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ABSTRACT It is noticed that offline-training and online-implementation method is dominant in the data-
driven control. However, the inconsistence existing in offline data and online data may degrade the control
performance. To address the aforementioned issue, an online control strategy is developed so that the
control parameters can be updated online based on the real-time data measured to ensure satisfactory control
performance in this study. Specifically, an online control algorithm is addressed to control the pressing-down
speed of the forging machine based on the framework of the reinforcement learning that has a capability of
building a complete mapping from state space to action space only according to the neighbour samples.
Rather than using the way of trials and errors which is too slow to be online implementation, a taboo
search is addressed to speed up the learning-working process by directly searching the control on the current
states, followed by the stability conditions, derived from Lyapunov stability theory. A coarse model that
is limited to get the cost information of the reinforcement learning is used to make the best of mechanism
information, which prevents the occurrence of the invalid states that do not conform to system characteristics.
The effectiveness of the algorithm is demonstrated by an ultra-low forging machine, which outperforms the
conventional approaches such as PID and neural network control approaches. The proposed algorithm has
advantages in parameter adjustments so that it is easier to implement in a practical system.

INDEX TERMS Online control, reinforcement learning, taboo search, forging machine.

I. INTRODUCTION
Forging machine, as an electro-hydraulic hybrid system with
nonlinearity and multi-field coupling, is an essential equip-
ment in forging industry [1]. The control on the forging
machine is the guarantee of the quality for the forgings pro-
duction which is vital for the high reliability areas such as
in aviation, space exploration and nuclear industry. To meet
the needs of the precise forgings, some advanced algorithms
such as the sliding mode control [2], [3], back-stepping con-
trol [4], feedback linearization [5] were used in the control
on forging machine instead of the conventional PID-based
control [6] and fuzzy-based control [7], [8]. However, the
aforementioned approaches [2]–[5] are model-based control
algorithms, which strongly depend on the accuracy of model.
Unfortunately, it is hard to build an accurate model in a
complex engineering practice. For example, the viscosity
of hydraulic oil is prone to be influenced by the tempera-
ture, which will lead to the model bias. On the other hand,
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the forging machine is usually facing the different forging
batches, which further increases the difficulty in producing
an accurate model.

Compared with the established model, the collected data
will be better to reflect the real states which are inter-
acted with the system and the surroundings. Therefore,
the data-driven approaches [10], [11] based on the fact that
advanced measurement techniques [9] have made it easy to
obtain the large-scale data online have been introduced to
the forging machine field in recent years. Reference [12]
developed two online updated backpropagation (BP) neu-
ral network algorithms to accurately control the die forging
hydraulic press machine. The weights of the neural networks
were initially trained offline and then updated online accord-
ing to an error backpropagation algorithm. A novel least
squares support vector machine (LS-SVM) control method
was addressed in [13] for general unknown nonlinear sys-
tems, which was further proved that the control error was
fully equal to the LS-SVM modeling error. In [14] a novel
online probabilistic extreme learningmachine (ELM)method
was proposed to model batch forging processes. By using the
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characteristics of the online ELM, a strategy was developed
to update the distribution model as new forging process data
were collected. In [15] a combination of the neural network
and genetic algorithms had been employed to optimize the
forging force.

These data-driven approaches are always working on away
of offline-learning and online-working. The offline-learning
forms an implication relation according to the historical data.
After this implication is obtained by learning with the ways
of supervisory or un-supervisory it will be used for the
online-working as a black box model. Either supervisory
learning or un-supervisory learning requires a large volume
of data as the training dataset, however, it is difficult to get
them as the forging machine is often to deal with different
forging batches. Firstly, for a new forging process, the train-
ing data are empty due to the lack of historical process,
while for some special forging processes, the training data
are not available due to the differences of the experimental
conditions or tests. Secondly, it is inevitable that the working
situation is not consistent with the training condition which
leads to the performance degradation, even mistake of the
forging machine under the function of the previous well-
trained controller. As a result, it is a challenge to develop
a control strategy for forging machine without depending
on the accurate model and the way of offline-learning and
online-working in traditional data-driven approach.

Using a way of online-learning and online-working is a
feasible solution for the forging machine control because
the forging machine is always working at a slow process
due to the machine’s large mechanical inertia and slow
hydraulic activity. Compared with this slowness, the com-
puter shows an amazing computing ability which makes
the way of online-learning online-working become possi-
ble. All the methods concerning the accurate model and an
amount of historic data are forced to be abandoned due to the
aforementioned limitations of the forging machine.

To our best knowledge, the reinforcement learning
(RL) [16] is able to support the offline learning (Q algo-
rithm) and online learning (e.g., Sarsa algorithm) by the
means of approaching to the stage reward with adjusting the
action based on the difference of the adjacent sampling time
series as an error rectification. The RL does not need an
accurate model and it just needs an effect from the action
which reduces the requirement of the precision for traditional
model. Now the RL has been extended to the deep reinforce-
ment learning (DRL) with the development of deep learn-
ing technique. Reference [17] developed a novel artificial
agent, termed a deep Q-network, that can learn successful
policies directly from high-dimensional sensory inputs using
end-to-end reinforcement learning. Reference [18] presented
a brief survey on the advances that have occurred in the
area of deep learning. From engineering application aspect,
the RL/DRL showed an excellent performance after a good
training in UAV [19], air-conditioning refrigeration [20],
smart power control [21], fault tolerant control [22], [23] and
so forth [24], [25].

The difficulty of RL in applying to the practical system is
its slow training speed whether offline nor online. The RL
aims to build a complete mapping between the state space
and the action space by training with trial and error in order to
deal with the unknown environment. The training is divided
into the value-based method and the policy-based method.
Compared with the value-based method, the policy-based
method is dominated due to its simplicity and intuition. Most
algorithms for policy optimization can be classified into three
broad categories [26]: (1) policy iteration methods, which
alternate between estimating the value function under the
current policy and improving the policy [27]; (2) policy gra-
dient methods, which use an estimator of the gradient of the
expected return (total reward) obtained from sample trajecto-
ries [28]; and (3) derivative-free optimization methods, such
as the cross-entropy method (CEM) and covariance matrix
adaptation (CMA), which treat the return as a black box func-
tion to be optimized in terms of the policy parameters [29].
Generally, both methods spend a long time to train which is
often unbearable for real-time system. Concurrently the trial
actions in training process may bring the risk to the system
because no one knows the effect of actions on the system in
advance.

In fact it is not necessary to spend too much time to
build a complete mapping from states space to action space
because the succeeding states will follow up the occurred
states under the control which is a subset of the complete
mapping. Searching a control in this subset will speed up
the train owning to removing the large redundant states. The
taboo search (TS) proposed by Glover and Laguna [30] is an
effective stochastic optimization method [31] which gets rid
of the historical data in training of the data-driven methods.
The TS has an efficient search capability by avoiding cir-
cuitous search with introducing a flexible storage structure
and corresponding Taboo criteria. It also escapes the local
extremum by extending the local optimization to the global
optimization. As a result, the TS algorithm is selected as a
substitution for trials and errors.

The above discussions show an evolution of control on
the forging machine from the model-based control to the
data-driven strategy in whichmost studies focused on the way
of offline-learning and online-working. Motivated by over-
coming the difficulties of the inconsistence between the train-
ing and the working for forging machine, a novel approach
is proposed to implement an online control of the forging
machine in this study. By integrating reinforcement learning
with taboo search, the RL is taken as the evaluation of the
actions, and the taboo search is used to improve the learn-
ing efficiency. On the other hand the computer simulation
technology provides the way of forecasting the system state
without a real action on the systemwhich avoids the danger of
system out of order from the training actions. The advantages
of proposed approach are summarized as follows:

(1) This is an online approach with the combination of the
data and model which breaks through the conventional mode
of offline learning and online working. The optimal control
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will be achieved in the common process of the learning and
working.

(2) All the control vectors are limited within the range of
requirements based on the current states which guarantees the
system stability in the learning process.

(3) The learning process is speeding up to meet the real-
time requirement by bringing to the taboo search which aban-
dons the redundant states independent of the current states.

The remainder of this article is organized as follows:
In section 2 the forging machine model is addressed and
the relation between the states and controls is derived under
the stability condition. Section 3 descripts the proposed
approach including the reinforcement learning, the taboo
search, the structure and algorithm. The case studies are
illustrated in Section 4, followed by conclusions in section 5.

II. FORGING MACHINE AND STABILITY CONDITION
A. THE MODEL OF FORGING MACHINE
The ultra-low forging machine with the heavy force and the
slow speed is equipment for a semi-solid metallic confection-
ing constant-speed isothermal forging which is an important
forging technique, particularly for light-weight alloy confec-
tioning in the aerospace industry. The typical structure of the
ultra-low forging machine is depicted in figure 1.

FIGURE 1. The typical structure of ultra-low forging machine.

The forging machine is divided into a power sub-system,
a sliding block sub-system, a control sub-system and an
auxiliary sub-system. A power sub-system consists of an oil
resource that forms the high pressure working oil through
a constant rate pump with a driven motor and the pipe that

delivers the high pressure working oil to the operating mech-
anisms. The sliding block sub-system is made up with a
hydraulic cylinder that produces the high pressing force at
a sliding velocity and a huge slide block that directly acts
on the forgings. The control sub-system includes all kinds of
valves, sensors and control algorithms, in which the switch
valves complete the logic function of the process, and the
proportional servo valves control the speed of the slide block
by adjusting the valve openings. The auxiliary sub-system
is used to implement the additional functions except for the
pressing process such as push-out, moving and so on.

The pressing-down phase is the key process in the
semi-solid metallic confectioning constant-speed isother-
mal forging process which usually includes six phases:
fast-down phase, slow-down phase, pressing-down phase,
keep-pressure phase, fast-up phase and slow-up phase. This
pressing-down phase is made up with a long pipe-line with
working oil, a proportional servo valve, and a hydraulic
cylinder.

For a long pipe-line with working oil, the dynamic process
can be described by [5]:

dq1
dt
=

S1(p1 − ps)
ρl

+
32ρ2µ
D2 q1 (1)

q2 − q1 =
S1l
K

dp1
dt

(2)

where q1 is the oil flow of pipe; p1 is the inlet pressure of
proportional servo valve; q2 is the flow of proportional servo
valve, and the other parameters are defined in Table 1.

For a proportional servo valve, the dynamics can be
described by [5]:

1
ω2
n

d2q2
dt2
+

2ξ
ωn

dq2
dt
+ q2 = Kn

√
p2 − p1
1pn

· Op (3)

where the symbols in (3) is shown in Table 1.
For a hydraulic cylinder, the dynamic processes can be

illustrated by [5]:

K
Vc
q2 −

KS2
Vc

v−
Kλc
Vc

p2 =
dp2
dt

(4)

S2
m
p2 −

B
m
v−

Fl
m
=

dv
dt

(5)

where q̇2 is the flow velocity, v is the speed of slide block and
the other parameters are explained in Table 1.

In terms of equations (1)-(5), the compact state-space
model can be given as follows:

ẋ = Ax + g(x)u (6)

where

x = [x1, x2, x3, x4, x5, x6] = [q1, p1, q̇2, q2, p2, v]
T ,

u =
[
Op
]
,
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A =



32ρ2µ
D2

S1
ρl

0 0 0 0

−
K
S1l

0 0
K
S1l

0 0

0 0 0 1 0 0
0 0 − 2ξωn − ω2

n 0 0

0 0 0
K
Vc

−
Kλc
Vc

−
KS2
Vc

0 0 0 0
S2
m

−
B
m


,

g = [0, 0, 0,ω2
nK n

√
x2 − x5
1pn

, 0,−
Fl
B
]

T

.

The states q1 is the oil flow of pipe; p1 is the inlet pressure of
proportional servo valve; The meanings of model parameters
are table I.

TABLE 1. The meanings of model parameters.

B. THE CONDITION OF STABILITY
The relation between the states and control variables
are gotten according to the Lyapunov stability condition.
Let

V = xTPx (7)

where P is a semi definite matrix with the form of

P =


0 0 0 0 0 0
0 p22 0 0 0 0
0 0 p33 0 0 0
0 0 0 p44 0 0
0 0 0 0 p55 0
0 0 0 0 0 p66

 (8)

with p22 > 0, p33 > 0,p44 > 0, p55 > 0 and p66 > 0.

According to the physical meaning of states xi 6= 0(i =
2, 3, 4, 5, 6), one has

V = xTPx > 0 (9)

V̇ = ẋTPx + xTPẋ

= (Ax + g (x) u)T Px + xTP (Ax + g (x) u)

= xT (AT + PA)︸ ︷︷ ︸
I

x + uT gT (x)Px + xTPg(x)uT︸ ︷︷ ︸
II

(10)

If I ≤ 0 and II < 0 there exits V̇< 0 which means the system
is Lyapunov stability.

For I and II

I = ATP+ PA ≤ 0 (11)

II = uT gT (x)Px + xTPgT (x) < 0 (12)

Using (6) and (11), one can obtain

32ρ2µ
D2

S1
ρl

0 0 0 0

−
K
S1l

0 0
K
S1l

0 0

0 0 0 1 0 0
0 0 − 2ξωn − ω2

n 0 0

0 0 0
K
Vc

−
Kλc
Vc

−
KS2
Vc

0 0 0 0
S2
m

−
B
m



T

×


0 0 0 0 0 0
0 p22 0 0 0 0
0 0 p33 0 0 0
0 0 0 p44 0 0
0 0 0 0 p55 0
0 0 0 0 0 p66



+


0 0 0 0 0 0
0 p22 0 0 0 0
0 0 p33 0 0 0
0 0 0 p44 0 0
0 0 0 0 p55 0
0 0 0 0 0 p66



×



32ρ2µ
D2

S1
ρl

0 0 0 0

−
K
S1l

0 0
K
S1l

0 0

0 0 0 1 0 0
0 0 − 2ξωn − ω2

n 0 0

0 0 0
K
Vc

−
Kλc
Vc

−
KS2
Vc

0 0 0 0
S2
m

−
B
m


≤ 0 (13)

Formula (13) shows a part expansion of the Lyapunov sta-
bility based on the forging machine model. Solving formula
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(13), one can obtain:

0 ≤ 0
0 · p22 ≤ 0
0 · p33 ≤ 0
−ω2

np44 ≤ 0

−
Kλc
Vc

p55 ≤ 0

−
B
m
p66 ≤ 0

(14)

As a result, P can be selected as follows:

P =


0 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

 (15)

Substituting (15) into (12), one can have

uT
[
0, 0, 0,ω2

nK n

√
x2 − x5
1pn

, 0,−
Fl
B

]

×


0 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1




x1
x2
x3
x4
x5
x6



+ [x1, x2, x3, x4, x5, x6]


0 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1


×

[
0, 0, 0,ω2

nK n

√
x2 − x5
1pn

, 0,−
Fl
B

]T
u < 0 (16)

Solving (16), one can have

u ·

(
ω2
nK n

√
x2 − x5
1pn

· x4 −
Fl
B
· x4

)
< 0 (17)

As a result, the Lyapunov stability condition is satisfiedwhich
means the system is stable subject to formula (17).
Remark 1: Formula (17) shows the relationship between

the control variable, the states and the load under the stability
of system, which is regarded as a restraint condition in taboo
search. The states x2, x5 and x4 in formula (17) aremeasurable
by the flow sensors and pressure sensors, and the parameters
are obtained from the design of forging machine.

III. THE PROPOSED APPROACH
A. REINFORCEMENT LEARNING
The basic idea of the reinforcement learning is simply
to capture the most important aspects of the agent which

FIGURE 2. A basic frame of reinforcement learning.

includes sensation, action, and goal. The basic frame of rein-
forcement learning is shown in Fig.2 [16].

An agent will get the evaluation of good or bad behav-
ior on environment and learn through experience without a
teacher who teaches how to do. In each training session,
named episode, the agent explores/exploits the environment
by changing action u(k) and receives the states x(k + 1)
and the immediate cost Rk+1(x (k + 1) , x (k) , u(k)) based
on x (k). The purpose of the training is to enhance the ’brain’
of agent. The goal of an agent is to minimize/maximize
the immediate cost

∑k+T
i=k Ri(x (i+ 1) , x (i) , u(i)) which is

received in the long run. This process is considered as a
decision process MDP(X,U,P,R) with a control u and cost
R in which X is a set of states, U is a set of controls, P is the
transition probabilities P : X× U× X→ [0, 1] and R is the
cost function R : X× U× X→ R.
In order to evaluate the good or bad behavior (often named

action or control) the value of a control Vu
k (x(k)) is defined

as

V u
k (x (k))

= Eu

{∑k+T

i=k
γ i−kRi

}
=

∑
u
u (x, u)

∑
x(k+1)

P (x (k + 1) , x (k) , u (k))

× [Rk (x (k + 1) , x (k) , u (k))

+ γEπ

{∑k+T

i=k+1
γ i−(k+1)Ri

}]
=

∑
u
u(x, u)

∑
x(k+1)

P (x (k + 1) , x (k) , u (k))

×
[
Rk (x (k + 1) , x (k) , u (k))+ γV u

k+1 (x (k + 1))
]

(18)

where Ri(x (i+ 1) , x (i) , u(i)) is abbreviated by Ri because
we do not stress the relation of x (k + 1) , x (k) , and u (k).

The optimal controls will be achieved by carrying an alter-
nation of the policy evaluation and policy improvement using
the formulas as follows:

Vk (x (k))

=

∑
u
uk (x, u)

∑
x(k+1)

P(x (k + 1) , x (k) , u(k)))

× [Rk (x (k + 1) , x (k) , u(k)+ γVk (x(k + 1))]

(19)

uk (x, u) = argminu
∑

x(k+1)
P(x (k + 1) , x (k) , u(k))

× [Rk (x (k + 1) , x (k) , u(k))+ γVk (x(k + 1))]

(20)
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where γ is a discount factor with 0 ≤ γ < 1 in order to
converge.

For a deterministic system, it is evident that:∑
u
uk (x, u)

∑
x(k+1)

P (x (k + 1) , x (k) , u (k)) = 1. (21)

Therefore, the formulas (19) and (20) can be simplified as:

Vk (x (k)) = Rk (x (k + 1) , x (k) , u(k))+ γVk (x(k + 1))

(22)

uk (x, u) = argminu Rk (x (k + 1) , x (k) , u(k))

+ γVk (x(k + 1)) (23)

Remark 2: The optimal control u(k) can be obtained only
using the state information and the immediate cost because
there are only x (k), x(k+1) and Rk in formulas (22) and (23).
A general approach is to adopt iterative method until it is

convergent. It is a time-consumption process due to a large
number of iterations which form the disadvantage of RL.
In fact once x (k) is determined, u(k) will be within a feasible
space due to the system limitation. One can directly seek an
appropriate control u(k) to maximize the cost function, which
can be solved by the technology of the random optimization
search. Here we chose the taboo search owing to its high
search efficiency as it can avoid the duplicate search in an
unknown space.

B. TABOO SEARCH
There are more complex versions of the taboo search which
improve its searching capability. Here the basic taboo search
algorithm is applied to demonstrate its application in finding
the optimal solution. For an element x in the discrete space X ,
the goal is

min C(x)

s.t. x ∈ X (24)

and the optimal states are solved by neighbor moving contin-
uously

s (x) = {s|s = x + wd, s ∈ X} (25)

where w is the step length, d is the direction. A taboo list
whose goal value is updated according to the first input first
output (FIFO) rule is designed to prevent the loop search. But
the aspiration A(s, x) that records the best solution of history
is not limited by the taboo list.

The basic taboo search is summarized as procedure 1.
Procedure 1
Step1: Generate an initial x, x ∈ X , then let the optimal

x∗ = x and set a null of the taboo list T = ∅
Step2: Choose a neighbor solution s(x) according to for-

mula (25).
Step3: If s (x) = opt{s (x) , s (x) ∈ S (x)−T}, let x = s (x)

and update C (x) .
Step4: IfC (s(x)) < A(s, x), s(x) ∈ T andC (s(x)) < C(x),

let x = s(x) and A (s, x) = C (s(x)) .
Step5: If C (x) < C(x∗), let x∗ = x, C (x∗) = C (x) .

Step6: Update taboo list by storing x to the last place of
taboo list T.
Step7: Repeat step2 to step6 until one of termination condi-

tions is met, that is, (a) the predetermined times of the moves;
or (b) no improvement in the goal with adding the times of the
moves

C. THE PROPOSED APPROACH
The structure of the proposed approach is shown in figure 3.
Beginning with the states x(k) and x(k + 1) at sample time
k and k + 1, the optimal control u∗ is found by adjusting the
u in order to target on the minimization of C(x) according to
the RL. Instead of the policy iteration of the gradient method,
the taboo search is used to find the optimal action in the action
space which is a table in the discrete system.

1) ACTION SAPCE, VALUE FUNCTION AND REWARD
The values of the control variable are limited to the analog-
to-digital (DA) conversion accuracy. For a n-bit DA converter,
the action space is within the range of

[
2−n, 2n

]
.

The forging machine’s velocity is determined according
to the properties of the forging materials which requires a
constant pressing speed during a certain temperature range
or a given curve of speed. Therefore, the immediate cost is
selected as the absolution value of the error between the actual
speed and the reference speed

R (k) = ||v (k)− vset (k)| − |v (k + 1)− vset (k + 1)|| (26)

Based on the coarse model (6) and formula (18), the cost
functions Vk (x, u) and Vk+1 (x + 1,u) are prone to obtain,.

Vk (x, u) = Eu

{∑k+T

i=k
γ i−kR(i)

}
(27)

Vk+1 (x + 1,u) = Eu

{∑k+T

i=k+1
γ i−kR(i)

}
(28)

Noticed that the coarse model is better to express the
tendency than a state expression, the time series error with
TD(0) is selected as the immediate cost which is the goal of
taboo search

minC (x) = minu (Vk (x, u)− Vk+1 (x + 1,u)+ R (k)) (29)

2) NEIGHBORHOOD FUNCTION, TABOO OBJECT, TABOO
LIST AND ASPIRATION CTITERION
Formula (25) provides a neighbour search but it will cause the
curse with the increase of dimension. The mode of the coding
and crossing changing position is usually used to avoid the
curse of dimensionality in the taboo search. Let si = ui where
uiε

[
2−n, 2n

]
, this mode of the neighbour rule is given in the

following: [
si,sj

]
=
[
sj,si

]
, i 6= j. (30)

The taboo object is selected as the current control variable
ui that is put into the taboo list. If the length l of the taboo
list is too long it is prone to trap in the local optimization.
If the length l of taboo list is too short it is prone to trap in
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FIGURE 3. The structure of proposed approach.

the loop. Here the length of taboo list is selected as a constant
of 200. The aspiration A(s, x) is selected as the best states of
history in order to unlock the process when all the candidates
are locked.

3) LONG TERM LIST AND STRICT LIST
The basic TS has an excellent local search ability but a worse
global search. A long term list that stores the initial values of
each stage is proposed to improve the TS global search ability
by generating the initial values as far as the past stages, this
is

K∗ = Argmax{D(k)|D (k) =
∑
L∈B

n∑
i−1

(xki − x
l
i )
2
} (31)

where B is a set of selected initial solutions, and K is a set of
initial values randomly generated, K ∈ R.
In order to reduce the search range and speed the search

velocity, a strict list is built based on the result of the system
stability in section 2.2{

u|u ·

(
ω2
nK n

√
x2 − x5
1pn

· x4 −
Fl
B
· x4

)
> 0

}
(32)

If this condition cannot be met in the process of neighbor
searching, the u will be abandoned immediately without fur-
ther work.

4) THE PROCESS OF METHOD
The proposed algorithm is summarized as procedure 2.
Procedure 2:
Step 1: Give a state x (k) .
Step 2: Select an action u (k) randomly.
Step 3: Observe the next state x(k + 1).
Step 4: Receive immediate reward R (x (k) , u (k)) accord-

ing to formula (26).

Step 5: Compute the cost Vk (x, u) and Vk+1 (x + 1,u)
according to (27) and (28) based on the coarse model (6).

Step 6: Compute the time series error C (x) according to

C (x) = Vk (x, u)− Vk+1 (x + 1,u)+ R (k)

Step 7: Search the neighbor based on u (k) and find a new
action u (j) according to formula (30)
Step 8: If u(j) satisfies a strict list of formula (32), then go

to step 7, else repeat step 5 to 6
Step 9: Carry out the taboo search according to procedure 1
Step 10: If it achieves the stage of long term list, then reset

u(k) according to formula (31), else go to step 7
Step 11: Repeat steps 7 to 10 until it satisfies the terminate

condition and finally gets the optimal u∗(k)
Step 12: Set the next state x (k + 1) as the current state

x (k) and the optimal u∗(k) as u (k)
Step 13: Repeat steps 3 to 12 until it ends

IV. CASES STUDIES
An ultra-low forging machine is used as the test bed which is
controlled by the combination of S7-300 PLC that completes
the electric logic control for the process and a trio-MC224 as
a special controller that implements the pressing-down phase
by the proposed approach. We proposed this special con-
troller as an addition embedded in S7-300 PLC because the
PLC cannot complete this complex algorithm due to its lim-
ited computation capability. The MC224 and the PLC shared
the collected data by a Modbus connection and commutated
with the supervisory computer through the Profibus. The
structure of test bed is indicted in figure 4.

The pressure transmitter is selected as YN-type fog-proof
pressure gauge with the accuracy of class 0.1. The flow
transmitter is LWGYC-type with the accuracy of class 0.5.
The displacement sensor is selected as the MTS production
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FIGURE 4. The structure of test bed.

with a minimum resolution of 0.002mm. The proportional
servo valve is Rexroth with the responding time less than
10ms. An ultra-low forging machine is working at the slow or
ultra-low speed which will spend hours to complete a forging
production. In the long pressing process, the forging is keep-
ing the suitable temperature by the mold heating technology
as dictated in figure 5.

FIGURE 5. Mold heating.

According to the assembly drawing of the ultra-low forg-
ing machine, the main oil pipe is almost keeping the same
diameter of 0.042m and there are protective measures on the
turns in order to reduce the pressure loss of the pipeline,
therefore, the actual main pipe is supposed as an ideal long
pipeline. The pipe between the proportional servo valve and
the hydraulic cylinder is omitted because the proportional
servo valve is close to the hydraulic cylinder which leads to
little pressure loss. The mass of the slide block, the plunger’s
size of hydraulic cylinder and the geometric parameters of the
oil pipe such as the diameter and the length are obtained from
the drawing annotation. The properties of the matter come
from the design handbook such as the young’s modulus of

the oil equal volume and the density of the oil. The param-
eters of the proportional servo valve are obtained from the
chart of the product manual. The other physical parameters
are responding to the designed working point. For example,
the Ps is guaranteed to the designed 32MPa with adjusting
the set value of the relief valve. The friction coefficient is
determined according to the criterion of the machine design.
The parameters of the coarse model are indicted in table 2.

TABLE 2. The values of parameters.

It is noticed that there is an implicit condition of the sam-
pling time being small enough in formula (17) which means
the states during two adjacent samplings should change a
little enough. In practice, the interval of the adjustment on
the ultra-low forging machine should not exceed 5 minutes
for ensuring the forging quality. As a result, the ultra-low
forging is always suffering a slow change. It is indicated
that the practical machine is working in consistence with the
assumptions of formula (17) though there is no theoretical
proof. The interval of 2 minutes is chosen as the sampling
time because this is the minimum time to get a valid control
in our computer although the transmitters and actuators have
the abilities to speed them up.

A. SCENARIO OF A CONSTANT SPEED
A pressing-down process of the slide block working at
an ultra-speed of 0.03mm/s is used to test the proposed
approach. In this scenario, only a few oil flow through the
servo valve will pump to the upper chamber of the hydraulic
cylinder to achieve the ultra-speed of the slide block. It will
bring the pressure loss due to the small opening of the servo
valve which causes an insufficient pressure acting on the
forgings. As a result, the control of the servo valve is a com-
promise of the pressure loss and the working pressure. The
proposed approach is following the procedure 2. However,
TS is a random search in essence though it is an efficient
searching algorithm. In order to verify the results obtained
are reliable, the experiments of the pressing-down process are
repeated 7 times. Figures 6 and 7 show the results of the speed
and output under control at each experiment with different
color curves. In figure 6 the speed is around 0.03mm/s with
a little fluctuation and the maximum spikes are 0.0302mm/s
(at the first experiment) and 0.0298 mm/s (at the fourth
experiment) with the relative errors are 0.7%. It is seen from
figure 7 that the different curves are not overlapped with
each, showing some differences at each control. However,
they all converge around 20.5 with fluctuations, and these
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FIGURE 6. The speed of pressing-down at a constant speed.

FIGURE 7. The output of control at a constant speed.

differences between them do not affect to meet the need of set
speed.

As aforementioned the control of the servo valve is a
compromise of the pressure loss and the working pressure.
However it is difficult for the different forging processes to
find this compromise due to the influences of resistance and
the machine character. A practical approach is to look for the
appropriate parameter values by trials and errors during the
equipment debugging. All these parameters are recorded as a
table and call it when required. For example, the resistance of
titanium alloy is always changing with pressing speed, whose
relation is following a curve according to the information of
related field. Therefore, some typical speeds from the curve
will be controlled as the key indicators in the debugging pro-
cess and the others are determined by interpolation method
and improved by fine-tune based on the working conditions.
This debugging process will spend a long time (often achieves
several months even years) by the conventional PID because
there are many scenarios to be tested one by one. The fuzzy

based approaches were applied to improve this parameter
values, but failed to the requirement of accuracy. With the
data increasing it is feasible to introduce the NN as a tool due
to its excellent nonlinear fitting function. So for comparison,
conventional PID and neural network (NN) are applied in this
study.

Here an ultra-speed of 0.03mm/s are taken as an exam-
ple. The parameters of the PID are adjusted by trials in
order to achieve better performance as possible. A three-layer
feed-forward backpropagation network with an input layer, a
hidden layer and a output layer is chosen as a NN controller,
whose input layer include the states (q1, p1,1q2, q2, p2, v),
and the output layer is the control variable (Op). The hidden
layer consists of 20 nodes full connect to the input layer and
output layer by trials because there is no mature theory to
follow. TheNN is trained by a classical Levenberg-Marquardt
method with random weights initialization. The training
database is built based on the selected 4000 data from the fine
control by PID in order to make sure of the excellent training
database, in which 3500 as training and 500 as testing. After
many times of trying to select different weights initialization,
the well-trained NN is fine as a controller.

The mean x̄ and the variance σ according to formulas
(33-34)

v̄ =
1
n

∑n

k=1
v(k) (33)

σ =
1
n

∑n

k=1
(v (k)− v̄)2 (34)

are used to evaluate the performance. The relative error δ
between the mean v̄ and the reference vr is according to
formula (35)

δ = (v̄− vr )/vr (35)

The results are shown in table 3

TABLE 3. The mean, the relative error and the variance AT CONSTANT
speeds.

It is seen from figure 8 and table 3 that all three meth-
ods including the traditional PID, the NN and the proposed
approach have abilities to achieve the requirement of the
speed accuracy (the relative errors <3%). In fact, even after
the debugging stage, more parameter values to respond to
the practical different cases are being collected in order to
deal with the difference between offline-training and online-
implementation. In the whole process, it is difficult for the
PID to adjust the parameters, and the NN highly depends
on an excellent training database and weights initialization.
In contrast, the proposed approach can realize the automatic
control according to the current states. As a result, the pro-
posed algorithm is in a superior position.
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FIGURE 8. The results of pressing-down speed under different controls.

B. SCENARIO OF VARIANT SPEEDS
A variant speed with the range from 0.08mm/s to 0.06mm/s
via 0.04mm/s is to test the proposed approach with sampling
times of 2 minutes. The reference vr follows the following
formula according to the craft requirement.

vr =



0.08 k ≤ 30
−0.002 (x− 30)+0.08 30 < k < 50
0.04 50 ≤ k ≤ 80
0.002 (x− 80)+0.04 80 < k < 90
0.06 90 ≤ k ≤ 100

(36)

This kind of pressing-down process is seldom in ultra-low
forging and there is no effective approach to implement until
now. In practice an experimental engineer is required to mon-
itor this process and adjust the PID parameters online to meet
the craft curve based on the experiments.

First the result of proposed approach is presented. The
pressing-down process is repeated 5 times in order to ver-
ify the reliability of proposed approach due to the random
essence of the TS. The results of the speed and output under
control are shown in figure 9 and figure 10. The cyan color,
pink color, green color, red color and blue color represent the
results from tests 1 to 5 respectively.

It is seen from figure 9 that the curves with different
colors have the same tendency which achieves the reference
speed under the different constant level and the changing
speed period. During the interval from 1min to 30 mins,
the maximum speed spikes are 0.0812 mm/s (at the 5th

test) and 0.0788 mm/s (at the 1st, 3th, 4th and 5th tests)
with relative errors of 1.5%. The maximum peak speeds are
0.0406 mm/s (at the 3rd test) and 0.0394 mm/s (at the 1st,
2nd, 3th and 4th tests) during the interval between 50 mins and
80 mins, while the speeds vary between 0.0609 mm/s (max)
and 0.0394 mm/s (min) during the interval from 80 mins
to 100 mins. All the relative errors are less than 1.5%.
Figure 10 shows the output under control with different colors

FIGURE 9. The speed of pressing-down at variant speed.

FIGURE 10. The output of control at variant speed.

at each test. The blue curve is taken for a further analysis
based on the points representing the samples. The variance
at the different intervals of 1-30 mins, 50-80 mins, and
90-100 are respectively 231.87, 20.5296, and 38.7686. The
variance reduces as the reference speeds are down. The simi-
lar case happens on the other curves. One can find the reason
from the working principle of the pressing-down process. The
pressing-down speed is determined by the load resistance and
the upper chamber pressure of the hydraulic cylinder. The
upper chamber pressure is the rest of the pressure of the power
sub-system taking away the pressure loss of servo valve (the
pressure loss of the pipe is omitted because it is far less than
that of the servo valve). On the other hand, the slide block
is pressing down as a result of the space expansion of the
upper chamber with the accumulation of hydraulic oil which
can be controlled through the opening of the servo valve.
Bigger is the opening of servo valve, less is the pressure
loss of the servo valve, and more hydraulic oil will pump
into the upper chamber of the hydraulic cylinder. This will
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widen the tuneable range and lead to a relatively easy control.
The means and variance of the speed, and control output are
shown in table 4.

TABLE 4. The means and variance of speed and control output at variant
speeds.

Then the conventional PID is used under test to control the
speed of the pressing-down process. The neural network is
abandoned here due to 1) lack of good training database; 2) it
is an offline control strategy. The results are shown in figure 8.
The red curve, the blue curve, and the green curve are results
of the reference speed, the PID control, and the online control
approach respectively.

FIGURE 11. The results of pressing-down speed under different controls.

It is seen from figure 11 that PID can achieve good control
accuracy during the period from15 mins to 60 mins, from
100 mins to 160 mins, and from 180 mins to 200 mins when
the speed is stable. The mean, the relative error and the

variance at stable speeds are shown in table V. (The data of
proposed approach is based on time3.)

TABLE 5. The mean, the relative error and the variance at stable speeds.

Table 5 shows both PID and proposed approach can pro-
vide a fine control with the relative error <3%. However
figure 11 shows the PID has a worse performance during the
transient process because it is difficult to get appropriate PID
parameters. In contrast to the flawed PID control, the pro-
posed online control shows a perfect effect throughout the
whole process.

C. INFLUENCES OF SAMPLING PERIOD
In this subsection, sampling times are tested to show their
effects on the speed under control. The sampling periods
are chosen from 2 minutes (the minimun interval time for
obtaining the right control) to 5 minutes (the maximum
interval time for the forging quality). The reference speed
is set as 0.04mm/s. The RL selected a random action at the
beginning and then go into the autonomous control according
to procedure 2. Figure 12 shows the speed of the pressing-
down during different sampling periods. Figure 13 shows
the outputs of the controller during different sampling
periods.

FIGURE 12. The speed of pressing-down during different sampling
periods.

In figure 12, the pink curve, the green curve, the red curve
and the blue curve represent the speed of the slide block at
the sampling period of 2 minutes, 3 minutes, 4 minutes, and
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FIGURE 13. The output of control during different sampling periods.

TABLE 6. The means and variance in different sampling periods.

5 minutes respectively. The stars, the crossings, the triangles,
and the squares are the sample points. All four curves can
approach to the reference speed (0.04mm/s) after a tran-
sient process. The mean and the variance in the stable pro-
cess are shown in table 5. There are some differences in
the transient process. The transient of speed1 (lasts about
18 minutes) is shorter than the others (about 25 minutes for
the green curve, about 50 minutes for the red curve, and
about 70 minutes for the blue curve). It is the reason that
the proposed approach provides a control output during each
sampling period and it can adjust the output of control in
a shorter time which weakens the accumulative effects of
forging machine for a longer period based on the previous
moment.

V. CONCLUSION
A data-driven online control strategy has been proposed for
the control of the forging machine in order to deal with the
difficulties in parameters adjustment of large batch change.
This online-learning and online working algorithm has been
carried out by reinforcement learning that can get the control
only with two consecutive samples and the learning process
is based on the computer simulation instead of trials and
errors. The mapping space between the state and control has
been reduced to a local space by developing the relationship
between the states and controls according to the Lyapunov
stability theory based on the coarse model, ensuring the
system to be stable and preventing the system risk of out

of control. The taboo search has been used to overcome the
difficulty of the requirement of the historical data, which can
find the control directly. Compared with the fine-parameters
PID and well-trained NN controller, the proposed approach
can well realize the automatic control according to the cur-
rent states, without the trouble of parameters adjustment that
keeps tracing the working condition to get a good perfor-
mance. The proposed algorithm is thus reliable and conve-
nient in the implementation. The disadvantage is that taboo
search would still spend some time to obtain an optimiza-
tion, therefore the proposed approach can only be applied
to the slow physical processes. The next step is to speed
up the search to meet the need for general real time control
systems.
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