reflections about a line Rs,n, that bisects
Sn and Sn+3 and about a line Rv,n, that bisects vertices vn
and vn+3.

Consider the fixed points of Figure 7 given in magenta
as M. This geometry is symmetric about Rs,3 and Rv,2. One
degree of symmetry is broken with the fixed points given in
red as+. The opposite degree of symmetry is broken with the
fixed points given in green as O. All three of the analytical
CDFs resulting from the aforementioned fixed points are
presented in Figure 8 and match empirical results exactly.
While a generally similar behavior is noted in all of the tails of
the distributions towards1θ = −π , the behavior is markedly
different near 1θ = 0.

If precise locationing is sought, then the fixed points must
be positioned such that the expected CRLB is minimized.
This happens when 1θ is π/2 modulo π (cf. Corollary 2).
It may be observed that the magenta fixed points M pro-
vide the worst such environment with a heavy tail as 1θ
approaches zero. The environment is improved when the
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FIGURE 7. Presented here are the five scenarios presented in Figure 8.
The marker color and shape represents the fixed points corresponding to
each CDF in Figure 8 (which has the same marker color and shape). The
fixed point positions are distributed to show the effect of symmetric
positions on the resulting CDF. Reflection symmetries {Rs,3,Rv,3} are
denoted with dashed lines. Straight arrows represent orthogonal
deviations from a particular symmetry.

fixed points are offset as in red +, and further so in green O,
where it can be seen that the tails of the CDFs are reduced
and probability density is shifted towards −π/2.

Consider next the fixed points of Figure 7 given in blue
as�. This geometry is symmetric about Rs,1 and Rv,3. Refer-
ring to the inset in Figure 8, it can be seen that this geometry
affords some improvement when compared to that of 4 by
minimizing the effect of the tail.

FIGURE 8. Presented are CDFs for symmetric placements of the fixed
points. Curves with a particular color and marker shape map to
placements with the same attributes in Figure 7. The figure is enlarged to
highlight tail behavior.

As a final case, consider the fixed points that are symmetric
about Rs,1 and given in black as×. In this geometry, the fixed
points are close enough to S4 that D(S4) < −π/2. Stated
another way, A will breach P while it is still lens-shaped

(cf. Figure 1). This results in d(σ4) < −π/2 whereas in
all previous examples all the solutions to (26) and (27) were
greater than −π/2. This difference in solution location is the
result the close proximity of the side and the fixed points.
Regardless, by following the prescribed algorithm, the correct
absolute angular distances are obtained and, again, the ana-
lytical and empirical result in Figure 8 match exactly.

When evaluated for positioning efficacy, this placement of
fixed points realizes a dramatic improvement. This improve-
ment is a result of elimination of the majority of points x ∈ P
where 1θ is large. This is possible due to its proximity
to, in this instance, S4 and results in the inspiration for the
following special case.

B. SPECIAL CASE: p1 = v1 AND p2 = v2
In light of the favorable result obtained by the heavily asym-
metric geometry of the fixed points given as black × in
Figure 7, let p1 = v1 and p2 = v2. These fixed points
yield both a favorable environment for positioning and are
representative of how access points are often distributed in a
cellular or wireless lattice [23], [40].

Further, the location of the fixed points makes the general
equation for the CDF of 1θ concise. If N is odd then

F†
j (1θ ) =

|A|
2
− 2

j∑
n=2

Bn. (45)

If N is even then

F†
j (1θ ) =

|A|
2
− 2

j∑
n=2

Bn − δ[j− N/2− 1]BN/2+1. (46)

Both equations are defined for 0 < j ≤ bN/2 + 1c and δ[]
is the Kronecker delta function. Here, the only ingredient to
the CDF is Bn the absolute vertex distance is the same for all
vertices except for v1 and v2 since they are also p1 and p2.
To see this, consider that any circle that contains three of
the vertices must be the circumcircle and thus contain all
of the vertices. Therefore, all of the vertices of P will be
reached by A simultaneously.3 Further, this happens exactly
at the time when F†

bN/2+1c(1θ ) = |P| relieving any need
to consider Cn. Additionally, because, in this special case,
the algorithm ends once C% is a circumcircle then its center is
inside of P relieving any need to consider areas in regions 2
or 3 (cf. Sections VII-C and VII-D).

The subject CDF is presented in Figure 9 for a triangle (M),
a square (�), a pentagon (+), a hexagon (O), a dodecagon
(×), and a icositetragon (◦).4 The most notable trend is the
shift of the CDF to favor higher values of1θ as N increases.
Recall that a favorable positioning environment is one where
the expected1θ is closest to−π/2. Given the subject geome-
try of fixed points, it can be easily determined empirically that
the optimal N = 4. A triangle and a pentagon both shift their

3The exception being v1 and v2, which are the fixed points and thus always
contained in A regardless of 1θ .

4All polygons under considerations are regular.
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FIGURE 9. The CDFs when p1 = v1 and p2 = v2 for regular polygons with
various number of sides N .

means farther away from the optimal expected 1θ = −π/2.
It also clear from the CDFs that the mean values will be
monotonic in N when N ≥ 4 guaranteeing that N = 4 is
the optimal value for this particular configuration.

It is also interesting to inquire about the limiting behavior
of the CDF as N → ∞, in other words, as P approaches
a circle. As N → ∞ the shape of P approaches that of
A which is in P . In the limit, the points which define the
polygon approach a circle. Since the side ofAwhich is in the
polygon is also a circle (46) and (45) simplify to

F(1θ ) =
1
2
|A|
|P|

, −π ≤ 1θ < 0. (47)

However, since also the distance between the fixed points
m→ 0 asN →∞, (47) becomes the Heaviside step function
centered at 1θ = 0. In this limiting case, (47) implies that
−ε < 1θ < 0 for some small ε > 0 and some sufficiently
large N . This can also be approached more intuitively if one
considers that if the distance between p1 and p2 goes to zero
θp1,x = θp1,x. In other words, their angular difference to any
third point x in P also approaches zero.

C. CELLULAR SITE PLANNING FOR LOCATION-BASED
SERVICES
Next, we give an example of how one may plan a deployment
of fixed-measurement nodes {p1,p2, . . . ,pK } where K > 2
utilizing the distribution of angular difference. An alternative
to using the distribution of angular differences proposed by
this work is to numerically calculate the distribution of GDoP,
which we will show to lead to inferior, or even incorrect
results relative to our method. Further, we show the utility
of our results for more than two fixed points.

In order to make this example as realistic as possible we
again adopt the regular hexagon as P and place a single
node at v1. This node could, for example, represent a macro
base station (i.e., gNB) in a hexagonal lattice. We may now
inquire as to where we may position a second node in order

to maximize the precision of LBS. This area may be dictated
by coverage requirements or some other metric. Motivated
by the results in [17], [29] and in section VIII-A we propose
that another vertex may produce the best results. We therefore
calculate the distribution of the angular difference 1θ for
secondary positions at v2, v3, or v4 (we may omit the remain-
ing vertices from consideration by symmetry). If we evaluate
these positions with the proposed method we can see from the
CDFs in Figure 10 that v3 is a superior placement. The CDF
shows that the distribution of angular differences will be less
than when p2 = v2 and larger than when p2 = v2. Since
GDoP is minimized when 1θ = −π/2 (cf. (2)), it follows
that when p2 = v3 is the best placement of p2 given the
options.

FIGURE 10. Given that p1 = v1 the distribution of 1θ12 is presented for
various locations of p2.

Alternatively, the GDoP can be calculated for a sample of
points drawn from the hexagon. Displaying these results as
an empirical CDF or histogram is of limited value due to
the widely varying range of the results, especially for those
points along the line between p1 and p2. In fact, points that
are on this line have an infinite GDoP and thus are difficult to
incorporate into numerical analysis. This method is therefore
highly sensitive to where the samples are drawn from in P .
Viewing contour plots of the GDoP in P (as done in [29])
is also of limited value. As can be seen in the top row
of Figure 11, it is not obvious which contour plot should,
on average, provide the best environment for LBS.

Here, we note that it would not be unreasonable to stop
with only two nodes in an LBS architecture. In fact, the case
for two nodes in cellular networks as an LBS enabler has
been previously reported on [17]. Despite that with only two
nodes the set of solution equations may be underdetermined,
ambiguity can be resolved by alternate means such as cell
boundaries or beamforming angle making two nodes a useful
architecture for LBS.

Regardless, suppose now we require a third fixed measure-
ment point p3. Intuition would suggest that the best location
for p3 is v5 given the now fixed locations of p2 and p1.
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FIGURE 11. The top row of contour plots shows the GDoP for three different placements of p2. Using the proposed method it can be shown that the
position where p2 = v3. Given the optimal location of p2, the bottom row shows the GDoP for various locations of p3. It can also be shown with the
proposed distribution that the position where p3 = v5 is optimal.

In order to show this as correct, we can compare this place-
ment to any of the other open vertices as an alternate candi-
dates. Looking at the contour plots of the available candidates
(where v6 can be omitted by symmetry) it is again not entirely
obviouswhich placement results in the best geometric climate
for all of P . However, we can evaluate the distribution of
angular differences resulting from p1 and p3 (1θ13) and the
distribution of angular difference resulting from p2 and p3
(1θ23) when p3 is located at any of the open vertices. The
angular differences between p1 and p2 are not needed since
those locations have already been fixed.

In fact, no new computations are required since, by sym-
metry, any of those now required would be identical to one
of the three distributions already available. For instance, if v2
is chosen as a location for p3 then 1θ13 = 1θ23. The two
CDFs are exactly the same as 1θ12 for p2 = v2 shown
in Figure 10. Placing p3 at v4 results in two CDFs identical
to those of1θ12 for p2 = v2 and1θ12 for p2 = v4. The only
remaining placement to check is v5 and the resulting CDFs
are identical to the CDF for1θ12 for p2 = v3. By considering
all combinations of CDFs it is clear that the v5 placement
minimizes the expected GDoP for all of P . This process
can be iteratively applied if more than three fixed points are
required.

We note that we have not shown that the above three place-
ments are optimal in all of P . Rather we have demonstrated,
given constraints driven by other metrics, such as coverage,
that the proposed distribution can discern geometry that will

result inmore precise LBSwhichwould otherwise be difficult
to obtain via numerical methods.

D. SUMMARY OF RESULTS
In this section we have utilized the distribution of angular
differences to three ends. First, we evaluated several potential
placements of infrastructure via this distribution. By choosing
placements that orthogonally sampled the space available
in P for p1 and p2 we developed an intuition for which
locations may be superior. This intuition then motivated the
special case of two adjacent vertices as p1 and p2. This
distribution was notable since it was simple to express and
allowed a straightforward way of evaluating the effect of
changing the number of sides of P . Finally, the efficacy of
the developed theory was demonstrated in a cellular planning
scenario. Here, the distribution of angular differences was
used to find the best placement of p1 and p2 given constraints.
The distribution was then used iteratively to show its utility
for more than two fixed points. Notably, in this scenario it was
shown how the distribution of angular differences provides
a superior metric relative to numerically calculating average
GDoP or evaluating contour plots of GDoP.

IX. CONCLUSION
In this research we have presented an alternative measure,
angular difference1θ , to GDoP. SinceGDoP is solely a func-
tion of angular difference, angular difference also describes
the dilutive effects of physical geometry on LBS. However,
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we have shown how it can be a superior method to directly
calculating GDoP when one is concerned with the expected
GDoP throughout an area served by a wireless network.
While 1θ can be calculated numerically, we have addition-
ally provided an algorithm for calculating it exactly in closed
form, further strengthening it as an advantageous measure to
GDoP.

In order to further draw out these advantages we have used
it in a variety of scenarios culminating in a demonstration of
how it can be used in conjunction with constraints to solve
for an optimal placement of fixed point locations in a wireless
network.

Given the modern ubiquitous nature of LBS, the increas-
ingly strict standards-based requirements for localization
accuracy, and the nascence of location-aware communica-
tions, we reckon that understanding angular distributions,
is ever more important for optimization of wireless networks.
Indeed, as was shown, this distribution fundamentally under-
girds the FIM and thus the maximum achievable accuracy.
Therefore, as localization methodologies sounds the theoret-
ical limits, we must acknowledge and address the accuracy
scaling effect of infrastructure layout.

As cellular technology grows into the millimeter-wave
range and beyond, location services will play an ever increas-
ingly central role in wireless networks. Among other areas,
beam training, cell selection, and device-to-device commu-
nications will all benefit. By furthering our understanding of
distributions related to positioning accuracy, modern wireless
networks will be holistically advanced.

APPENDIX A
NOTATION (IN ORDER OF APPEARANCE)
P A regular polygon
N Number of sides of a regular polygon
pi ith fixed measurement point
x True position to be estimated
x̂ Estimate of x
K Number of fixed measurement points
d̂ A distance estimate
θy,x Angle subtending locations y

and x (cf. Fig. 1)
1θij Angular difference between θpi,x

and θpj,x
ς Standard deviation of distance

measurement noise
I Fisher information matrix
` Line that contains pi and pj
¯̀ Line segment with pi and pj as its

endpoints
A Area where 1θij is less than some

constant value
D A disk (i.e., a two-dimensional sphere)
C% Circle (i.e., the boundary of D) with

radius %
c = [xc, yc]T The center of C

`⊥ Perpendicular bisector of ¯̀
ϑ The angle subtending some horizontal

axis and `⊥
[x0, y0]T The intersection of ` and `⊥
m The distance between pi and pj
θc Central angle of P
D The disk ∂C%
θι The interior angle of P
m |p1 − p2|
ρ Radius of the circumcircle of P
vi The ith vertex of P
θι The interior angle of P
θc The central angle of P
d(·) The instantaneous distance
σi The line containing vi and vi+1
Si The ith side of P
Rn The linear isometric rotational transform of

magnitude nθc
℘ A constrained perpendicular projection

used in calculating d(Si)
τ A variable which takes on values in the

probability simplex
(·)	n The result of the product Rn(·)
D(·) Absolute angular distance
[x⊥, y⊥]T The intersection of `⊥ and σ1
d Vector of angular distances
d′ d sorted in ascending order

d′′ The unique values of d′ in ascending
order

Bn, Cn, & Dn The two general types of area calculations
when c ∈ P

l Index vector that maps between d and its
sorted counterpart d′

gN Dereferencing map which takes a
sorted distance to its type and number

γn SCV threshold
R Reflection symmetry of the dihedral

group

APPENDIX B
DERIVATION OF THE TRACE OF ς2I−1

Define the matrix

Ai =

[
cos2(θpi,x) cos(θpi,x) sin(θpi,x)

sin(θpi,x) cos(θpi,x) sin2(θpi,x)

]
. (48)

The full inverse of this matrix need not be computed since
we only require the trace its inverse. Therefore, only the
diagonal of the inverse is of interest. Since ς2I is a 2 × 2
matrix the trace of its inverse is simply given as (50), shown
at the top of the next page.

The numerator quickly simplifies to

Tr(ς2I−1) =
K

det(ς2I)
. (51)
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Therefore,

ς2I = A1 + A2 + · · · + AK

=

[
cos2 θ1 + cos2 θ2 + · · · + cos2 θK cos θ1 sin θ1 + cos θ2 sin θ2 + · · · + cos θK sin θK

cos θ1 sin θ1 + cos θ2 sin θ2 + · · · + cos θK sin θK sin2 θ1 + sin2 θ2 + · · · + sin2 θK

]
. (49)

Tr(ς2I−1) =
(cos2 θ1 + cos2 θ2 + · · · + cos2 θK )+ (sin2 θ1 + sin2 θ2 + · · · + sin2 θK )

det(ς2I)
. (50)

det(ς2I) = (cos2 θ1 + cos2 θ2 + · · · + cos2 θK )(sin2 θ1 + sin2 θ2 + · · · + sin2 θK )

− (cos θ1 sin θ1 + cos θ2 sin θ2 + · · · + cos θK sin θK )2

=

K∑
i=1

K∑
j=1

(sin θi cos θj)2 −

 K∑
i=1

(cos θi sin θi)2 + 2
K∑
i=1

K∑
j=i+1

cos θi sin θi cos θj sin θj

 . (53)

It now suffices to show that (cf. (2))

det(ς2I) =
1
2

K∑
i=1

K∑
j=i+1

(1− cos(21θij). (52)

We begin directly by calculating the determinant as (53),
shown at the top of the page.

All K terms of the second sum cancel with the same K
terms in the first sum. After applying this first simplification
we have

det(ς2I) =
K∑
i=1

K∑
j=1|j6=i

(sin θi cos θj)2

−

2 K∑
i=1

K∑
j=i+1

cos θi sin θi cos θj sin θj

 . (54)

Now, consider the two identities

(cos θi sin θj)2+(cos θj sin θi)2=
1
2
(sin2(θi+θj)+sin2(1θij))

(55)

and

2 cos θi sin θi cos θj sin θj =
1
2
(sin2(θi + θj)− sin2(1θij)).

(56)

There are exactly
(K
2

)
distinct applications possible of the

former identity in the first double sum of (54) and
(K
2

)
distinct

applications of the latter identity in the second double sum
of (54). After computing the difference and applying the
identities to (54) we arrive at the required equality

det(ς2I) =
K∑
i=1

K∑
j=i+1

sin2(1θij)

=
1
2

K∑
i=1

K∑
j=i+1

(1− cos(21θij)). (57)

Finally, substituting (57) into (51) yields (2).
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