IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 14, 2020, accepted August 26, 2020, date of publication August 31, 2020, date of current version September 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3020745

Large-Scale Simulations Manager Tool for
OMNeT++: Expediting Simulations and

Post-Processing Analysis

PABLO ANDRES BARBECHO BAUTISTA!, (Student Member, IEEE),
LUIS FELIPE URQUIZA-AGUIAR 2, (Member, IEEE), LETICIA LEMUS CARDENAS"',

AND MONICA AGUILAR IGARTUA !

! Department of Network Engineering, Universitat Politécnica de Catalunya (UPC), 08034 Barcelona, Spain

2Depa.rtamento de Electrénica, Telecomunicaciones y Redes de Informacién, Facultad de Ingenieria Eléctrica y Electrénica, Escuela Politécnica Nacional, Quito
170525, Ecuador

Corresponding author: Pablo Andrés Barbecho Bautista (pablo.barbecho@upc.edu)

This work was supported by the Spanish Government through the Research Project sMArt Grid Using Open Source Intelligence (MAGOS)
under Grant TEC2017-84197-C4-3-R. The work of Pablo Andrés Barbecho Bautista was supported by a grant from the Secretaria Nacional
de Educacién Superior, Ciencia y Tecnologia (SENESCYT). The work of Leticia Lemus CArdenas was supported by a Ph.D. grant from
the Academic Coordination of the University of Guadalajara, Mexico.

ABSTRACT Usually, simulations are the first approach to evaluate wireless and mobile networks due to the
difficulties involved in deploying real test scenarios. Working with simulations, testing, and validating the
target network model often requires a large number of simulation runs. Consequently, there are a significant
amount of outcomes to be analyzed to finally plot results. One of the most extensively used simulators
for wireless and mobile networks is OMNeT++. This simulation environment provides useful tools to
automate the execution of simulation campaigns, yet single-scenario simulations are also supported where
the assignation of resources (i.e., CPUs) has to be declared manually. However, conducting a large number
of simulations is still cumbersome and can be improved to make it easier, faster, and more comfortable
to analyze. In this work, we propose a large-scale simulations framework called simulations manager for
OMNeT++ (SMO). SMO allows OMNeT++ users to quickly and easily execute large-scale network
simulations, hiding the tedious process of conducting big simulation campaigns. Our framework automates
simulations executions, resources assignment, and post-simulation data analysis through the use of Python’s
wide established statistical analysis tools. Besides, our tool is flexible and easy to adapt to many different
network scenarios. Our framework is accompanied by a command-line environment allowing a fast and
easy manipulation that allows users to significantly reduce the total processing time to carry out large sets of
simulations about 25% of the original time. Our code and its documentation are publicly available at GitHub
and on our website.

INDEX TERMS Large-scale simulations, OMNeT++-, results post-processing.

I. INTRODUCTION

In order to assess new developments of communication net-
works (e.g., infrastructure-based, ad hoc, wireless, mobile),
different methodologies such as analytical, experimental,
or simulation are usually used. While analytical methods
are unable to characterize wireless communications fully,
the use of experimental techniques (i.e., deploying a real

The associate editor coordinating the review of this manuscript and

approving it for publication was Maurice J. Khabbaz

test scenario) is often unfeasible due to involved cost and
complexity. Therefore, computer networks’ researchers com-
monly use simulation methods. Simulators allow researchers
to evaluate the design and performance of a target system
under different configurations. In this context, the first step
researchers usually have to do is writing code to characterize
their target model, for later executing simulations, and finally
analyzing experiment outcomes. In the process of implement-
ing the target model (e.g., routing protocols), testing and
validating, the experiment should be executed several times

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 8, 2020

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

159291

https://orcid.org/0000-0002-5281-9208
https://orcid.org/0000-0002-6405-2067
https://orcid.org/0000-0001-9139-5666
https://orcid.org/0000-0002-6518-888X
https://orcid.org/0000-0002-3472-8660

IEEE Access

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

under different configurations. The complexity of simula-
tion configurations grows, led by the number of simulation
factors to thoroughly study the model. Besides, to increase
the statistical soundness of the results (e.g., to bound confi-
dence intervals), it is common to execute several repetitions
of the experiment with different seeds (to be statistically
independent). This leads to complex, large-scale simulations,
expensive in terms of processing time due to the campaign
configuration, computation, and outcome analysis.

Nowadays, high-end workstations increase their perfor-
mance principally by adding more and more cores rather
than increasing their working frequency [1]. Thus, minimiz-
ing execution times are commonly obtained by parallelizing
the workload. As a simple and straightforward approach,
several experiment runs can be instantiated manually, using
different consoles. Here, the operating system should assign
each process to a different resource (i.e., CPU). Nevertheless,
managing this process manually is not suitable for large-scale
simulations since it would require continuous supervision to
execute a new instance as soon as a process ends.

In this sense, the first alternative users commonly consider
is performing simulation and data analysis directly using the
tools included within the simulation platform (e.g., NS-2
[2], NS-3 [3], OMNeT++ [4], OPNET [5], NCTUns [6]).
Nevertheless, this approach binds the user always to perform
simulation execution and outcome analysis together, which
limits the re-usability of simulation outcomes (i.e., output
files). Simulators usually include tools to analyze outputs
that are not flexible enough to easily carry out results, espe-
cially when a large amount of simulations is required. For
instance, this happens when we need to include confidence
intervals (CI) in our graphs.

Other simulation platforms (e.g., NetSim [7]), instead,
do not provide facilities to perform multiple simulation exe-
cutions within the simulator interface. In that case, the target
experiment should be executed manually by running different
instances of the program, which is not scalable, as com-
mented above.

A different approach is the use of customized solutions
organized in two phases: (i) Firstly, using external tools to
execute a bundle of simulations (e.g., bash or python scripts);
(ii) Secondly, using another set of tools to process and analyze
outputs (e.g., R, Matlab, or Python). The main disadvantage
of this strategy is that simulation script execution, and fur-
ther result analysis are performed in two or more separate
instances. Once simulation outputs are obtained, those have to
be manually imported into a separate component to be later
parsed and analyzed. Also, proper execution of the simula-
tion campaigns should include optimal use of resources to
minimize execution time, but also to minimize the impact of
possible inaccuracies introduced by human operations during
the simulation workflow.

To deal with the problems described above, in this article,
we propose a simulation manager for OMNeT++ (SMO)
tool for the execution of multi-scenario large-scale simula-
tions and data analysis for OMNeT++-. We want to highlight

159292

that our proposed methodology could easily be adapted to
other similar simulators. We have chosen OMNeT++ since
it is one of the most extended simulators used by the research
community, especially in wireless networks. The aim is to
provide a single unified framework, simple and easy to use,
focusing on minimizing the time to assess network systems.
SMO is intended to be used by either novice and advance
OMNeT+-+ users. Our code and its documentation are pub-
licly available at GitHub [8] and in the online documentation
repository [9].

Our proposed framework uses Python libraries that allow
users to execute and manage complex simulation campaigns.
Also, Python allows users to deal with results’ analysis in a
more straightforward manner leveraging facilities of Python
data structures. In this context, Python is a general-purpose
programming language that has a significant momentum for
data science. Besides, both efficient execution of simulation
campaigns and data parsing processes can be easily paral-
lelized, which leads to substantial time savings and optimal
use of resources.

Due to the difficulties of carrying out real-life experiments,
researchers commonly use simulations to validate new devel-
opments. In the design of new proposals to improve systems,
researchers must face a lot of tests to validate the target model
through the assessment of multiple factors. To guarantee a
high level of confidence in the results, it is necessary to
fulfill some requirements: (i) use a well-known and reputed
simulator extensively validated and trusted by the research
community; (ii) design and configure a realistic scenario as
much close to reality as possible; and (iii) carry out a large
amount of representative simulations used to include confi-
dence intervals to show the confidence level of the results.

The outline for the remainder of this work is as fol-
lows: in Section II related work is discussed; then available
tools for large-scale simulations are analyzed in Section III.
Section IV presents the workflow for large-scale simula-
tions. In Section V, we detail the architecture followed
by the simulation framework. Here, a tool for building
and execute large-scale simulations is presented. After that,
Section VI describes proposed tools for parsing output files.
Next, Section VII and Section VIII explains the usage of the
command-line interface and a case study. The performance
of the proposed tool is evaluated in Section IX. Finally,
in Section X, conclusions, and some future work are drawn.

Il. STATE OF THE ART

Currently, several simulation frameworks and tools support
the automation of multiple simulations. We can differentiate
solutions according to their design in two categories:

(i) Simulation frameworks with embedded tools so that
the whole simulation workflow is covered within the same
platform.

(i1) External applications build on top of simulation frame-
works to automate simulations or to extend their facilities.

(i) An example of the former case is OMNeT++ [4].
OMNeT+-+ is a mature simulation framework provided with

VOLUME 8, 2020

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

IEEE Access

several tools (graphical and command line). OMNeT++
graphical user interface (GUI) allows users to automate
and monitor the execution of simulations graphically.
Besides, to automate the execution of multiple simulations,
the opp_runall tool can be executed throughout the command
line. To analyze results, OMNET++- offers a post-simulation
analysis tool that allows users to visualize results and analyze
metrics within the integrated development environment (IDE)
directly. Another simulator that includes embedded tools is
NS-3 [3]. NS-3 can be implemented as a simulator as well as
an emulator so that users can create a live network. It includes
some functionalities for multiple simulations execution and
data collection. Besides, users can perform the data analysis
directly from within their simulation script, using NS-3’s
Statistical Framework [10].

(i) The latter case corresponds to the use of external
frameworks on top of simulator platforms to extend the sim-
ulator facilities or improve their limitations. In this context,
the standard OMNeT++ implementation for writing output
files uses a single-thread. In [11], support for multi-thread
writing files is proposed. By applying parallelism to the writ-
ing of data, blocking operations can be minimized. Therefore,
the run-time of simulations can be reduced. Another tool
built on top of the OMNeT++ simulator is STARS [12].
It uses parallelization in order to perform large-scale simu-
lations. It is an implementation of the multiple replications in
parallel (MRIP) principle. STARS implements a centralized
architecture with numerous workers so that it distributes the
simulations between the simulation network. Once output
files are populated, the assessing variable is controlled via
the integration of the framework with Matlab. In case the
current experiment fails to produce sufficient ergodic data,
a new experiment is automatically run. Another example
of implementing the MRIP principle is the Akaroa frame-
work [13]. It allows launching multiple instances of the target
experiment in parallel (simulation executions are instantiated
on different processors) until results satisfy the desired con-
fidence level and precision. While the Akaroa framework
can be interfaced with several simulation platforms (e.g.,
OMNET++, NS-2), currently it seems to be abandoned.
Another example of an external tool developed for NS-3 is
SAFE [14]. It automates the simulation workflow, going
through the initialization of model parameters, parallelized
execution of experiments, post-processing of outcomes, and
results plotting. An essential feature of SAFE is the dual inter-
face to address the needs of power users and novices alike.
In [15], a Python API and a console tool for the management
of NS-3 simulations, called simulation execution manager
(SEM), are presented. This framework allows users to create
simulations, run simulations, and export results though the
command-line tool (CLT) tool without the need for writing
code. For the post-analysis part, an SEM script is created,
consisting of a Python code that includes facilities of the SEM
library. This Python library is publicly available at [16].

As commented above, OMNeT++ provides a set of
effective tools to automate simulations and post-processing

VOLUME 8, 2020

TABLE 1. Comparison of NS-2, NS-3 and OMNeT++ tools to ease the
management of large-scale simulations. Tool support level scored as low,
medium or high.

Development Simulation Data collection and
tools tools analysis tools
NS-2 Low Low Low
NS-3 High Low Medium
OMNeT++ High High Medium

analysis. However, in the context of large-scale simulations,
such a set of tools present some limitations as it is discussed
along with this work. At the time we are writing this doc-
ument, the last version of OMNeT++ 6.0 is not already
released, and just a preview version is available on the official
website [17]. The last release of OMNet++ includes an
improved analysis tool based on Python 3, whose libraries
are supported in the IDE. The new analysis tool allows users
to create plots of the simulation results based on Matplotlib,
a library for creating static, animated, and interactive visual-
izations in Python. Also, the last version of the OMNeT++
analysis tool supports Pandas DataFrames structures, consist-
ing of a 2-dimensional data structure with labeled axes (rows
and columns). Those new features can notably facilitate the
analysis task, although no new specific tools for large-scale
simulations management are included. Also, the data parsing
tool (scavetool) still uses a single-thread approach.

Despite the fact that simulators like the ones commented
above include some tools to assist the researcher’s work, they
are not specifically intended for large-scale simulations. This
makes researchers dedicate much time to prepare the set of
successive simulations, launch them, gather results, process
them, and finally represent them graphically.

To tackle this issue, this article aims to facilitate the cre-
ation, execution, and post-analysis of complex large-scale
simulation campaigns. In the context of large-scale sim-
ulations, and after identifying limitations with the tools
that are currently used to run multiple OMNeT++ simula-
tions, we have proposed our so-called simulation manager
for OMNeT++ (SMO) tool based on a flexible software
architecture.

IIl. ANALYSIS OF AVAILABLE TOOLS TO HANDLE
LARGE-SCALE SIMULATIONS

In Table 1, we compare the main tools provided by
three widely used network simulators: NS-2, NS-3, and
OMNeT++. We focus on the available tools to facilitate
(i) development tasks, (ii) simulation tasks, and (iii) data
collection and analysis tasks, with respect to large-scale sim-
ulations.

(i) Regarding tools for software development, NS-2 uses a
dual-language architecture (C++4-/OTcl), which allows users
to write and run simulations without the need for additional
compilation time. However, this duality adds extra complex-
ity to the tasks of model development, simulation settings,

159293

IEEE Access

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

and data collection (done via trace captures or using the
Sflow monitor tool). Hence, due to the NS-2 structure, devel-
opment tools to assist large scale simulations have a Low
score in Table 1. Instead, NS-3 simplifies the NS-2 architec-
ture and uses C++ as the single development language to
develop models and carry out simulations. Also, NS-3 sup-
ports the use of Python bindings (aka wrappers) to easily use
Python code in the model development. That is why we score
NS-3 with a high support level of development tools Table 1.
Besides, NS-3 shows better performance (less memory and
CPU is required) when compared with NS-2 [18], [19].
On the other side, OMNeT++-, which is mainly used to build
network simulations, is not actually defined as a network
simulator but rather as a general-purpose discrete event-based
simulation framework. OMNeT++ has a hierarchical archi-
tecture where a single module (written in C++4-) can consist
of several modules called compound modules. To combine
modules, OMNeT++ uses the network description lan-
guage NED, which is transparently rendered into C++ code
when the project is compiled. Due to the OMNeT++ hier-
archical architecture, which scales well in large projects,
we set a high score in the level of development tools, see
Table 1.

(ii)) With regard to simulation tools, both NS-2 and
NS-3 have no default IDE. Besides, to obtain a graphical
interface (simulation animation tool), external applications
can be used (e.g., PyViz, NetAnim). However, advanced
configurations (e.g., automation of simulations) are not sup-
ported. In contrast, OMNeT++ IDE (based on the Eclipse
platform) implements additional simulation tools such as a
graphical configuration of network models and automation of
simulations (batch executions). Also, in OMNeT++ simula-
tion results can be analyzed within the IDE. For this reason,
we score OMNeT++ with high support of simulation tools,
see Table 1.

(iii) Respecting data collection and analysis tools,
NS-2 provides two mechanisms to capture results named
traces and monitors. The traces mechanism captures events
related to packets transmission (e.g., dropped packets),
while monitors can provide basic statistics regarding queues
or behavior of packet flows. Nevertheless, data collection
tools are neither flexible nor efficient enough for collect-
ing large-scale simulation outputs (NS-2 is scored as Low
in Table 1). In the NS-3 simulator, the tracing system is the
main mechanism that allows users to collect data and export
result files. Also, the output of known events can be recorded
in a text file or when a particular packet transmitted/received
event can be exported to a packet capture (PCAP) file.
Besides, the flow monitor module [20] can be used to assess
the performance of network protocols where collected statis-
tics are exported to XML format. Nonetheless, as it happens
in NS-2, only a limited number of pre-defined metrics (i.e.,
a limited number of probes) can be recorded [21]. Here,
a probe is an object connected to a simulation variable
to record values during execution. In terms of large-scale
simulations, by enabling flow monitor modules, significant

159294

Build
simulation
campaign

Run
simulations

Results
analysis

Results
parsing

FIGURE 1. Typical workflow for large-scale simulations.

additional overhead in terms of memory usage and run-time
is required. The reason is that XML files are slow to read
when large data-sets are handled. Finally, by using the data
collection framework (DCF), simple plots can be generated
(based on Gnuplot). Despite several data capture and analysis
tools are provided with the NS-3 simulator, those are better
suited to small-scale simulations (with small size files). That
is why we score NS-3 as Medium in Table 1.

IV. LARGE-SCALE SIMULATIONS WORKFLOW

In this section, we describe the common processes involved
in large-scale simulations. Multiple simulations are often
required to evaluate different parameter configurations and/or
to repeat the experiment with different seeds to reach statisti-
cal soundness. A typical workflow in large-scale simulations
is presented in Fig 1.

A. STEPS TO PREPARE A LARGE-SCALE SIMULATION
CAMPAIGN

The details and considerations taken to prepare the simulation
scale are summarized in the following steps:

1) BUILD THE SIMULATION CAMPAIGN

It is built through the combination of the parameters’ space,
the set of scenarios to simulate, and the number of repeti-
tions per experiment. The parameter space involves static and
iterative variables used to tune the model behavior. While
static variables remains constant during the whole simulation
campaign (e.g., nodes' number = 50 means all simulations in
the campaign will be done with 50 nodes), iterative variables
vary according to a set of pre-defined values (e.g., nodes’
number = [50, 100, 150], meaning the campaign will run
simulations with 50, 100 and 150 nodes, respectively). Within
the OMNeT++ framework, the parameter space is indicated
in the configuration file, detailed in Section V-A.

2) RUN SIMULATIONS

One of the main problems of large-scale simulations is the
cost in terms of time, due to the high number of exper-
iment executions required. Moreover, many network sim-
ulators usually perform event-based stochastic simulations,
which use variables that can change stochastically (i.e., ran-
domly) with individual probabilities. Outputs of the model
are recorded, and then the process is repeated with a new
set of random values. Here, large-scale simulations can result
in a very time-consuming task. Even small-scale simulations
could take several hours or even days in case of single-thread
was used [22].

VOLUME 8, 2020

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

IEEE Access

At this time, computers are equipped with multi-core pro-
cessors, which can be exploited to execute parallel experi-
ment simulations. In this context, to efficiently run simula-
tions, our proposal includes a parallel batch processing of
simulations, detailed in Section V-C. This way, simulations
are distributed in batches and then scheduled throughout the
available computational resources (i.e., CPUs).

3) RESULTS PARSING

Once the simulation campaign ends, output files are available
for parsing. At this point, the number or outcomes may be
considerable. To identify output files, those should be tagged
with their correspondent configuration parameters, as it is
detailed in Section V-E. It is essential to consider not only
the number of files, but also their size. Besides, to minimize
the processing time to obtain the results, we can parallelize
the data processing, as it is detailed in Section VI-A. Fur-
thermore, in case of files with a considerable size, different
techniques (e.g., files partition, data chunking) can be applied
to handle files successfully.

4) RESULTS ANALYSIS

At this point, basic and advanced statistics (e.g., mean values,
component analysis) should be obtained from the collected
results in the form of a standard format file. The objective
of this process is to produce data structures that are ready
for representation. Here, ordered data structures facilitate
the creation of desired plots (e.g., scatterplots, box plots).
At this point, by using Python pandas DataFrame structures
and visualization libraries (Matplotlib [23], Seaborn [24]),
results can be plot easily by using just a few lines of code,
as it is detailed in Section VI-B.

B. COST RELATED TO THE MANAGEMENT OF
LARGE-SCALE SIMULATION CAMPAIGNS

Even though there are already several tools to facilitate the
execution of network simulations (e.g., OMNET++ tools),
there is an intrinsic cost when evaluating a large number of
simulations. In terms of large-scale simulation campaigns,
the main factors that can affect the scalability of the system
are the following:

Time: Since the whole simulation campaign may involve a
high number of experiment executions, the overall process
required to build the campaign and afterwards to run the
experiment may result to be a really time-consuming task.
Besides, the time needed to process output files may aggre-
gate a significant overhead (e.g., parsing time).

Disk space: The size of the output files generated from
the simulation campaign, may grow considerably and might
become very large (sizes can grow to several GB). Here,
enough storage space should be available to save such amount
of data. Therefore, it is important that output files avoid
unnecessary information which represents an extra overhead.

Memory (RAM usage): Given the high amount of data
resulting from simulation campaigns, it may result expensive
in terms of the RAM memory required to store and analyze

VOLUME 8, 2020

those big amounts of data. In this context, an improved
capturing process (i.e., recording of results) should be used
during the simulation runs, avoiding unnecessary data and
consequently minimizing memory overhead.

Energy (CPU usage): The execution of large-scale simu-
lation campaigns usually requires a noteworthy amount of
energy. For the sake of energy reduction, which has an impact
in the climate change, it is important to optimize the use
of resources by distributing load and also by parallelizing
processing tasks.

To minimize the intrinsic additional cost produced by
deploying large-scale simulation campaigns, a rigorous
methodology that considers all the factors above mentioned
is required. At the end of this manuscript we include a per-
formance evaluation where we assess those factors in our
proposal, see Section IX.

In terms of large-scale simulations, current tools included
in the OMNeT++ framework have important scalability
limitations described in the following sections. To tackle
those limitations, we propose a large-scale simulation tool
called simulations manager for OMNeT++ (SMO). SMO
is intended to complement OMNeT++ tools to facilitate
the management of large-scale simulations, speed up the
whole simulation process and reduce intrinsic cost related to
large-scale simulations.

SMO is developed to support complex, large-scale sim-
ulations and post-analysis of results. Typical simulation-
workflow depicted in Fig. 1 guides the design and develop-
ment of our framework. The proposed SMO architecture is
described in the next section.

V. SOFTWARE ARCHITECTURE FOR LARGE-SCALE
SIMULATIONS

In this section, we detail the software architecture of our pro-
posal SMO for automating large-scale simulations. We define
two blocks, see Fig. 2: (a) The first block is the configuration
file, which corresponds to the network model configuration
declared using the OMNeT++ syntax; (b) The second block
wraps up the SMO functionalities. In SMO, the main pro-
cesses of the simulation workflow described in Section IV
are covered in three modules: Launcher, Summarizer, and
Analyzer, as itis depicted in Fig. 2. The main features of SMO
tools are summarized in Table 2.

(i) First, the Launcher module combines the parametric
space and user settings to create the simulation campaign.
Once a simulation campaign is created, this module will ask
the user to run the simulations. Alternatively, the user can still
move back to tune any simulation parameter before running
the simulations. Fig. 3 shows an example of simulation set-
tings in a simulation campaign.

(i1) Once simulations are completed, output files are parsed
and exported (supported output files are.npy,.mat,.csv) using
the Summarizer module.

(iii) Finally, the Analyzer module allows users to customize
results plotting them in a straightforward manner, leveraging
facilities of Python data structures.

159295

IEEE Access

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

N N
OMNeT++ B B SMO
Parameters Structure
studied file file
Summarizer
f OMNeT++
@ Build),) scavetool Filter Statistics
campaign s j
Configuration " Exported file
file (ini) Output files (.npy, .mat, .csv)
(:sca, .vec, .csv) Customized Default Interactive
(.csv) parser
- N

FIGURE 2. Software architecture of our proposal for large-scale simulations called simulations manager for OMNeT++ (SMO).

TABLE 2. Main features of the tools provided in our proposed SMO framework.

- Large-scale multi-scenario simulations.

Tools Intended for Features
- Build and execute complex simulation campaigns. | Automate multi-scenario simulations.
Launcher P PAENS- | Automate resources configuration (CPUs).

- Improve simulation campaign building and execution times.

- Export simulation results.

- Automatically export OMNeT++ and/or custom simulation output files.
- Scalable in case of custom output files (multi-thread processing and chunked files).

Summarizer | _ Large-scale multi-scenario simulations. - Improve exportation times (parallelized process).
- Support different output formats suited for external programs.
- Customizable analysis in a few lines of code by using python facilities.
Analyzer - Customizable filtering, sorting, and plotting. - Interactive plotting.

- Support advanced statistics.

Campaign Info

Scenarios to simulate: ['Barcelona', 'Berlin', 'Tokyo'l]
Iteration variables: 1 = [8]

Repetitions per scenario: 30

Simulation time: 500s

Total Runs: 720

FIGURE 3. Example of a campaign information summary.

The SMO facilities can be executed separately without the
necessity of going through all the simulation-workflow pro-
cesses (e.g., for troubleshooting or analysis modifications).
This scheme also allows users the interoperability with other
programs with which users might feel more comfortable (e.g.,
R, MATLAB). Although modules interact using well-defined
interfaces, each module’s internal structure can also be cus-
tomized if needed.

In this context, our SMO framework attempts to be a solu-
tion that balances the two common approaches for simulation
frameworks, which were pointed out in Section II. (i) On
the one hand, there is the monolithic approach of performing
simulation executions and the post-analysis within the same
simulation framework (e.g., as it happens in OMNeT++).
These kinds of simulators usually include tools not flexible
enough for large-scale simulations. (ii) On the other hand,
some approaches use customized solutions in several phases.
In this kind of solution, outputs have to be manually imported

159296

into separate components to be parsed and analyzed, which is
usually annoying for users and also error-prone. SMO address
their drawbacks properly to attain a faster and easier process
for large-scale simulation campaigns.

In Table 3, we summarize the main tools available both
in OMNet++ and SMO. Tools are classified regarding they
are intended for small-scale (SC) or large-scale (LS) simu-
lations. In that table, we point out the limitations present in
OMNet++ tools and developed alternative solutions in SMO
to ease them. We tick in green when the framework provides
a tool supporting the specific activity.

Finally, we want to remark that the proposed SMO frame-
work has been designed to be as decoupled as possible from
OMNeT++ and the network model. This way, we minimize
breaking issues in case of updates to the latest versions of
OMNeT++. Besides, this way SMO can easily been adapted
to any OMNeT++ based network simulator (e.g., INET [25],
VEINSs [26], LTE [27]).

A. THE SIMULATION CAMPAIGN

The first step in preparing the simulation campaign is the gen-
eration of scenarios according to the parameters’ space. With
the default implementation shipped with OMNeT++-, this is
done through the definition of a configuration file, usually
called omnetpp.ini [28]. It contains settings that control how
the simulation will be executed and values for the parameters
of the model (e.g., simulation time, number of nodes). The
configuration file is a flexible ASCII text file, line-oriented,

VOLUME 8, 2020

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

IEEE Access

TABLE 3. Tools available in OMNeT++ and SMO to facilitate the
execution of simulations. Support for small-scale (SC) and large-scale (LS)
simulations. Both CLT and IDE tools are analyzed.

OMNeT++ SMO
Support IDE CLT CLT
Graphic simulation (Tkenv, Qtenv) X X
Model troubleshooting X X
Multi-scenario simulations Group launcher X
(Cmdenv)
Automate execution of simulations SC . L.S LS
(Limited)
Simulations on multiple CPUs
opp_runall
Automate resource allocation (i.e., CPUs) X X
Export simulation results SC L.S LS
(Limited) (custom parsing)
. . GUI SC X X
Parse simulation
LS LS
results scavetool X (Limited) (Limited)
custom parsing Ne SC (cuslon&iarsing)
Statistics from simulation results SC (Ad\{:iiced)
Create plots from simulation results SC X LS

and structured in sections. Commonly, a general section of
the configuration file is defined where general settings are
declared (e.g., the simulation time). Additional sections can
be included by the definition of unique IDs of the form
[Config < configname >]. Those additional sections are
used to set up and evaluate the target model under different
configurations (e.g., propagation model, transmission range,
number of nodes, road maps used for vehicular networks).
We assume the user has the required expertise to write valid
OMNeT++ simulation scripts. Parameters included in the
OMNeT++ configuration file should be declared inside the
model script. Their values will determine the model behavior
(e.g., nodes’ number = 10 will launch a simulation with ten
nodes).

Using Fig. 2 as a reference, in the SMO block, the launcher
module builds the simulation campaign based on the
OMNeT++ configuration file. For this, a temporal file
(named femp.ini) is created, which includes general config-
urations of the model and other simulation parameters in
additional sections. This temporary file offers an abstraction
interface to OMNeT+-4- that facilitates the adaptation of the
user’s settings (e.g., number of repetitions, simulation time),
and the parameters of study (e.g., iteration variables).

Within SMO, the following files are defined:

1) Parameters studied file: 1t is an ASCII text file
like the OMNeT++ configuration file written with
OMNeT++ syntax. It allocates iterative variables used
in the model.

2) Structure file: This is an optional file with a simple file
format (.csv). It is required in case the user decides
to customize data capturing. Each entry of the file
(comma-separated) corresponds to the column name of
data recorded in the output files.

By defining parameters and structure files as external files
(i.e., outside OMNeT++ environment), assessed parameters
will be made available to other modules for further opera-
tions, e.g., for custom parsing.

VOLUME 8, 2020

B. MULTI-SCENARIO SIMULATIONS

OMNeT++ already offers several tools, IDE and command-
line tools (CLT) (see Table 3), to automate the execution
of multiple simulations. Even though simulations can be
executed in parallel, only one configuration (i.e., one single-
scenario) can be executed at a time. Supporting complex
simulations, where several system configurations should be
evaluated, an alternative included in the OMNeT++ IDE
is the use of the launch group tool, see Table 3. However,
simulation campaigns and resources still have to be manually
configured. Besides, by using the cmdenv tool (i.e., with-
out graphical interface) available in the IDE, see Table 3,
the execution of a whole big simulation campaign is not
recommended [28]. The reason is that it is more susceptible
to fall into C++ programming errors in the model, since if
any of the runs crashes the whole batch will stop.

An alternative is the use of the OMNeT++ opp_runall
CLT, see Table 3. While it is intended for executing batch
simulations in parallel, it could also be used to run just one
simulation with its particular configuration file at a time.
However, with this tool, resources must be manually con-
figured. In the case of multiple simulations (i.e., multiple
configuration scenarios to be run simultaneously), those have
to be performed by running two or more different instances.
Although, possible inaccuracies (e.g., overloading the system
with simulations) can be introduced by human operations.

To overcome the limitations described above, we propose
an alternative tool to automate the execution of multi-scenario
simulations. In this context, the SMO launcher module, see
Fig. 2, can execute simultaneously the set or a sub-set of
scenarios defined in the configuration file, see Fig. 4.

The following elements have to be defined to calculate
the total number of executions included in the simulation
campaign:

1) Scenarios to simulate: Set or subset of simulation sce-
narios to execute. Several scenarios can be configured
within OMNeT++ through the definition of additional
sections in the configuration file [28]. The selection of
a subset of scenarios allows tuning or troubleshooting
a particular configuration.

2) Number of iterations: Corresponds to the combination
of the set of values of each iterative variable.

3) Repetitions: This is an essential parameter of study
and is defined as the number of independent replicas
per each experiment’s configuration. Each reproduc-
tion will be executed with a different seed for random
number generation to ensure statistical confidence in
the results. The default random generator (RNG) of
OMNeT++- is used.

Once all the above elements are defined, the launcher
module automatically renders the experiment settings into a
simulation campaign comprising N runs. The total number of
runs is computed as follows:

N=[Tpc-s-r (1

159297

IEEE Access

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

TABLE 4. Example of parameters’ mapping to generate a simulation
campaign.

ID Param_A Param_B S R
0 10 true conf_ A 0
1 10 true conf_ A 1
2 20 true conf A 0
3 20 true conf A 1
4 10 false conf A 0
5 10 false conf A 1
6 20 false conf A 0
7 20 false conf A 1
8 10 true conf B 0
9 10 true conf B 1

10 20 true conf_ B 0

11 20 true conf B 1

12 10 false conf B 0

13 10 false conf B 1

14 20 false conf B 0

15 20 false conf B 1

where, i stands for the number of values to iterate for each py
simulation parameter, s is the number of scenarios, and r is the
number of repetitions to be done for each experiment (each
one with a different seed to have statistically independent
simulations).

Table 4 shows an example of parameters’ mapping to gen-
erate a simulation campaign. First, iterative variables expand
to two parameters (Param_A, Param_B), each with two pos-
sible values (Param_A = [10, 20], Param_B = [true, false])
giving a total of 4 iterations. Next, the experiment considers
two scenarios S defined in two different named sections, see
Section V-A, so S = [Config A, Config B]. Finally, each
experiment should be repeated twice with different seeds,
so the number of repetitions is r = [0, 1]. Therefore, the total
number of executions in the simulation campaign will be
N = 16. Notice that in addition to the different evaluation
variables configured in each simulation run, each scenario
will also have its own particular configuration (e.g., map,
coverage range, message interval) defined in their corre-
sponding section of the configuration file. This will modify
the behavior of the different evaluated scenarios.

C. PARALLEL BATCH PROCESSING
At this point, the simulation campaign is already configured
containing a list of N simulations, see (1), that should be
automatically scheduled across the available local resources
(CPUs). To exploit the parallelism capabilities of computers
equipped with multi-core processors, we faced the problem as
a parallel batch processing problem, which is broadly studied
in the semiconductor wafer fabrication. As discussed in the
literature, this problem can be decomposed into two stages:
(i) the batch formation, and (ii) the scheduling of batches in
the processors [29], [30].

In Algorithm 1, the logic of the proposed strategy to man-
age a whole simulation campaign is presented. First, the batch

159298

construction is done in lines 1-4. Here, the batch of simula-
tions is constructed considering each parameter combination
per scenario, as it was detailed in Section V-B. Each scenario
sm (1 < m < NS) includes a set of j jobs (1 <j < j,) to be
run, where j,,, is the number of jobs to be run in scenario m
and NS is the total number of scenarios to simulate. The total
number of runs N that compose the simulation campaign, are
organized in batches by, ,,, (1 < w < jj), regarding each
scenario s, and the total number of jobs j,, in each scenario
m, see line 3.

Then, the batch scheduling is covered with the next lines
5-21 in Algorithm 1. The batch size bs,, per each scenario
m is calculated, taking into account the total number of
simulations N, the workload per scenario (i.e., number of
jobs j,), and the number of available processing cores P,
see lines 5-14. In case of the total number of simulations, N
is less than or equal to the number of available processors
P, the batch size for all the scenarios is set to bs, = 1
(i.e., each job will be scheduled in a different processor),
see line 6. Conversely, the number of available processors
are distributed among all the scenarios taking into account
the number of jobs j, to be run at each scenario m. This
way, jobs are distributed, balancing the workload among the
available processors. Here, scenarios with a higher number
of jobs (runs) j,;, get a higher number of processors in such
a way that the total processing capacity is not violated, see
lines 8-14. The number of jobs per scenario m that will be
assigned to a processor is obtained inline 13. Finally, jobs are
scheduled in groups of bs,, runs per each scenario to arandom
free processor, in lines 16-21.

As an example, Fig. 4 shows a simulation campaign com-
prising NS scenarios and N jobs to be run in total. For
scenario 1, the number of jobs to be run is j; = 12, where
simulation runs are distributed in P; = 3 processors each
with a batch size of bs; = 4. For scenario 2, the number of
jobs to be run is j3 = 9, where simulation runs are distributed
in P, = 3 processors each with a batch size of bs, = 3.
Finally, for scenario NS, the number of jobs to be run is
Jjns = 6, runs are scheduled in P3 = 2 processors, each with
a batch size of bs3 = 3. Notice that the last batch of jobs by, j,,
in a particular scenario m can have a lower amount of jobs to
be run compared to the previous batches of that scenario (see
line 13 in Algorithm 1).

D. RESULTS RECORDING FILES

One of the main problems with large-scale simulations is the
high number of output files and their possible large size. The
OMNeT++ framework provides two built-in mechanisms
to write simulation results to the hard disk. (i) The first
mechanism records statistics directly from modules, which
implies that modules have to be modified (to gather the
intended data) with a high level of complexity. (ii) The sec-
ond mechanism is called a signal-based statistics recording
(SBSR) [28]. It requires configuring statistics in NED files
(Network Description files) to capture data to record, and
the moment to transmit the signal. In OMNeT++, NED files

VOLUME 8, 2020

o

A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

IEEE Access

Batches

Sz

Multi - scenario

-
LT

e _-I |

FIGURE 4. Multi-scenario batch construction.

allow us to declare the structure of a simulation model using
NED language. This last option is more flexible and with a
low-level of complexity.

Output files often grow considerably when evaluating a
high amount of factors. However, OMNeT++ built-in data
analysis tools are intended to process small-scale simulation
outcomes. In case of having large size output files, processing
might not be successfully completed. That is why in Table 3,
we point out that OMNeT++ IDE tools are mainly intended
for small-scale simulations. Besides, OMNeT++ CLT scav-
etool is intended to be used with large-scale simulations.
However, it takes much more time to process output files
(data is stored in memory), and file exportation might not
be successfully completed. That is why in Table 3 we point
out OMNeT++ CLT scavetool is limited for large-scale
simulations. Here, integrated data analysis tools are mainly
intended for casual inspection of simulations in the case of
the IDE tools and are limited when handling a high number of
output files with representative sizes in the case of CLT [28].
To provide a better support to large vector files, a third
file (named Index file) has been introduced in OMNeT++
4.0 and improved in OMNeT++ 5.6. Basically, this addi-
tional file is an index file that enables faster access to vector
files.

To cope with the aforementioned limitations, an alternative
approach in the literature is the definition of customized solu-
tions where third-party tools are commonly used for reading
and processing results (e.g., MATLAB, Python [31]). A more
efficient solution can be obtained with the definition of a
new format for the output files (e.g., binary format, text files,
etc.) [32].

In this context, to maintain compatibility with OMNeT-+4-
tools, we propose a summarizer module, see Fig. 2, which
is capable of processing output files, see Fig. 2, from either
(i) OMNeT++ captures or (ii) users’ customized recordings.
In the first case, using the OMNeT++ SBSR capturing mech-
anism, every output file contains data from one run only.
In the second case, the user should define the data to be
captured within the model. Each simulation run in the cam-
paign generates a different output file containing recorded
values writing to a simple comma-separated.csv file. Here,
the structure of output files is defined in an external file

VOLUME 8, 2020

Algorithm 1 Parallel Batch Processing

o P = total number of available processing cores.
o N = total number of runs.
e NS = number of scenarios to simulate.
e S;; = my, scenario to simulate, 1 < m < NS.
e jm = number of jobs to be run in scenario m (e.g.,
J1=12,jo =9, jys = 6 in Fig. 4).
e P, = number of processing cores devoted to run
each scenario m composed of j,, jobs.
e bs,, = batch size for scenario m (e.g.,
bSl = 4, bS2 = 3, bSNS =3in Fig. 4).
Input: s,,, P, N, NS, jim
Output: bs,
Batch construction:
for each s,, scenario do
GET the job number j in scenario s, 1 <j < ju
Form the batch array by, 1 <w <jy,
end
Batch scheduling:
5 if N < P then

B W N -

/* There are enough processors for all the N
Jjobs at a time */
6 bsy, =1,VmEach job will be
scheduled in a different processor,
for every scenario m.
7 else
8 for each s,, scenario do
9 P, :ﬂoor((]’ﬁ) x P) // Number of
processors devoted to run scenario m.
10 if P, < 1 then
11 P, =1 // At least | processor
devoted to run scenario m.
12 end
/* Batch size for scenario m */
13 bsy, ::ceﬂ(%ﬁ); // Number of jobs in
scenario m assigned per processor.
14 end
15 end
16 for each scenario s,, do
17 while there are jobs not yet scheduled in by, ,, do
18 Find the first available processor k, 1 <k <P
19 Schedule bs;, runs to processor k
20 end
21 end

called structure file, as detailed in Section V-A. The structure
file will be available to the other modules for further data
analysis.

E. OUTPUT FILES LABELING

In order to distinguish each result file, output files are tagged
with a unique ID. Each ID results from the combination of
the simulation ID, the correspondent value among the set
of iterative parameters, and the correspondent experiment

159299

IEEE Access

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

repetition number. This mechanism allows users to identify
result files for each simulation round easily.

We can have two possibilities: (i) In the case of using
OMNeT++ captures, result files are labeled automatically
through OMNeT+-4- predefined variables [28]. (ii) In the case
of custom users recording, the SMO launcher module will
label output files, see Fig. 2, using OMNeT++ predefined
variables in the configuration file. Here, the user should
declare in the configuration file the format of the output file
name. There are several predefined variables with obvious
meanings that can be used for labeling output files. For
instance, the third row in Table 4, with a set of parameters:
Param_A = 20, Param_B = true, with repetition number R
= 0, for scenario S = conf" A, and with run ID = 2, will have
an output filename labeled as “2_conf_A_20_true_0.csv”.

VI. POST-SIMULATION ANALYSIS

Once output files have been successfully generated from
the execution of the simulation campaign (composed of N
jobs to be run), N output files will be available for data
analysis. Due to the high number of outcomes in large-scale
simulations, some of those files can grow notably and become
very large, so that parsing outcomes can be troublesome.
In this context, the OMNeT++ framework includes a useful
post-simulation analysis tool with the IDE. It has a graphical
interface that facilitates to extract a small set of data from
simulation outcomes. While the graphical tool is intended
for small volumes of data, the command-line tool scavetool
performs better when the size of data considerably grows.
This tool combines the whole set of result files into a sin-
gle output file. Nonetheless, scavetool is also limited in the
sense that often cannot successfully extract results in case
of bulk files [31], see Table 3. Therefore, in the literature,
the adoption of custom or third-party tools for analyzing data
is generally preferred [32], [33].

In the following sections, we describe two proposed tools
(summarizer module and analyzer module) included with
our SMO framework to overcome the limitations mentioned
above. The main advantage of our proposed tools is their
flexibility (i.e., they are easily customizable) through the use
of Python’s wide-established statistical analysis tools, which
makes it possible to perform advanced analysis in just a few
lines of code.

A. SMO SUMMARIZER MODULE
As it was mentioned in Section V-D, users might choose
to capture simulation results using either (i) OMNeT++
mechanisms to manage output files, or (ii) customized data
collection for an optimal analysis (i.e., in case just main
metrics are captured). At this point, the SMO summarizer
module is in charge of translating the set of result files into one
output file with the format expected by the analyzer module,
see Fig. 2.

(i) In case of OMNeT++ files with extensions.sca
and/or.vec are detected within the results folder. In this case,

159300

the summarizer module is implemented as a wrapper for
scavetool, see Fig. 2.

(i1) In case the user customizes the results collection,
the summarizer module tool provides a default parser, see
Fig. 2, which will automatically read the set of result files
into a numerical matrix. In this case, an additional file with
the structure of result files is required. This additional file
called structure file was detailed in Section V-A, including
an example in Fig. 7. The parser tool reads both the output
files and the structure file directly from the results directory
and from the additional files directory, respectively. The goal
is to consolidate all the output data of the whole simulation
campaign in a single exported file. In the same manner as it
is done by scavetool, result files are exported into a common
output file with the format expected by the analyzer module,
see Fig. 2. The main functionalities of the summarizer module
tool are the following:

1) Map data files into an ordered data frame composed of
the simulation campaign parameters and the additional
structure file.

2) Convert data into numerical results automatically.

3) Export result files into one single exported file. The
output format is deduced from the name of the output
file. Supported formats of the output files are.npy,.mat,
Or .CSV.

While the OMNeT++ default parsing tool intended for
large-scale simulations (see scaverool in Table 3) uses a
single-thread for processing simulation output files, here we
propose a parsing tool where the whole set of result files are
processed in parallel, exploiting local multi-core capabilities.
By default, the maximum number of available processors is
used, although the user could set a lower number of proces-
sors through the command line tool detailed in Section VII.
When working with large-size output files, it may be desir-
able to process large files as a sequence of chunked segments
of the file. Within the proposed SMO parsing tool, output files
are automatically partitioned into n = 20 indexed segments,
by default. Notice that n can be set through the command line
tool depending on the size of the output files, as it is explained
in Section VII. In this manner, our tool provides a scalable
solution intended for the analysis of large-scale simulations
output files (pointed out as custom parsing in Table 3).

SMO provides a default parser, including facilities above
mentioned, which will read the contents of output files and
the structure file in order to generate a single exported file
where data will be converted automatically into numerical
values for further analysis (e.g., plotting). In case a more
sophisticated parsing is required (e.g., simulation output files
need to be processed before they can result in a clean and
purely numerical data structure), users are alternatively asked
to define a customized function that defines the expected data
type of result from output files.

Fig. 5 shows a comparison between the parsing execution
time of OMNeT++- files using the scavetool, and using the
SMO summarizer tool. The experiment corresponds to a case

VOLUME 8, 2020

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

IEEE Access

200

150

A smo
scavetool

Time [min]
=
o
o

501

0 a 2 A

T T T T
96 240 360 720
Output files

FIGURE 5. Comparison of parsing execution time using the OMNeT++
scavetool (single-thread) tool, and the SMO summarizer (multi-thread)
tool. By default a single output file (format.csv) is exported. Different
simulation campaign sizes, each with a different number of output files,
have been evaluated.

TABLE 5. Workstation parameters to attain the results in Fig. 5 and
Fig. 11.

Machine CPU
Ubuntu Intel Core i9-9920X @ 3.5GHz

Memory Cores
62GB 20

study described in section VIII, in which some vehicles suffer
an accident and send warning messages to both access points
and to vehicles around to warn them.

The exported file corresponds to a.csv file. Specifications
of the workstation used for the experiment are depicted
in Table 5. We can clearly see that our SMO summarizer tool
scales much better when the size of the simulation campaign
grows. With 720 output files, the SMO summarizer tool takes
less than 3 minutes to completely generate the exported file,
while the OMNeT++ scavetool takes almost 215 minutes.

B. SMO ANALYZER MODULE
As final phase of a performance evaluation, we have designed
a tool to easily generate graphs to ulterior analyse the sim-
ulation campaign results. OMNeT++ IDE has embedded a
useful graphical analysis tool which is very helpful in the
testing face or for troubleshooting. As pointed in [31], this
tool is mainly intended for casual inspection of simulations.
However, OMNeT++ analysis tools lack of functions essen-
tially interesting for researchers e.g., to obtain confidence
intervals for mean values, or to generate box plots. Besides,
in the case of large-scale simulations, the tool execution time
grows considerably due to the large size of the output files.
As an alternative approach and seeking to provide an
easy to use solution, in our framework SMO we propose
a novel analyzer module, see Fig. 2. This tool receives
parsed files as inputs to finally produce results that are ready
for presentation. The analyzer module tool leverages a key
data structure of the Pandas library called DataFrames [34].
Once result files have been parsed into an easily accessible

VOLUME 8, 2020

data structure (i.e., DataFrames), advanced statistical process
techniques can be applied. In this context, users are asked to
define custom plots through the use of common Python data
structures (e.g., DataFrames) and plot libraries (e.g., mat-
plotlib, seaborn). As creating desired plots is not always easy,
the analyzer module tool supports a graphical environment
based on the open-source Javascript pivot table tool [35],
which uses Jupyter [36] web-based tool to create plots easily.
When the analyzer module tool receives the interactive plots
option passed through the CLT, described in Section VII,
a web browser prompts to create plots by drag and drop
columns.

The analyzer module tool focus on mainly three opera-
tions:

1) Customized data filtering.

2) Create ordered statistics (e.g., count, mean, CI) based
on a common data structure (DataFrames).

3) Create and export customized figures (e.g., scatterplots,
boxplots, CDFs).

First, to generate customized filtering, the analyzer module
has access to the parameters file (i.e., the file containing
iteration variables). This allows users to operate over a subset
of data. Then, with clean and ordered data, statistics can be
generated using a common Python numpy library. Numpy
is equipped with robust statistical functions such as mean,
median, standard deviation, between others. Finally, users can
either create plots writing a Python script based on a com-
mon data structure (i.e., Pandas DataFrame) or interactively
through pivot tables in a web browser.

VII. THE COMMAND LINE TOOL

To easily leverage the SMO’s capabilities, it is provided
with a command-line tool that can be used to create, run
simulations, and export results without being necessary to
interact with any Python code. The command-line interface is
built with a hierarchical structure where each command can
be invoked with the ——help flag (e.g., smo — —help) to get
in deep information about the command and sub-command
usage at different levels (e.g., smo launcher —help).

The SMO command-line tool can be installed through pip
(a tool to install and manage Python packages), including
launcher, summarizer, and analyzer SMO modules, where
all the requirements (i.e., Python libraries) are automati-
cally installed. For users who only wish to leverage parallel
simulations or post-analysis, each module can be executed
independently. The defined console line has been simplified
as much as possible to be easy to comprehend, maintaining
core functionalities of different modules. Further information
about the SMO command line usage is available in [9].

VIII. A CASE STUDY. VEINS-BASED EXPERIMENT

As an example of a case study to use our SMO proposed
tools, we have carried out a performance evaluation of a
straightforward scenario, which is depicted in Fig. 6. This
experiment is carried out with the Veins network simulator

159301

IEEE Access

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

— V2l

- vehicle to infrastructure

= V2V - vehicle to vehicle

* Car accident

A Warning message

FIGURE 6. Case study to show the benefits of our proposal SMO to save
simulation and processing time in large-scale simulation campaigns.
Example scenario of a simple vehicular network implemented in the Veins
simulator [26]. There are 250 vehicles and 2 road side units (RSUs).

for vehicular networks [26], which is based on OMNeT++
and SUMO [37] (road traffic simulator).

The scenario is composed of two access points (APs) ran-
domly located along the map. In our performance evaluation,
three different scenarios are assessed: Berlin, Barcelona, and
Tokyo, where specifically we have selected a large-sparse
district, a medium-size-sparse district, and a small-dense
district, respectively. The simulation areas are 6, 4 and 1
km?, respectively. Real maps are used, obtained from Open-
StreetMaps [38].

There are 250 mobile nodes (vehicles) moving around the
considered map. In the scenario, an accident takes place at
a given time (150s). The crashed vehicle broadcasts warn-
ing messages to their neighborhood (i.e., nodes within the
transmission range) and also towards the APs. In the same
way, vehicles that receive a warning message will forward it
to their neighbors. In case of an access point (AP) receives
the warning message, it will forward the message to the
emergency services (e.g., 112 or 911). The warning message
includes the road ID where the accident situation occurs.
In case a vehicle heading towards the accident receives a
warning message, it will modify its route to avoid the conges-
tion situation (i.e., the traffic jam). This simulation scenario
corresponds to the default configuration of the vehicular ad
hoc network (VANET) example provided in the Veins net-
work simulator [26]. We have used this simple scenario as a
case study to show the benefits of our proposal SMO when
dealing with large-scale simulation campaigns.

In this simple experiment, we will analyze how the VANET
is affected when the vehicles’ transmission range varies from
100 to 450 meters. Fig. 7 shows an example of the configu-
ration files to design the simulation campaign:

(i) The Structure file has a simple file format (.csv), where
each entry (comma-separated) corresponds to the column
name of data recorded in the output files. For instance, Type

159302

B

Structure file
.csv

=

Parameters
studied file .txt

Type,NodeID,tx_rx,Rx_Addr,repetition,Msg_Id,Length,CH,Time ‘

*. connectionManager.covRange = {100,150,200,250, 300,350,400, 450}m

node, 441, tx,-1,0,2600,336,178,1.03184]
rinode, 573, tx, -1,0,2411,336,178,1.02566 |
"qrs{rsu, 10, tx,-1,0,30,336,178,0.544883
M9nofrsu,15,tx,-1,0,42,336,178,0.847252
"9nofnode, 759, tx,-1,0,1830,336,178,1.01143

"9noqnode, 165, tx, -1,0,2009,336,178,1.01357

node, 405, tx,-1,0,2168,336,178,1.01663

node, 573, tx, -

node,441,tx, -

rsu,15,rx,-1,

Output files
.csv

,2411,336,178,1.02566
,2600,336,178,1.03184
600,336,178,1.03196

1,
1,0
1,0
0,2

FIGURE 7. Example of configuration files used to design a large size
simulation campaign.

and NodelD entries in the structure file, see Fig. 7, depict
the type of the element (node/RSU) and their identifiers,
respectively.

(i) The Parameters studied file includes the iterative vari-
ables of the model to be evaluated (nodes’ transmission
range, in our example), which is defined in the same manner
as in the configuration file (i.e., with OMNeT++ syntax).

(iii) The Output files are used to store tabular data in.csv
format. Within the Veins network simulator, the recording of
data can be triggered by a send message or receive message
status at the application layer of the model. In Fig. 7, each line
of the Output files corresponds to a data record (e.g., node
type, node ID, transmitted/received message, node destina-
tion address, etc) according to the structure file.

First, the SMO launcher module described in Section V-A
creates the simulation campaign by means of the combination
of configuration parameters: (i) transmission range values
considered (from 100 to 450 m), (ii) evaluated scenarios
(Barcelona, Berlin, Tokio), and (iii) number of repetitions per
experiment (30 repetitions per simulation point). This makes
a total of 720 simulations according to (1). Then, simulation
results are exported with the SMO summarizer module tool,
detailed in Section VI-A, which generates a single exported
file (.csv format). Finally, Fig. 8 shows an example of how
complex plots can be created with the SMO analyzer module
tool, detailed in Section VI-B, by using just a few lines of
Python code, see Fig. 9.

Fig. 8 shows the number of nodes that received at least
one warning message about the accident. As we expected,
as the vehicles’ transmission range increases, more vehicles
receive at least one warning message. This behavior is more
noticeable for the Barcelona and Berlin scenarios, where
only 40% and 25% of vehicles, respectively, receive flooded
warning messages when the nodes’ transmission range is
100m, and near to 100% when the transmission range is above
300m. The reason is that the Barcelona and Berlin scenar-
ios correspond to sparse VANETS (62 and 42 vehicles/km?,
respectively) so vehicles are far from each other making
it difficult to spread the emergency message. In contrast,

VOLUME 8, 2020

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

IEEE Access

100%

90%

80%

8
B 70%
=
el
2 60%
=
-
g 50%
40%
o ® Berlin
30% Barcelona
m Tokyo

20%
100 150 200 250 300 350 400 450
Vehicles’ transmission range [m]

FIGURE 8. Percentage of nodes that received at least one warning
message about the accident, as a function of the nodes’ transmission
range. The simulation scenario corresponds to the VANET case study
represented in Fig. 6. Plot generated with the SMO analyzer tool taken
from 720 output files composed of 3 scenarios (Barcelona, Berlin, Tokyo),
a set of 8 values for the node’s transmission range parameter, and

30 repetitions per simulation point. 95% confidence intervals are shown.

Create plot

fig = sns.pointplot(x='CoverageRange', y='#Nodes',
hue="scenario’, errwidth=1, capsize=0.1,
markers=["o","~","s"], data=results)

Modify axes settings

fig.despine(right=False, top=False)
fig.set_axis_labels("Nodes' coverage range [m]", '# of warned
nodes')

Save figure to default output_directory
plt.savefig(os.path.join(output_directory, filename))

FIGURE 9. Python code used to generate the graphs shown in Fig. 8.

the Tokyo scenario corresponds to a small-dense district
(250 vehicles/km?), so that vehicles are closer to each other.
In the Tokio scenario even with a low vehicles’ transmission
range (100m), 92% of the vehicles received at least one
warning message. Fig. 8 presents confidence intervals (CI)
of 95%, obtained from 30 repetitions per simulation point
generated with independent seeds.

It is important to highlight that the goal of this article is not
to present a complete performance evaluation of the warning
message scheme included in this case study, but to highlight
the benefits of our proposal SMO in handling large-scale
simulation campaigns.

To have an idea of the saving time for the researcher,
we spent less than one hour to complete the total performance
evaluation using our framework SMO, from the design of
the simulation campaign file (see Fig. 3) till obtaining the
final plots with the results (see Fig. 8). Using the traditional
OMNeT++ tools, we spent almost five hours, mainly due
to the post-processing time, see Fig. 10. The reason is that
OMNeT++ generates a considerable amount of result files,
some of which can be very large (almost 3GB). Here, filtering
results can be cumbersome and also error-prone. Therefore,

VOLUME 8, 2020

Bl Parsing time
Simulation time

SMO

OMNeT++ _

0 50 100 150 200 250 300
Total time [min]

FIGURE 10. Total time devoted to carry out the large simulation campaign
(simulation time + parsing time).

using our framework is beneficial for the sake of faster
performance evaluation of proposals, especially notably for
large-scale simulation campaigns.

We would like to point out that in this article, we have
just used an example already available in the Veins network
simulator to explain the procedure and the benefits of our
proposal. Utterly, any other network model defined in other
OMNeT++ based simulators can also be evaluated with our
proposed SMO framework (e.g., INET [39], Artery [40]).

IX. PERFORMANCE EVALUATION. COST OF A
LARGE-SCALE SIMULATION CAMPAIGN

Fig. 11 shows a performance evaluation of the simulation
scenario depicted in Fig. 6 using SMO or OMNeT++-. This
evaluation is done in terms of CPU usage, RAM usage, and
disk usage when running a simulation campaign composed
of 240 runs. In this case, we have used the three same
maps (Barcelona, Berlin, Tokio), eight different values for the
transmission range (from 100 to 450 m) and ten repetitions
per simulation point, which makes 240 runs according to (1).
The features of the working station used for this evaluation is
detailed in Table 5.

With OMNeT++ and SMO simulation tools evaluated
separately, the simulation time to carry out the whole sim-
ulation campaign took 22 and 17 minutes, respectively.
OMNeT++ takes longer to finish simulations (5 minutes
more) since OMNeT++ does not use all the available CPU
so effectively as SMO, as we can see in Fig. 11(a). Fig. 11(a)
shows the average CPU used by all the processes involved in
the simulation campaign. While the SMO CLT uses all the
maximum available resources (i.e., 94% of the CPU during
the first 11 minutes), OMNeT++ limits resources used by
the simulation processes as it requires additional resources
to maintain the OMNeT++ IDE process. We can see that
at the minute 14, OMNeT++ drastically reduces the CPU
usage (to 40%) because several simulation processes end at
that moment. Similar behavior occurs with SMO at minute 12
when most of the simulation batches already ended, although

159303

IEEE Access

P. A. Barbecho Bautista et al.:

Large-Scale Simulations Manager Tool for OMNeT++

[V —— SMO 40
"'l OMNeT++
80 35
© 30
% g
3 60 £
3 5
3 5 —— SMO
8 é 2 OMNeT++
& 40 :
= o b
20 10
0o .
0 5 10 15 20 0 5
Time [min]

(a) CPU usage

10
Time [min]

(b) RAM usage

— SMO
OMNeT++

o

Disk usage [GB]

0.0

15 20 0 5 10 15 20
Time [min]

(c) Disk usage

FIGURE 11. Comparison of OMNeT++ and SMO simulation tools in terms of (a) CPU usage, (b) RAM usage and (c) disk usage. The large
simulation campaign includes 240 runs. The main features of the workstation used for this analysis are described in Table 5.

according to a smoothest curve since the load (i.e., num-
ber of simulations running) is automatically distributed
through all the available processors, as it was detailed in
Section V-C.

Additionally, we have also assessed the energy consumed
by the large-scale simulation campaign considered using
SMO or OMNeT++. Here, we can estimate the power con-
sumed by the simulation campaign using the % of CPU
usage depicted in Fig. 11(a). For this, we use the power con-
sumption of 19-9920X processors listed at the product spec-
ifications [41]. For the i9-9920X processors family, at full
load (100% of CPUs usage) processors consume on average
Prr = 165W. Hence, we estimate the power consumption as
P(W) = (% of CPU usage) - Prr.. Accordingly, OMNeT++
consumes on average 96.8 Watts whereas SMO consumes
94.7 Watts. Notice that those values correspond to the power
consumed only by the simulation processes. In the case
of OMNeT++, the IDE process requires additional power.
Taking into account the simulation time (i.e., 22 min for
OMNeT++ and 17 min for SMO), those power values cor-
respond to a consumed energy of 35.49Wh for OMNeT++
and 26.83Wh for SMO, which means a saving of 24.40% with
SMO.

Fig. 11(b) shows the percentage of RAM used by SMO and
OMNeT++. On the one hand, we can see that OMNeT++
requires a large amount of memory, almost 40% of available
memory till minute 14, and 20% till the end of the simulation
campaign. This is mainly due to the OMNeT++ statistics
recording mechanism, which was detailed in Section V-D.
By default, the OMNeT++ statistical module processes a
high amount of metrics (which implies to record values
and compute them) during simulations. Once the simula-
tion campaign ends at minute 22, OMNeT++ output files
(named scalar files,.sca) still are being filled (statistics are
still being computed and.sca files are being filled), which
requires 13% of the available memory. On the other hand,
SMO uses just around 7% of the available memory. This is
due to the SMO implementation of a more efficient solution
obtained with the definition of simple output files (i.e.,

159304

ASCII text file, line-oriented) leaving to the summarizer mod-
ule all the additional tasks for statistical computations, see
Section VI-A.

Finally, due to the large amount of data stored by the
OMNeT+H+ statistical module, a big space on the disk is
required, see Fig. 11(c). We can see that the OMNeT++
output files use almost three times more disk space than
the SMO output files. We can see that the improved SMO
mechanism for recording the output data of interest (cus-
tom recording) allows us to minimize the overhead of
large-scale simulation campaigns in terms of disk space, see
Section V-D.

X. CONCLUSION AND FUTURE WORK

In this work, we have presented the SMO framework for the
management of large-scale OMNeT++ simulations. First,
we have developed the software architecture to automa-
tize large-scale simulations, taking into account the limita-
tions of the tools provided by the OMNeT++ framework.
Then, we have developed a modular framework with a new
approach to (i) efficiently run parallelized multi-scenario
simulations, followed by the (ii) summarizing of simulation
results, and finally to (iii) obtain graphs to analyze the simu-
lation results.

Our main goal is to provide novice and advanced
OMNeT+-+- users a useful tool to quickly and efficiently exe-
cute large-scale network simulations hiding the tedious pro-
cess of conducting multiple simulations and thereby offload-
ing this significant burden work to the researcher. Addi-
tionally, we have shown the good scalability level of our
SMO tool for large-scale simulations when compared with
traditional built-in OMNeT++ tools (scavetool).

The simulation framework SMO is publicly available
at [8]. SMO is easy to install and it includes a command line
tool [9] allowing the fast and easy of its manipulation. With
a modular and extensible architecture, we hope this new tool
will serve as a potential framework for managing complex
and large OMNeT++ based simulation campaigns.

VOLUME 8, 2020

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

IEEE Access

In a future work we will consider a dynamic jobs scheduler
based on the simulation time or on other metrics that might be
still increasing the time of simulations in the campaign (e.g.,
frequency of messages, number of nodes, size of the map).
Considering those events could even decrease more the global
simulation time.

APPENDIX A
ACRONYMS
CI Confidence intervals
CDF cumulative distribution function
CLT Command line tool
CPU Central processing unit
DCF Data collection framework
GUI Graphical user interface
ID Identifier
IDE Integrated development environment
LS Large-scale simulations
OMNeT++ Objective Modular Network Testbed in
C4++
PCAP Packet capture
RAM Random access memory
RSU Road side unit
SBSR Signal-based
statistics recording
SC Small-scale simulations
SEM Simulation execution manager
SMO Simulation manager for OMNeT++
VANET Vehicular ad hoc network
REFERENCES
[1] A. Geist and D. A. Reed, “A survey of high-performance computing

[2]
[3]

[4]
[5]
[6]
[71
[8]

[91
[10]

[11]

[12]

scaling challenges,” Int. J. High Perform. Comput. Appl., vol. 31, no. 1,
pp. 104-113, 2017.

The Network Simulator—ns-2. Accessed: Mar. 10, 2020. [Online]. Avail-
able: https://www.isi.edu/nsnam/ns/

T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Net-
work simulations with the ns-3 simulator,” SIGCOMM Demonstration,
vol. 14, no. 14, p. 527, 2008.

OMNeT++ Discrete Event Simulator. Accessed: Feb. 14, 2020. [Online].
Available: https://omnetpp.org/

Riverbed Modeler. [Online]. Available: https://www.riverbed.com/mx/
products/steelcentral/steelcentral-riverbed-modeler.html

EstiNet Network Simulator and Emulator (NCTUns). [Online]. Available:
http://nsl.cs.nctu.edu.tw/NSL/nctuns.html

NetSim-Network Simulator & Emulator. Accessed: Mar. 10, 2020.
[Online]. Available: https://www.tetcos.com/

P. Barbecho. (2020). Automating OMNeT++ large-scale simulations.
GitHub Repository. [Online]. Available: https://github.com/Pbarbecho/
osm

P. Barbecho. (2020). Simulations Manager for OMNeT++ (SMO)-
Documentation. [Online]. Available: http://osm.rtfd.io/

Ns-3 Statistical Framework. Accessed: Feb. 17, 2020. [Online]. Available:
https://www.nsnam.org/docs/manual/html/statistics.html

S. Neumeier, C. Obermaier, and C. Facchi, “Speeding up OMNeT++ sim-
ulations by parallel output-vector implementations,” in Proc. 5th G/ITG
KuVS Fachgesprich Inter-Vehicle Commun., 2017, p. 22.

E. Millman, D. Arora, and S. W. Neville, “STARS: A framework for
statistically rigorous simulation-based network research,” in Proc. IEEE
Workshops Int. Conf. Adv. Inf. Netw. Appl., Mar. 2011, pp. 733-739.

VOLUME 8, 2020

(13]

[14]

[15]

[16]
(17]

(18]

[19]

(20]

(21]

(22]

(23]
[24]
[25]
[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]
(37]

(38]

D. McNickle, K. Pawlikowski, and G. Ewing, “AKAROAZ2: A controller
of discrete-event simulation which exploits the distributed computing
resources of networks,” in Proc. 24th Eur. Conf. Modeling Simulation
(ECMS), 2010, pp. 104-109.

L. F. Perrone, C. S. Main, and B. C. Ward, “SAFE: Simulation automa-
tion framework for experiments,” in Proc. Winter Simul. Conf. (WSC),
Dec. 2012, pp. 1-12.

D. Magrin, D. Zhou, and M. Zorzi, “A simulation execution manager for
ns-3: Encouraging reproducibility and simplifying statistical analysis of
ns-3 simulations,” in Proc. 22nd Int. ACM Conf. Modeling, Anal. Simula-
tion Wireless Mobile Syst. New York, NY, USA: Association Computing
Machinery, 2019, pp. 121-125.

D. Magrin. (2019). A simulation execution manager for ns-3. GitHub
repository. [Online]. Available: https://github.com/signetlabdei/sem
OMNeT++ Preview Versions. Accessed: Apr. 11, 2020. [Online]. Avail-
able: https://omnetpp.org/download/preview

R. Patel, N. Patel, and S. Patel, “An approach to analyze behav-
ior of network events in NS2 and NS3 using AWK and xgraph,” in
Information and Communication Technology for Competitive Strategies,
S. Fong, S. Akashe, and P. N. Mahalle, Eds. Singapore: Springer, 2019,
pp. 137-147.

A. Zarrad and I. Alsmadi, “Evaluating network test scenarios for network
simulators systems,” Int. J. Distrib. Sensor Netw., vol. 13, no. 10, pp. 1-17,
2017.

G. Carneiro, P. Fortuna, and M. Ricardo, ‘“FlowMonitor—a network mon-
itoring framework for the network simulator 3 (ns-3),” in Proc. 4th Int.
ICST Conf. Perform. Eval. Methodologies Tools. Brussels, Belgium: ICST,
2009, pp. 1-10.

Ns-3 Manual Scope/Limitations. Accessed: Jul. 9, 2020. [Online].
Available: https://www.nsnam.org/docs/release/3.31/manual/html/scope-
and-limitations.html

I. Mavromatis, A. Tassi, R. J. Piechocki, and A. Nix, “Poster: Parallel
implementation of the OMNeT++ INET framework for V2X communi-
cations,” in Proc. IEEE Veh. Netw. Conf. (VNC), Dec. 2018, pp. 1-2.
Matplotlib: ~ Python plotting—Matplotlib ~ 3.2.1 Documentation.
Accessed: Apr. 13, 2020. [Online]. Available: https://matplotlib.org/
Seaborn: Statistical Data Visualization—Seaborn 0.10.0 Documentation.
Accessed: Apr. 13, 2020. [Online]. Available: https://seaborn.pydata.org/
INET Framework—What Is INET Framework? Accessed: Mar. 9, 2020.
[Online]. Available: https://inet.omnetpp.org/Introduction.html

Veins. Accessed: Feb. 14, 2020. [Online]. Available: https://veins.
car2x.org/

A. Virdis, G. Stea, and G. Nardini, “SimuLTE—A modular system-level
simulator for LTE/LTE—A networks based on OMNeT++,” in Proc.
4th Int. Conf. Simulation Modeling Methodologies, Technol. Appl., 2014,
pp- 59-70.

A. Varga. OMNeT++ simulation manual. OpenSim Ltd.
Accessed: Feb. 13, 2020. [Online]. Available: https://doc.omnetpp.org/
omnetpp/manual

1. C. Perez, J. W. Fowler, and W. M. Carlyle, “Minimizing total weighted
tardiness on a single batch process machine with incompatible job fami-
lies,” Comput. Oper. Res., vol. 32, no. 2, pp. 327-341, Feb. 2005.

H. Balasubramanian, L. Monch, J. Fowler, and M. Pfund, “Genetic algo-
rithm based scheduling of parallel batch machines with incompatible job
families to minimize total weighted tardiness,” Int. J. Prod. Res., vol. 42,
no. 8, pp. 1621-1638, Apr. 2004.

OMNeT++ Pandas Tutorial. Accessed: Feb. 13, 2020. [Online]. Available:
https://doc.omnetpp.org/pandas-tutorial/

A. Virdis and M. Kirsche, Eds., Recent Advances in Network Simulation
(EAI/Springer Innovations in Communication and Computing). Cham,
Switzerland: Springer, 2019.

C. Sommer. (2010). INET Scripts. [Online]. Available: https://github.
com/sommer/inet-sommer/tree/analysis/etc

Pandas. DataFrame—Pandas 1.0.3 Documentation. — Accessed:
Apr. 6, 2020. [Online]. Available: https://pandas.pydata.org/pandas-docs/
stable/reference/api/pandas.DataFrame.html

N. Krunchten. (2019). Javascript Pivot Table Library. [Online]. Available:
https://github.com/nicolaskruchten/pivottable

Project Jupyter | Home. Accessed: Apr. 6, 2020. [Online]. Available:
https://jupyter.org/

SUMO—Simulation of Urban Mobility. Accessed: Feb. 17,2020. [Online].
Available: http://sumo.sourceforge.net/

S. Coast. OpenStreetMap. Accessed: Apr. 13, 2020. [Online]. Available:
https://www.openstreetmap.org

159305

IEEE Access

P. A. Barbecho Bautista et al.: Large-Scale Simulations Manager Tool for OMNeT++

[39] INET Framework—INET Framework. Accessed: Apr. 6, 2020. [Online].
Available: https://inet.omnetpp.org/

[40] R.Riebl. (2020). Artery: V2X Simulations Based on ETSI Its-G5 Protocols.
[Online]. Available: https://github.com/riebl/artery

[41] Procesador Intel Core 19-9820X Serie X. Product Specifications.
Accessed: Jul. 6, 2020. [Online]. Available: https://ark.intel.com/content/
www/es/es/ark/products/189121/intel-core-19-9820x-x-series-processor-
16-5m-cache-up-to-4-20-ghz.html

PABLO ANDRES BARBECHO BAUTISTA (Stu-
dent Member, IEEE) received the B.Sc. degree
in electronic engineering from the University
of Azuay, Ecuador, in 2012, the M.Sc. degree
in communication networks from the Pontificia
Universidad Catdlica del Ecuador (PUCE), and
the second M.Sc. degree in telecommunication
engineering from the Universitat Politécnica de
Catalunya (UPC), Barcelona, Spain, in 2017,
where he is currently pursuing the Ph.D. degree in
network engineering. His research interest includes design and performance
evaluation of routing protocols for vehicular ad hoc networks (VANETS).
His research activity focuses on the integration of electric vehicles and
autonomous vehicles in VANETS and their interaction with smart grids and
smart cities.

LUIS FELIPE URQUIZA-AGUIAR (Member,
IEEE) received the B.Sc. degree in electronic and
networking engineering from Escuela Politécnica
Nacional (EPN), Ecuador, in 2008, the M.Sc.
and Ph.D. degrees in telecommunication engineer-
ing from the Universitat Politecnica de Catalunya
(UPC), Barcelona, Spain, in 2012 and 2016,
respectively, and the second M.Sc. degree in statis-
tics and operational research from UPC, in 2018.
He is currently an Assistant Professor with the
Departamento de Electrénica, Telecomunicaciones y Redes de Informacion
(EPN). His research interests include wireless networks, mathematical mod-
eling, and the optimization of large-scale telecommunication problems.

159306

LETICIA LEMUS CARDENAS received the
Telecommunication Engineering degree from
the University of Guadalajara (UdG), Mexico,
in 2007, and the M.Sc. degree in telecommunica-
tion engineering from the Universitat Politecnica
de Catalunya (UPC), Barcelona, Spain, in 2011,
where she is currently pursuing the Ph.D. degree
with the Department of Network Engineering with
the support of a scholarship of the Coordinacién
General Académica (CGA), UdG. Her research
interests include vehicular ad hoc networks, machine learning, electric
vehicles, and autonomous vehicles in urban environments.

MONICA AGUILAR IGARTUA received the
M.Sc. and Ph.D. degrees in telecommunication
engineering from the Universitat Politecnica de
Catalunya (UPC), Barcelona, Spain, in 1995 and
2000, respectively. She is currently an Associate
Professor with the Department of Network Engi-
neering, UPC. She is the author of more than
20 journal articles and has chaired several confer-
ences. Her research interest includes design and

. performance evaluation of routing protocols to
distribute multimedia services over vehicular ad hoc networks (VANETS).
Her research activity focuses on the integration of electric vehicles and
autonomous vehicles in VANETS and their interaction with smart grids and
smart cities. She is a member of the Editorial Board of Ad Hoc Networks
Journal.

VOLUME 8, 2020

