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ABSTRACT Objective: Heart rate variability (HRV) reflects autonomous nervous system disturbance and
is used for seizure prediction. The aim of this study was to develop a real-time, continuous physiological
medical signal data acquisition system in seizure detection for intensive care unit (ICU). Methods: This
prospective study was conducted in National Taiwan University Hospital fromAugust 2018 to October 2019.
This study included 20 patients who (a) had a sustained return of spontaneous circulation following
out-of-hospital cardiac arrest, (b) were over 18 years old, (c) and were admitted to the emergency ICU for
post-cardiac-arrest care. One-lead electrocardiography and bilateral two-channel electroencephalography
recorders were synchronically used to conduct measurements for a maximum of 72 hours. The recorded
data were wirelessly real-time transmitted by a proxy transmitting module through an access point and
a local gateway. A system with a novel algorithm processed the signals and conducted feature extraction
and supervised learning for seizure detection. Results: A total of 89 nonseizure and 83 seizure events
were detected by the system. Seizure occurred in two-thirds of the patients assessed by intensivists and
neurologists. Four HRV parameters, namely standard deviation of normal-to-normal R-wave intervals, high
frequency, low frequency–high frequency ratio, and sample entropy, were determined as potential features for
identifying seizures. The sensitivity and specificity of the developed systemwere 0.74 and 0.81, respectively,
and the positive predictive value was 0.82. Conclusion: The developed system can be used to identify seizure
events through HRV features. Significance: The current study achieved real-time seizure detection and
overcame previous limitations on continuity and accessibility.

INDEX TERMS Heart rate variability, seizure, cardiac arrest, machine learning, electroencephalography.

I. INTRODUCTION
Out-of-hospital cardiac arrest (OHCA) is a global public
health concern, with 420,000, 270,000, and 220,000 cases
being annually reported in the United States, Europe, and
Asia, respectively [1]–[3]. Overall, the average survival-
to-discharge rate is less than 20% following cardiopulmonary
resuscitation (CPR) [2]. Even after survival, patients may
develop severe neurological sequela, which increases their
medical costs for long-term care and decreases their quality
of life. Post-cardiac arrest syndrome (PCAS), a multiple
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pathophysiological process, involves multiple organs and is
associated with poor clinical outcomes. According to the
database of the Canadian Critical Care Research Network,
more than 60% of Canadian patients admitted to inten-
sive care units (ICUs) after cardiac arrest have PCAS [4],
with similar incidence rates being observed in the United
Kingdom (71%) [5] and Japan (90%) [6]. PCAS includes
brain injury, myocardial dysfunction, and systemic ischemia
or reperfusion response. Brain injury is a common cause
of morbidity and mortality, and it affects 68% of car-
diac arrest survivors [7]. The complications of brain injury
include seizures, strokes, and brain death. Pathophysiologi-
cally, the lack of cerebral oxygenation during the ‘‘no-flow’’
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time results in the loss of ATP production and the dysfunction
of membrane-ATP-dependent Na-K pumps. The subsequent
loss of cellular integrity triggers the release of glutamate,
which causes excitotoxic injury; this is mainly mediated by
N-methyl-D-aspartate receptors [8].

Seizures, which are defined as sudden and uncontrolled
electrophysiological disturbances in the brain, occur more
frequently in cardiac arrest survivors than other complica-
tions, such as diabetes insipidus and coagulopathy. In the
acute stage of post-cardiac arrest, patients experience con-
vulsive seizures, nonconvulsive seizures, or status epilep-
ticus, with incidence rates ranging from 8% to 60% [9].
Cardiac arrest survivors experiencing seizure episodes may
have poor prognosis [10]. Managing comatose and heavily
sedated patients is difficult. Easily ignored, dangerous, and
implicit signs may increase the mortality rate for patients
experiencing seizures after the return of spontaneous circu-
lation (ROSC). An early seizure alarm system can enable a
caregiver to take appropriate action, including clearing the
airway; providing oxygenation; ensuring protection against
physical injuries; and administering prophylactic antiepilep-
tic drugs, such as carbamazepine, phenytoin, or valproate,
if required [11]. The earlier a seizure is detected or predicted,
the better is the prognosis of the patient.

Electroencephalography (EEG; a noninvasive, real-time
method) can be used to measure the cortical electrical activ-
ity of the brain. This technique is widely used in epilepsy
research and diagnosis [12]–[14]. However, the aforemen-
tioned technique is associatedwith some limitations related to
accessibility. It only records the moment of seizure episodes
and cannot predict them. Some patients may develop skin
abrasions due to the prolonged application of surface elec-
trodes. The traditional setup of 20 electrodes on the skull
may be time consuming and may increase the medical cost.
The use of the electrode setup increases the care burden,
especially for critical patients. Furthermore, the aforemen-
tioned setup provides a low signal-to-noise ratio (SNR),
which results in poor signal quality due to the lack of metal
shielding protection and may increase the medical burden.
Clinically, EEG is still the gold standard for diagnosing
seizures; however, a surrogate diagnostic tool is becoming
popular for the detection and prediction of seizures.

Recently, the communication between the brain and
the heart has drawn research attention [15]. Heart rate
variability (HRV) signals may enable the prediction of
seizures [13], [16]–[21]. HRV reflects the activity of both
parts of the autonomic nervous system (ANS). HRV can
be calculated by determining the difference between each
R-wave in electrocardiography (ECG). Abnormal neuronal
electrical activity corresponding to a seizure can involve
central centers for the regulation of autonomic activity,
which causes dysautonomia. Power spectral analysis of HRV
signals may provide valuable information prior to seizure
episodes [22]. The main advantage of power spectral analysis
includes its simplicity in postprocessing of low- and high-
frequency powers of HRV. HRV parameters are decoded from

the ECG signals. ECG signals (order of millivolts) have a
larger amplitude than EEG signals (order of microvolts).
The SNR is higher in ECG-based measurement than in
EEG-based measurement. ECG-based HRV can be recorded
on a single channel, and the recording is continuously acces-
sible in each patient admitted to the ICU. Behbahani et al.
(2013) found that increased sympathetic heart rate mod-
ulation and decreased vagal heart rate modulation often
precede ictal EEG changes in temporal lobe seizures [23].
Moridani et al. (2017) indicated that epileptic seizures are
associated with an increased heart rate, which sug-
gests an increased sympathetic tone and a reduced vagal
tone. The HRV-based seizure prediction algorithm of
Moridani et al. achieved 88.3% sensitivity and 86.2% speci-
ficity in 11 epilepsy patients. HRV may reflect EEG changes
in advance. Fujiwara et al. used a wearable sensor to record
and analyze HRV for developing an HRV-based epileptic
seizure prediction method [13]. In the aforementioned stud-
ies, the EEGs were intermittently recorded due to the lim-
itation of medical facilities. The previous methodology not
only fails to timely detect seizure events but also has limited
prediction ability.

A real-time, continuous monitoring system that can access
and analyze specific physiological signals is required for
application in practical critical care. The aim of this study was
to develop a real-time, continuous physiological medical sig-
nal data acquisition (PMSDA) system for ICU applications.
The developed system provides an easily accessible network
platform for the recording of ECG and EEG biosignals. EEG
signals are processed through signal decomposition, thresh-
old value determination, and evaluation by a neurologist.
Moreover, ECG feature extraction is performed simultane-
ously with EEG processing.

Machine learning analysis provides a prediction of clinical
outcomes, whereas traditional statistical analysis infers rela-
tionships between variables or discovers insights. Machine
learning identifies generalizable predictive patterns; however,
statistical analysis involves making population-level infer-
ences from a small sample. Machine learning analysis can
be used to analyze ‘‘wide data,’’ in which the number of
input variables exceeds the number of subjects [24]. The aim
of this study was to predict potential seizure occurrence in
comatose cardiac arrest survivors on the basis of biosignals.
In this study, the prediction capability for seizure was more
important than the identification of risk factors for seizure.
Moreover, ‘‘wide data’’ were adopted. Therefore, machine
learning analysis was adopted, and supervised machine learn-
ing of the aforementioned biosignals was performed. The
correlation between HRV features and seizures was then
identified.

II. MATERIALS AND METHODS
A. STUDY DESIGN AND PATIENT RECRUITMENT
This single-center, prospective cohort study was approved by
the Institutional Review Board of National Taiwan University

160516 VOLUME 8, 2020



C.-W. Sung et al.: Machine Learning Analysis of HRV for the Detection of Seizures

Hospital (NTUH) (number: 201711011RINC) and was reg-
istered at ClinicalTrials.gov. Informed consent was obtained
from the patients’ families. This study included patients who
(a) had sustained ROSC followingOHCA, (b) were older than
18 years, (c) andwere admitted to the emergency ICU (EICU)
for postcardiac arrest care. Patients were excluded if they
(a) had traumatic OHCA, (b) had a history of traumatic brain
injury confirmed by previous computed tomography or med-
ical records, (c) had medical documentation of spontaneous
nontraumatic intracerebral hemorrhage, (d) had a history of
brain surgery, (e) were brain dead, and (f) were pregnant
(if female). A total of 23 patients were initially recruited
between August 2018 and October 2019. Among the patients,
two refused to participate in the measurement and were
excluded. One patient passed away within 1 h. Data could
not be recorded for this patient, so the patient was excluded.
The remaining 20 patients completed the study protocol and
were eligible for the final analysis.

B. DATA RECORDING, EXITRACTION, AND ANALYSIS
Figure 1 displays the environmental setting in the EICU.
Ten ICU beds are available for patients in the limited
space. One-lead ECG (simplified lead II mode) and bilateral
two-channel EEG (four sensors with one reference node)
recorders were placed on each patient. EEG and ECG sig-
nals were recorded synchronically and continuously for a
maximum of 72 h since EICU admission. The hardware
platform of the PMSDA system consisted of surface sensors,
a front-end device, a network complex, and a data transfer
station. After the physiological data were recorded by the
front-end device through different types of sensors, the data
were wirelessly transmitted by a proxy transmitting module
through an access point (AP) and a local gateway. NPort
W2250A (MOXA, Taiwan) was connected to the data export
port of a central monitor (IntelliVue MX800 R©, Philips)
through a serial cable with a baud rate of 115200. The
exported data were real-time and synchronously transmitted
to an AP/repeater named D-Link N300 (D-Link, Taiwan),
which had a maximum wireless speed of 300 Mbps and

FIGURE 1. General layout of the emergency intensive care unit. The beds
are separated into different isolated areas for patient care.

an antenna gain of 5 dBi. A computer served as the data
collection and preprocessing center for collecting all nodes
of the network and for synchronization with the vital signs
monitor screen of the central monitor for each patient. The
raw data, including ECG and EEG signals, were decoded
as a text file. MATLAB (MathWorks, Inc.) was used for
waveform construction, characteristic extraction, and signal
processing (Figure 2).

FIGURE 2. Hardware of the data collection system.

C. HRV
Figure 3 depicts the block diagram of the study design. The
bottom level (level I) shows the patient recruitment. A patient
who meets the inclusion criteria is eligible. Both EEG and
ECG signals are recorded and extracted for further process-
ing. Level II displays the processing procedure for ECG
(left-sided dashed line box) and EEG (right-sided dashed line
box) signals. For ECG processing, the R–R interval (RRI)
of the ECG signal was defined as the interval between one
R-wave and the next R-wave. The sampling frequency was
250 Hz, and the operating voltage was 5 V. The frequency
in the filter was 0 to 0.4 Hz. HRV analysis was categorized
into time, frequency, and nonlinear analyses. In time-domain
analysis, R–R mean interval, standard deviation of normal-
to-normal (SDNN) intervals, root mean square of successive
differences (RMSSD), number of differences in consecutive
RRIs greater than 50ms (NN50), and ratio of the total number
of NN50 intervals to RRIs (pNN50) were calculated [25].
Frequency-domain analysis of HRV reflects the ANS func-
tion and is widely used in clinical practice. A fast Fourier
transform is an algorithm that computes the discrete Fourier
transform of a sequence.

Yk=
∑N−1

t=0
y (t) e−i

2π
N kt , K=0, 1, 2, . . . . . .N − 1 (1)

Frequency-domain analysis was performed initially
through fast Fourier transformation. The power of each
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FIGURE 3. Block diagram of the study design, which includes patient recruitment, data extraction, data analysis, and the seizure detection algorithm.

frequency band, including the total power (TP), very low
frequency (VLF), low frequency (LF), high frequency (HF),
and LF to HF ratio (LF/HF), was then calculated [26]. The
frequency ranges of the TP, VLF, LF, and HF were 0–0.4,
0.0033–0.04, 0.04–0.15, and 0.15–0.4 Hz, respectively. The
TP reflects all potential physiological mechanisms. The VLF
reflects slow mechanisms of sympathetic activity. The LF is
generally a significant indicator of sympathetic activity [27].
The power spectral density (PSD) describes how the power
of a signal or time series is distributed with frequency. The
power of a signal in a given frequency band can be calculated
by integrating the frequency values of the band. The PSD is
expressed as follows:

ϕ (ω) =
∑∞

t=−∞
r(t)e−iωt

= limN→∞ E[
1
N

∣∣∣∣∑N−1

t=0
y(t)e−iωt

∣∣∣∣2] (2)

where E denotes the expected value.

In nonlinear analysis, Poincaré return maps, which are
used for analyzing HRV nonlinear dynamics, graphically dis-
play the correlation between consecutive RRIs [28]. Poincaré
mapping provides useful information on short- and long-term
fluctuations. The parameters SD1 and SD2 are also calcu-
lated. SD1 refers to the rapid beat-to-beat changes, which
are related to respiratory sinus arrhythmia, and SD2 describes
long-term beat-to-beat changes.

The unpredictability of the RRIs can be calculated from the
ratio of SD1 to SD2. Physiologically, the aforementioned ratio
reflects the ANS balance once sympathetic activation occurs
during a long period of observation [29].

SD1 = 0.7× SD(RRn+1 − RRn) (3)

SD2 =

√
2× SD(RRn)2 − 0.5× SD(RRn+1 − RRn)

2 (4)

where RRn+1 refers to the (n+ 1)th beat-to-beat interval, RRn
represents the nth beat-to-beat interval, and SD denotes the
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standard deviation. The SD1-to-SD2 ratio is also correlated
with the LF/HF ratio [30].

Entropy measures have been used to assess the regularity
or predictability of fluctuations over time-series data [31].
Two commonly used entropy measures are approximate
entropy (ApEn) and sample entropy (SampEn). ApEn quan-
tifies the amount of regularity and the unpredictability of
fluctuations over time-series data. SampEn reduces the bias
of self-comparisons. It can be regarded as a variation of
ApEn. Both SampEn and ApEn have been widely used to
relate clinical disorders with physiological and pathological
conditions [32].

D. EMPIRICAL MODE DECOMPOSITION AND
APPROXIMATE ENTROPY
Empirical mode decomposition (EMD) is the first step in
EEG processing, as depicted in Figure 3 (right-sided dashed
box in level II). The EMDmethod is based on the assumption
that any nonstationary and nonlinear time series consists
of different simple intrinsic modes of oscillation. The core
concept of EMD is to empirically identify these intrinsic
oscillatory modes according to their characteristic time scales
and then decompose them appropriately [33]. EMD involves
operations that partition a series into several intrinsic mode
functions (IMFs) without leaving the time domain (sifting
process) [34]. Each IMF is a monotonic function with a
unique frequency band.

x (t) =
∑

n
xn (t)+ r(t) (5)

The average of the upper and lower envelopes of a sig-
nal X(t), namely Mn(t), can be derived through cubic-spline
interpolation. The first component (H1) is expressed as fol-
lows: H1(t) = X(t) − M1(t). The following component is
obtained by repeating the aforementioned processing. The
parameter rn(t) is defined as the nth difference between the
input signal and the nth IMF. If rn(t) is a monotonic function,
EMD is terminated and IMFs are obtained. Otherwise, rn(t)
is regarded as the input signal for the next loop to generate
the (n + 1)th IMF [33].
Ramakrishnan et al. found that IMF-3 and IMF-4

efficiently distinguish between seizure and nonseizure
events [35]. Because ApEn is an entropic measure to quantify
the regularity of medical data, it serves as an index for the
judgment of seizure events [32]. The EEG waveform was
first composed from the raw data and then decomposed into
several IMFs. The ApEn of IMF-3 and IMF-4 was calcu-
lated. The threshold value was determined to detect seizures.
Moreover, the EEG waveform was reviewed by an indepen-
dent neurologist. A seizure event was defined according to
both the IMF value and neurologist’s assessment.

E. DETECTION MODEL TRAINING ALGORITHM
An excellent binary classifier is essential for distinguish-
ing seizure status from nonseizure status. Support vector
machine (SVM), which is a supervised machine learning

method, was used as a classifier in this study to develop a
detection model, especially for linearly nonseparable data.
SVM uses a technique called the kernel function to trans-
form data. The kernel function maps the input space into
a higher-dimensional linear separable feature space and
thereby provides an optimal boundary between possible out-
puts. Theoretically, the main purpose of SVM is to find a
hyperplane in an N-dimensional space that distinctly classi-
fies the data points [36]. In the developed system, hyperplanes
are multidimensionally selected to aid the classification of the
outputs (seizure or nonseizure events) [37]. HRV parameters
were the input features, and the optimal combination of char-
acteristics was determined through SVM. Compared with
other machine learning algorithms, SVM provides superior
generalization capabilities for the classification of biosignals
in the developed system by minimizing structural and empiri-
cal risks [38], [39], even for a relatively small training dataset
that originates from a specific study population (comatose
cardiac arrest survivors). SVM has been widely used for
applications in seizure detection [40].

Moreover, leave-one-out cross validation was used to val-
idate the model. Leave-one-out cross validation is a special
case of cross validation in which the number of folds equals
the number of instances in the dataset [41]. This type of cross
validation is mainly used in the case of a small sample size.

F. OUTCOMES
The primary and secondary outcomes of this study were
in-hospital mortality and neurological recovery at hospital
discharge, respectively. Neurological recovery was clinically
assessed by attending physicians according to Glasgow–
Pittsburgh Cerebral Performance Category (CPC) scores,
where CPC scores of 1 or 2 indicated satisfactory neurolog-
ical function and CPC scores of 3 to 5 indicated poor neuro-
logical outcome [42]. The presentation of clinical convulsion
was assessed by intensivists, who administered antiepileptic
drugs (AEDs) if a seizure episode was suspected.

For examining the sensitivity and specificity of the model,
an independent neurologist, who was clinically blinded
and did not serve the patients and manage the data, care-
fully reviewed the EEG waveform constructed from the
raw data. Using the EEG waveform, the neurologist deter-
mined whether the waveform represented a seizure pattern.
Waveforms composed of artificial noise or other waveforms
were considered as nonseizure patterns.

G. STATISTICAL ANALYSIS
The Shapiro–Wilk test, which was proposed by Samuel
Sanford Shapiro and Martin Wilk in 1965, examines if a
variable is normally distributed in a population [43]. The
nonparametric method is used if a variable is not normally
distributed. Continuous variables with normal distributions
are presented as mean ± standard deviation. These variables
were compared between seizure and nonseizure groups by
using Student’s t test. Categorical variables are presented as
numbers (percentages), and these variables were compared
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using the chi-squared test (χ2 test). Fisher’s exact test was
performed toward small mathematical expectation. Statistical
significance was set at p ≤ 0.05. Statistical analyses were
conducted using SAS (version 9.4, SAS Institute, Chicago,
IL, USA). All figures were plotted using SigmaPlot (Systat
Software, Inc.).

III. RESULTS
The baseline characteristics of the enrolled patients are pre-
sented (Table 1). A total of 20 eligible patients were admitted
to the EICU for post-cardiac arrest care. Of these patients, 13
(65%) were men. The age of the patients ranged from 46 to
86 years. Sepsis complicated with septic shock was the major
cause of cardiac arrest (52%), followed by respiratory sys-
tem failure (33%). Targeted temperature management, which
achieved good neurological outcomes byminimizing cerebral
energy consumption, was administered to 17 patients (81%).
Seizures occurred in two-thirds of the patients clinically
assessed by intensivists. Almost 80% of the patients received
AEDs, including levetiracetam, phenytoin, or valproic acid,
when seizures occurred. Eight patients (39.1%) survived after
the treatment course; however, all patients failed to achieve
good neurological recovery, and their CPC score was more
than 3.

ECG and EEG data were extracted and analyzed (Figure 3,
level II). The duration of each normal-to-normal heart beat
was calculated by subtracting the time difference between
consecutive RRIs. A noise filter was used to eliminate
potential interference. Figure 4(a) and 4(b) illustrate the
5-minute measurements of the RRIs (in milliseconds) for
nonseizure and seizure events, respectively. After transfor-
mation, the PSD of each frequency band was calculated

FIGURE 4. The extraction of R-R interval of heart rate variability (HRV) in
(a) nonseizure and (b) seizure event, and power spectrum of HRV in
frequency domain in (c) nonseizure and (d) seizure event.

[Figure 4(c) (nonseizure) and Figure 4(d) (seizure)]. The PSD
of seizure events was higher than that of nonseizure event
at LF, HF, and the TP (area under the curve). Moreover,
the IMFs were decomposed through EMD, as illustrated
in Figure 5 and Figure 6. The EEG amplitude of seizure
events was significantly higher than that of nonseizure events.
Because IMF-8 in the seizure events was a monotonic func-
tion, IMF-9 was not extracted (Figure 6). The threshold value
was 0.15 for IMF-4 and 0.2 for IMF-3. The events were sep-
arated into two subgroups according to the threshold value.
The EEG waveforms in these subgroups were sequentially
evaluated by a neurologist.

A comparison of the HRV parameters between seizure and
nonseizure events is presented (Table 2). A total of 83 signals
were extracted before and during seizure events, whereas
89 signals were extracted and were considered to represent

TABLE 1. The baseline characteristics of the enrolled patients.
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FIGURE 5. Intrinsic mode functions (IMFs) extraction in a nonseizure
event: (a) IMF-1; (b) IMF-2; (c) IMF-3; (d) IMF-4; (e) IMF-5; (f) IMF-6;
(g) IMF-7; (h) IMF-8; (i) IMF-9.

FIGURE 6. IMF extraction in a seizure event: (a) IMF-1, (b) IMF-2,
(c) IMF-3, (d) IMF-4, (e) IMF-5, (f) IMF-6, (g) IMF-7, and (h) IMF-8.

nonseizure events. HRV parameters were compared between
the nonseizure and seizure groups. In time-domain analysis,
compared with seizure events, nonseizure events had sig-
nificantly lower HR (83.4 bpm vs. 89.1 bpm, p = 0.02),
higher SDNN intervals (31.3 ms vs. 29.8 ms, p = 0.01), and
higher pNN50 (0.11% vs. 0.05%, p = 0.02). No significant
difference was found in the RMSSD and SDSD between the
groups. In frequency-domain analysis, TP, VLF, LF, HF, and
LF/HF were compared. The power in each frequency band
was higher for seizure events than for nonseizure events.
Compared with nonseizure events, seizure events had higher
HF power (734.9 ms2 vs. 412.4 ms2, p < 0.01) and LF/HF
values (734.9 vs. 412.4, p < 0.01) (arbitrary unit).

TABLE 2. Comparison of HRV parameters between seizure and
non-seizure events.

In nonlinear analysis, parameters such as SampEn, SD1,
and SD2, were calculated to evaluate the effect of nonlin-
earity. SampEn in seizure events was significantly higher
than that in nonseizure events (1.24 vs. 0.61, p < 0.001).
Figure 7 displays the Poincaré plot for nonseizure events
(Figure 7(a).) and seizure events (Figure 7(b).). The average
SD1 and SD2 values for nonseizure events were 27.6 and
33.8 ms, respectively. Moreover, the average SD1 and SD2
values for seizure events were 20.5 and 38.5 ms, respectively.
The SD1/SD2 ratio for nonseizure events was significantly
higher than that for seizure events (0.9 vs. 0.6, p < 0.001).

FIGURE 7. Poincaré plot for (a) nonseizure events and (b) seizure events.

Four HRV parameters, namely SDNN intervals, HF,
LF/HF, and SampEn, were determined to be the optimal
variables in the seizure detection model after the train-
ing algorithm and multiple logistic regression analysis
were implemented. The four variables exhibited significant
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FIGURE 8. Comparison of variables in the detection model between
nonseizure and seizure events.

differences between nonseizure and seizure signals, which
are plotted in Figure 8(a).–(d). This model generated thresh-
old values for assessing potential seizure events to maximize
sensitivity and minimize the error. In cases where acceptable
specificity was obtained for different thresholds, the thresh-
old with the least detection error was identified. For all the
172 events, the results of the model and the assessment of the
neurologist. Sensitivity was 0.74, and specificity was 0.81.
The positive predictive value was 0.82.

IV. DISCUSSION
In this study, a real-time system predicting seizure events
through long-term continuous data recording and extraction
was developed. The system displays information on a physi-
ological monitor and extracts real-time biosignals, including
ECG and EEG signals. ECG-based HRV analysis can be used
to immediately detect seizures in patients who have experi-
enced sudden cardiac arrest and have then been resuscitated
using CPR and admitted to the EICU. Four HRV parameters,
namely SDNN intervals, HF, LF/HF, and SampEn, can be
used to develop a reliable algorithm for seizure detection.

Seizures has always been a critical issue in clinical care
scenarios, especially for patients who have survived a car-
diac arrest, because the long ischemic cerebral perfusion
time may cause hypoxic encephalopathy, which deteriorates
neurological outcomes. The current study overcomes the
previous limitations on continuity and accessibility for real-
time seizure detection [13], [14]. In this study, seizure events
were detected in patients presenting with muscle convul-
sion through physician assessments and a real-time detection
model. Seizure could be also found in anytime when the
patients seemed no convulsion because abnormal electrical
discharge in these patients only occurred in the cerebral
cortex, but not in the limbs or face. EEG signals are the
most widely used type of signals for conducting analysis
related to seizures. All potential seizure events, whether
explicit or implicit, were recorded. The data continuity pro-
vided insights into the detection of implicit seizure events.
Each recruited patient experienced more than one seizure
event (14 patients, 83 seizure events). Most of these events

were ignored by the physicians because the patients did not
present any convulsion or abnormal physical tremors. Thus,
the physicians did not note the occurrence of certain seizure
events in the patients. In this scenario, the patients failed to
receive antiepileptic treatment. The sensitivity and specificity
obtained in the current study were lower than those obtained
in Moridani’s study [16]. The patients in this study had expe-
riencedOHCA,which is a disastrous physiological condition.
The patients received sedative agents, which may influence
the ANS activity and even suppress small seizures, which
cannot be detected by EEG.

The developed system provides real-time accessibility for
the detection of potential seizure events. ECG waveforms are
continuously recorded and routinely used to monitor patients.
The core concept of ECG is the communication between
the brain and the heart. The brain directly controls the heart
through the ANS, including the sympathetic and parasympa-
thetic branches that contain multisynaptic signal routes from
cardiac cells to connecting neurons. The function of the heart
can be changed through the initiation of the ANS in the
cardiac cells, which reflects signals from the receptors and
higher-level commands [44]. The acute and chronic clinical
symptoms of an imbalanced connection between the brain
and the heart may have a negative effect on physical and
mental health. Several ANS disorders, such as anxiety [45],
depression [46], and insomnia [47], and other neurological
diseases can be assessed and diagnosed through HRV analy-
sis [48]. Theoretically, seizures that involve parts of the cen-
tral autonomic network, such as the medial prefrontal cortex,
insular cortex, or amygdala, suggest ANS abnormalities, such
as sympathetic hyperactivity and cardiac arrhythmias [49].
The attack of seizures from the temporal lobe, particularly
seizure episodes from the left hemisphere, may be correlated
with high parasympathetic activity, which causes bradycar-
dia. This phenomenon is consistent with the current findings
that HF in seizure events was significantly higher than that in
nonseizure events (p < 0.001, Figure 8(b).), and that the heart
rate in seizure events was lower than that in nonseizure events
(Table 2). Seizure-related cardiac arrhythmias are a potential
cause of sudden unexpected death [50]. The main aim of
the current study was to avoid this disaster. The balance of
the ANS may be enhanced in seizure events during deep
sleep or sedation that often occur before the motor response.
This phenomenon may reflect the activation of ANS, called
the arousal response, plays a role in seizure initiation [51].
The findings of this study indicated higher LF/HF in seizure
events than in nonseizure events (Figure 8(c).).

The raw data of the current studywere stored on a server for
safe backup and further analysis. It provided a pragmatic and
flexible seizure-data acquisition systemmodel withminimum
impact and resource cost applicable to research in critical and
practical medical settings. The data continuity and real-time
data accessibility could be achieved in the developed PMSDA
system. Thewireless network systemwas constructed by con-
sidering practical requirements; thus, it can be feasibly and
conveniently used in emergency and critical care medicine.
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Data analysis indicated that a significant difference existed
between the SampEn of the seizure and nonseizure states
(p < 0.001). In this study, the physicians administered
AEDs to the patients experiencing seizures, thereby provid-
ing high-quality post-cardiac arrest care. The administration
of AEDs may improve outcomes in cardiac arrest survivors.

The real-time seizure detection model exhibits the prop-
erties of continuity and accessibility. With the developed
model, physicians can identify potential seizure events that
were previously ignored. Thus, patients experiencing seizures
can receive treatment without delay. This study has certain
limitations. First, the sample size was relatively small. The
research sample comprised cardiac arrest survivors admitted
to only the EICU. The patients who declined further treat-
ment and refused to sign the consent form were excluded
from this study. According to the latest data, patients with
ROSC account for approximately 10%–20% of the patients
in hospitals, which causes difficulty in patient recruitment.
Second, selection bias may exist. Cardiogenic events are
the main cause of OHCA [52]. The study results indicated
a relatively low rate of cardiogenic survivors (Table 1).
Cardiogenic arrest may originate from acute coronary
syndrome, refractory fatal arrhythmia, or heart failure.
Emergency coronary angiography and extracorporeal mem-
brane oxygenation may enhance the survival outcomes of
individuals who have experienced cardiogenic arrest. Patients
who have experienced cardiogenic arrest should be admitted
to coronary care units rather than to EICUs for post-cardiac
arrest care. In EICUs, most patients present with nonshock-
able initial cardiac arrest, which may imply a high rate of
seizure events and low survival-to-discharge. These findings
are compatible with the findings of this study. Third, biosig-
nals are inevitably affected by environmental noise. A high
SNR is a strict requirement for EEG signals. The EEG record
in this study was not metallically shielded, which decreased
the SNR. Although the patients in the EICU could not receive
metallic shielding, other methods, such as eliminating the
60-Hz line noise, enhancing skin preparation, and optimiz-
ing the noise filter, were used to minimize the influence of
the SNR. Finally, clinical manifestations such as seizures,
shivering, tremors, and voluntary small movement may have
similar raw signals. The findings of this study may not be
applicable to other epileptic populations or the general pop-
ulation because the research sample only included cardiac
arrest survivors. Additional studies should be conducted to
obtain additional evidence for identifying the difference.

V. CONCLUSION
In this study, a robust biosignal monitoring and recording
system was developed for emergency and critical care. HRV
analysis indicated potential ANS disorders, which enabled
the real-time detection of seizure events in cardiac arrest
survivors. Parameters such as SDNN intervals, HF, LF/HF,
and SampEn are important factors for predicting seizures.
Additional studies should be conducted to extend the findings
of this study to different clinical scenarios.
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