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ABSTRACT Degradation modeling using heterogeneous degradation data of a system population is critical
for prognostics and health management. The heterogeneity may result from the inherent differences in the
degrading systems and measuring instruments, as well as from the extrinsic environmental differences,
making it difficult to predict the failure. Current studies have not considered the multiple sources of
heterogeneity simultaneously, and consequently, have failed to capture the actual degradation process.
To explain and quantify the combined effect of multi-source heterogeneity, we present a random effects
Wiener process model with heteroscedastic measurement errors, where the parameters of the drift, diffusion,
and error variance are assumed as random variables following a certain distribution. The Markov chain
Monte Carlo method is adopted to estimate the posterior distributions of the actual degradation states and
the model parameters under a hierarchical Bayesian framework. Based on the concept of first hitting time,
the failure time distribution is estimated. To verify the presented approach, comparative studies are conducted
with simulation and laser degradation data. The results show that considering multi-source heterogeneity
can further eliminate the inter-individual variation in degradation data and improve the model fitting and
prediction accuracy.

INDEX TERMS Degradation modeling, Wiener process, heterogeneity, Bayesian analysis.

I. INTRODUCTION
Degradation data contain repeated measurements of a degra-
dation process over time in a population of systems. These
contain important information about the degradation laws
of the population and the degradation characteristics of
different individuals. Through fitting the degradation data,
a degradation model can be used to extract the degrada-
tion laws of such systems, providing a basis for remaining
useful life prediction and condition-based maintenance [1].
Therefore, data-driven degradation modeling is critical for
prognostics and health management [2]. Because the failure
time is predicted by extrapolating the model, the prediction
accuracy highly depends on the capability of modeling the
degradation data. Because of some unobservable endogenous
and exogenous factors [3], the observed degradation paths
of systems from the same population typically differ from
each other, and exhibit significant heterogeneity. The hetero-
geneity in the degradation data makes it difficult to model
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the degradation and leads to uncertainty in the prediction
[4]. Current studies have not considered these sources of
heterogeneity simultaneously, and consequently, have failed
to capture the actual degradation process. In degradation
modeling based on stochastic processes, the Wiener pro-
cess has attracted much attention because of its intuitive
physical interpretation and favorable mathematical properties
[2], [5]. Moreover, the Wiener process is more suitable for
non-monotonically degrading systems than the gamma and
inverse Gaussian processes. Therefore, in this study, we focus
on degradation modeling considering heterogeneity based on
the Wiener process, and analyze the influences of multiple
heterogeneity factors on the failure prediction.

Accurate modeling of a degradation process depends criti-
cally on our understanding of the degradation heterogeneity.
The heterogeneity in the degradation data may originate from
multiple sources. One of the heterogeneity factors is the well-
known unit-to-unit variability of degradation systems [4].
This variability is mainly due to the inherent differences in
such systems, such as the variations in raw materials and
manufacturing processes [3]. For modeling the unit-to-unit
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variability, Peng and Tseng [6] assumed the drift parameter to
be unit-specific, and proposed a random-drift Wiener process
model for accelerated degradation data. Gebraeel et al. [7]
established an online updating mechanism for random drift
using the Bayesian method to better characterize the individ-
ual degradation. Si [8] generalized the random-drift Wiener
process model into a nonlinear degradation form to describe
the change in the degradation rate with time. When the
extrinsic environments in which systems operate are homo-
geneous, it is reasonable to explain the degradation hetero-
geneity only in terms of the unit-to-unit variability. Here,
the extrinsic environment refers to unobserved exogenous
factors that may affect the degradation process, such as the
operating condition, usage pattern, and ambient temperature.
In practice, however, the extrinsic environments differ from
system to system, and the extrinsic environmental differences
can also lead to heterogeneity. For example, in accelerated
degradation tests, it is found that increasing the environ-
mental stress can increase both the rate and volatility of the
degradation [9], [10].

Since the heterogeneity may also arise in response to
extrinsic environmental differences, the variability in the
drift and diffusion parameters and their correlation should
be considered [11]. Wang [12] and Wang et al. [13] consid-
ered the drift and diffusion parameters as statistically cor-
related random variables to further describe the degradation
heterogeneity using time-homogeneous and multi-time-scale
Wiener process models, respectively. Ye et al. [11] estab-
lished a fixed proportional relationship between the random
drift parameter and the diffusion parameter to demonstrate
that systems with a high degradation rate may have large
volatility. Wang et al. [14] explained this fixed proportion
relationship using the acceleration factor invariant principle,
and updated the two parameters with online monitoring infor-
mation. Under the assumption that the drift and diffusion
parameters are unit-specific, the random effects Wiener pro-
cess model can further explain the degradation heterogeneity
due to the variations in the degrading systems and extrin-
sic environments, and improve the model fitting. However,
the above degradation models assume that the actual degrada-
tion states of the system can be observed accurately, without
considering the influences of measurement errors. Because
of imperfect instruments [15], random environments [4], and
indirect measurements [16], degradation data are often con-
taminated by measurement errors. Since degradation data can
only partly reflect the actual states of degradation in such
situations, the measurement uncertainty should be considered
in degradation modeling.

To study the degradation process more accurately with
degradation data, the combined effects of the degradation het-
erogeneity and measurement uncertainty need to be consid-
ered simultaneously. Jin et al. [10] and Si et al. [15] employed
a random-drift Wiener process model with measurement
errors to predict the remaining useful life of a linear degrada-
tion system, respectively. Zheng et al. [17] further extended
this linear degradation model to nonlinear degradation

situations. By introducing the measurement errors into the
degradation process model, the robustness of the model used
to estimate the actual degradation state could be improved
[2], [16]. In such degradation models with measurement
errors, the effect of extrinsic environmental differences was
not considered, and the parameter of measurement errors was
fixed for all systems in the population. However, similar to the
individual variability existing in a population of degradation
systems, the variability among different measuring instru-
ments may also produce heterogeneous measurement errors,
resulting in degradation heterogeneity. The heterogeneous
measurement errors are common in practice, particularly
when a degradation system has its ownmeasuring instrument.
Current studies have not paid enough attention to degradation
modeling considering the inherent differences in measuring
instruments.

The above analyses show that the heterogeneity in degra-
dation data is inevitable, and may originate from the inher-
ent differences in the degradation systems and measuring
instruments, as well as from the differences in the extrinsic
environments. However, the existing Wiener-process-based
degradation models only considered the heterogeneity of the
degradation systems or external environments, ignoring the
heteroscedastic measurement errors caused by the differences
in the measuring instruments. Therefore, we propose a ran-
dom effects Wiener process model with heteroscedastic mea-
surement errors for degradation modeling with multi-source
heterogeneity. Specifically, the parameters of the drift, diffu-
sion, and error variance are assumed to be unit-specific while
interpreting the influence of the multi-source heterogeneity,
and are subjected to a certain distribution to quantify the
uncertainty due to the heterogeneity. Compared with existing
work, this paper mainly contributes to the following aspects:

1) The proposed model can simultaneously perceive and
quantify the multi-source heterogeneity from degradation
data, thus improving the model fit and the accuracy of the
failure time prediction. The model can include many existing
models as special cases, and is more general and flexible.

2) A novel Markov chain Monte Carlo (MCMC) algorithm
is presented to estimate the posterior distributions of the
model parameters under a Bayesian hierarchical framework.
This algorithm can effectively deal with the complex param-
eter structure in the proposed model. Its accurateness and
robustness are verified by a simulation experiment.

3) A real case is used to analyze the combined effect
of multi-source heterogeneity on the estimates of the actual
degradation states and the failure time distribution. The
results verify the rationality and effectiveness of the proposed
method.

The remainder of this article is organized as follows.
Section 2 introduces a degradation model with multi-source
heterogeneity. A Bayesian parameter estimation method is
presented in Section 3. Section 4 gives the failure time
distribution based on the posterior estimates of the model
parameters. Section 5 provides a simulation study and case
study conducted to demonstrate the effectiveness of our
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proposed model and algorithm. Finally, we conclude our
findings in Section 6.

II. DEGRADATION MODEL DESCRIPTION
We introduce amodel based on theWiener process to describe
the degradation process {X (t), t ≥ 0}. The degradation state
at time t can be expressed as:

X (t) = X (0)+ λt + η−1/2B(t), (1)

where λ is the drift coefficient reflecting the degradation rate,
η−1/2 is the diffusion coefficient reflecting the degradation
volatility, and B(t) represents the standard Brownian motion.
Without loss of generality, we assume that the initial value of
the degradation process is X (0) = 0.
Because of imperfect measurements or disturbances

from external environment, random measurement errors are
inevitable in degradation data. As a result of the measurement
errors, degradation data can only partially reflect the actual
degradation states, and there exits measurement uncertainty
[15]. Let {Y (t), t ≥ 0} represent the observation sequence of
a degradation process; then, the measurement equation can be
written as:

Y (t) = X (t)+ ε(t), (2)

where ε(t) is the Gaussian white noise, i.e., ε(t) ∼i.i.d .
N(0, γ−1), and N(·) represents the Gaussian distribution; γ−1

represents the error variance. It is further assumed that ε(t)
and B(t) are mutually and statistically independent. These
assumptions have been widely adopted in studies on degra-
dation modeling [6], [10], [16], [17].

From a physical point of view, the deterministic component
λt in (1) denotes the global degradation trend, the stochas-
tic component η−1/2B(t) describes the random fluctuation
around the deterministic trend, and accordingly, the drift λ
and diffusion η can capture the rate and volatility of degrada-
tion respectively. Moreover, the error γ can further explain
the uncertain part introduced by measurements in the ran-
dom fluctuation. Equations (1) and (2) constitute the basic
linear degradation model with measurement errors, consid-
ering both the time-varying and measurement uncertainties
in the degradation process [2]. This model and its nonlinear
extension, i.e., the time-varying degradation rate, have been
applied to the degradationmodeling of battery data [10], LED
data [16], and fatigue-crack data [17].

As described in the introduction, the degradation hetero-
geneity due to the variations in the degradation systems
and extrinsic environments can be described by assuming
the parameters λ and η to be unit-specific. This forms the
basis of the random effects Wiener process model. However,
the variability among different measuring instruments may
also produce heterogeneous measurement errors, leading to
heterogeneity, as expressed in (2). Therefore, we consider a
more general case of degradation heterogeneity, where the
drift λ, diffusion η, and error γ differ among individuals,
and describe the multi-source heterogeneity by a random

effects Wiener process model with heteroscedastic measure-
ment errors. Specifically, let (λ, η, γ ) be a random vector
with a probability density function (PDF) as p(λ, η, γ |9),
where 9 is the density parameter. If there are N systems
in a population, we may regard the individual degradation
parameters {λi, ηi, γi} of each system as independent iden-
tically distributed samples from the population distribution
p(λ, η, γ |9). It can be expressed as:

{λi, ηi, γi} ∼i.i.d . p(λ, η, γ |9), i = 1, 2, . . . ,N .

Evidently, the above model, which we refer to as model
M0, is a general and flexible form that can include the existing
models, which considers only one- or two-source heterogene-
ity, as special cases.

When the parameter γ is a positive constant for each sys-
tem across the population, model M0 reduces to the random
effects Wiener process model with homoscedastic measure-
ment errors, which we refer to as model M1. In particular,
when γ → +∞ (i.e., the error variance γ−1 ≈ 0), model
M0 reduces to the random effects Wiener process model pro-
posed in [12]–[14], where only the inherent differences in the
degradation systems and extrinsic environmental differences
were considered.

When both the parameters γ and η are positive constants,
model M0 reduces to the random-drift Wiener process model
with homoscedastic measurement errors proposed in [10],
[15], which we refer to as model M2. The model M2 consid-
ers only the inherent differences in the degradation systems.

Let yi = [yi,1, yi,2, . . . , yi,ni ]
T and ti = [ti,1, ti,2, . . . , ti,ni ]

T

be the degradationmeasurements and the correspondingmea-
surement time of the ith system, respectively, where yi,j =
Y (ti,j) denotes the degradation data at the time ti,j, and ni is the
number of measurements. Based on the above assumptions
of model M0, the problem of model identification is to
estimate the parameter9 with the degradation measurements
{y1, y2, . . . , yN }.
Although considering a greater number of model param-

eters as random variables can enhance the ability of model
description, it increases the complexity of statistical infer-
ence. Therefore, an effective statistical inference algorithm
is required to estimate the model parameter 9.

III. PARAMETER ESTIMATION
The parameters of a probabilistic model can be obtained
using theMLE or Bayesianmethod, and the specific selection
factors include the model complexity, sample size, and subse-
quent statistical reasoning based on the estimated parameters.
Compared with the MLE, the Bayesian method can directly
provide the posterior distribution of the parameter, which
is conducive to analyzing the uncertainty in estimating and
updating the parameters with online data [7]. In addition,
given the complexity of the model and the situation of small-
scale samples, the Bayesian method can additionally avoid
the high-dimensional optimization and the positive semidef-
inite problem of the covariance matrix observed in the MLE.
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In this study, the Bayesian method is used for the posterior
estimation of the parameter 9.
For ease of presentation, let θ i = {λi, ηi, γi} denote the

individual parameter of the ith system. The degradation state
of the ith system is defined as xi = [xi,1, xi,2, . . . , xi,ni ]

T,
where xi,j = X (ti,j) denotes the degradation state at the
time ti,j. Based on the conditional normal properties of (1)
and (2), for the system i = 1, 2, . . . ,N , the degradation
state increments 1xi,j = xi,j − xi,j−1 and the degradation
measurements follow normal distributions under the given
model parameters θ i, and can be expressed as:

1xi,j|θ i ∼ N(λi1ti,j, η
−1
i 1ti,j),

yi,j|xi,j, θ i ∼ N(xi,j, γ
−1
i ), (3)

where 1ti,j = ti,j − ti,j−1 denotes the interval time between
the adjacent observations, j = 1, 2, . . . , ni.

Based on the statistically independent property of the
increments in the Wiener process and the conditional inde-
pendent assumption of the degradation data, the likelihood
function of θ i can be expressed as:

L(θ i) = p(yi|xi, θ i)p(xi|θ i)

∝

ni∏
j=1

η
1/2
i exp

(
ηi(1xi,j − λi1ti,j)2

−21ti,j

)

× γ
1/2
i exp

(
γi(yi,j − xi,j)2

−2

)
. (4)

Since the degradation data {y1, y2, . . . , yN } of N systems
are independent samples, the posterior distribution of the
model parameter 9 is as follows:

p(9|y1, y2, . . . , yN ) ∝ p(y1, y2, . . . , yN |9)p(9)

=

{
N∏
i=1

∫∫
L(θ i)p(θ i|9)dxidθ i

}
p(9). (5)

Because (5) contains a high-dimensional integral of the
state vector xi and the individual parameter vector θ i, it is
generally difficult to obtain the posterior distribution of the
parameter 9 analytically except in the case of linear Gaus-
sian distributions. Therefore, the MCMC method is often
used in Bayesian analyses to randomly simulate the posterior
distribution of unknown parameters, and statistical inference
is then implemented based on the results of the random
simulation. A Bayesian analysis mainly involves two steps:
specifying the prior distributions for the parameters of interest
and reasoning its posterior distributions. In the following part,
we specify the prior and propose an MCMC algorithm for the
model parameter 9.

A. HIERARCHICAL PRIOR STRUCTURE
It is important to specify an appropriate prior distribution in
Bayesian analyses. To facilitate the derivation of the posterior
distribution, a conjugate prior distribution is often used. First,
we consider the prior distribution p(θ |9) of an individual

parameter θ . It is assumed that the measurement error pro-
cess {ε(t), t ≥ 0} is independent of the degradation state
process {X (t), t ≥ 0}, i.e., the system degradation behavior
does not interact with the degradation measurement. This
assumption is also consistent with the non-damage or indirect
measurements often taken in engineering practice, such as
the vibration signals of bearings and the current or voltage
induction signals of batteries [10]. Therefore, the parame-
ters {λ, η} of the degradation process are independent of
the parameter γ of the measurement. Moreover, because the
degradation rate and degradation volatility can be affected by
some of the same factors such as manufacturing materials or
extrinsic environments [9], [13], a statistical correlation may
be considered between the drift λ and the diffusion η. Based
on the above correlation analysis of the individual parameter,
the prior is given as:

p(θ |9) = p(λ, η|9)p(γ |9) = p(λ|η,9)p(η|9)p(γ |9).

Observing the likelihood function (4), we find that λ and
η are present in the mean and variance terms of the normal
distributions of the degradation increments, respectively, and
γ is present in the variance term of the normal distributions
of the degradation measurements. In a Bayesian analysis,
the normal-gamma distribution is often used as the conjugate
prior of the mean and precision parameters of the normal dis-
tribution, and the gamma distribution is used as the conjugate
prior of the precision parameter of the normal distribution
[18]. Therefore, the conjugate prior of the individual param-
eter θ can be expressed as [19]

λ|η ∼ N(µ, (κη)−1),
η ∼ G(vη, vη

/
uη),

γ ∼ G(vγ , vγ
/
uγ ),

(6)

where G(·) represents the gamma distribution, which has the
PDF:

p(x|α, β) =
βαxα−1

0(α)
exp(−βx), x > 0, (7)

with mean α/β, and variance α/β2.
At this point, the parameter to be estimated is 9 =

{µ, κ, vη, uη, vγ , uγ }. Further, we can specify the prior of the
model parameter 9 as [19]:

µ ∼ N(ω, q), κ ∼ G(a, b),
vη ∼ E(ξη), uη ∼ IG(αη, βη),
vγ ∼ E(ξγ ), uγ ∼ IG(αγ , βγ ),

(8)

where E(·) represents the exponential distribution; IG(·) rep-
resents the inverse gamma distribution with the PDF:

p(x|α, β) =
βαx−α−1

0(α)
exp

(
−
β

x

)
, x > 0.

In the Bayesian context, the parameters {ω, q, a, b, ξη, αη,
βη, ξγ , αγ , βγ } are hyper-parameters of the prior of9, which
are usually set based on prior knowledge or in a diffuse
prior form. To sum up, the hierarchical Bayesian degradation
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FIGURE 1. Probability structure diagram of a degradation model.

model composed of (1), (2), (6), and (8) can be summarized
in the form of a probability structure diagram as shown in
Fig. 1. As shown, the shadow node represents an observ-
able variable; the dashed circle node represents a hyper-
parameter; the other nodes represent unknown parameters or
variables; the directed edge represents statistical dependency
between the nodes, and the rounded rectangular box repre-
sents the number of independent observations of a parameter
or variable.

Corresponding to the conditional independent relation-
ship shown in Fig. 1, according to the Bayesian theorem,
the joint posterior distribution of all the unknown parameters
{θ1, θ2, . . . , θN ,9}, and the variables {x1, x2, . . . , xN } can
be obtained via Bayes’ theorem as

p(x1, x2, . . . , xN , θ1, θ2, . . . , θN ,9|y1, y2, . . . , yN )

∝

{
N∏
i=1

L(θ i)p(θ i|9)

}
p(9)

∝


N∏
i=1

 ni∏
j=1

η
1/2
i exp

(
ηi(1xi,j − λi1ti,j)2

−21ti,j

)

× γ
1/2
i exp

(
γi(yi,j−xi,j)2

−2

)]
(κηi)1/2exp

(
κηi(λi − µ)2

−2

)

×
(vη/uη)vηη

vη−1
i

0(vη)
exp

(
−
vη
uη
ηi

)
×

(vγ /uγ )vγ γ
vγ−1
i

0(vγ )
exp

(
−
vγ
uγ
γi

)}
q1/2 exp

(
q(µ−ω)2

−2

)
× κa−1 exp(−bκ) × exp(−ξηvη)u

−αη−1
η exp

(
−
βη

uη

)
× exp(−ξγ vγ )u

−αγ−1
γ exp

(
−
βγ

uγ

)
. (9)

Because of the hierarchical prior structure shown in Fig. 1,
the joint posterior represented by (9) is too complex to easily
obtain the marginal posterior of the parameter 9 using the
integral method. Therefore, we resort to the MCMC method
to randomly simulate its marginal posterior distribution.

B. POSTERIOR INFERENCE
In the MCMC method, an ergodic Markov chain {x(k), θ (k),
9(k)
}, k = 1,2, . . ., is constructed with the joint posterior

distribution p(x, θ ,9|y) as the stationary distribution, and
random samples of the posterior distribution are simulated.
Because theMCMCmethod has good properties, such as con-
sistency and asymptotic normality, it is a reasonable approx-
imation to the posterior distribution [20].

In the hierarchical prior structure expressed in (6) and (8),
although the conjugate priors are used as much as possible,
the conditional posterior distributions of some parameters
are still unknown, and random sampling cannot be carried
out directly. Therefore, we use a Metropolis-within-Gibbs
algorithm to randomly sample the conditional posterior dis-
tributions. This algorithm combines the generality of the
Metropolis–Hastings algorithm with the efficiency and con-
venience of the Gibbs algorithm. For a parameter that cannot
be directly sampled from its conditional posterior distribu-
tion, the sample may be updated in theMetropolis step. Based
on the joint posterior distribution given by (9), the conditional
posterior distributions of each degradation state and unknown
parameter are derived as follows.

1) CONDITIONAL POSTERIOR DISTRIBUTION OF xi,j
Let xi,(j) = {xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,ni} denote the state
sequence after removing xi,j. The conditional posterior dis-
tribution of xi,j, for i = 1, 2, . . . ,N , j = 1, 2, . . . , (ni − 1),
is given by

p(xi,j|xi,(j), yi, θ i)

∝ exp

(
ηi(1xi,j − λi1ti,j)2

−21ti,j

)

× exp

(
ηi(1xi,j+1 − λi1ti,j+1)2

−21ti,j+1

)
exp

(
γi(yi,j − xi,j)2

−2

)

∼ N(x|dxi,j ,Dxi,j ). (10)

According to (10), this conditional posterior is still normal,
and its conditional variance and mean are respectively:

D−1xi,j = ηi(1t
−1
i,j +1t

−1
i,j+1)+ γi,

dxi,j = Dxi,j
(
ηi(xi,j1t

−1
i,j−1 + xi,j+11t

−1
i,j+1)+ γiyi,j

)
.

For the last state xi,ni , i = 1, 2, . . . ,N , its conditional
posterior distribution is as follows:

p(xi,ni |xi,(ni), yi, θ i)

∝ exp
(
ηi(xi,ni−xi,ni−1−λi1ti,ni )

2

−21ti,ni

)
×exp

(
γi(yi,ni−xi,ni )

2

−2

)
∼ N(xi,ni |dxi,ni ,Dxi,ni ), (11)

where

D−1xi,ni = ηi1t
−1
i,ni+γi,

dxi,ni = Dxi,1
(
ηi(xi,ni−11t

−1
i,ni+λi)+ γiyi,ni

)
.
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2) CONDITIONAL POSTERIOR DISTRIBUTION OF λi
The conditional posterior distribution of λi, for i =
1, 2, . . . ,N , is

p(λi|xi, yi, ηi, γi,9)

∝

ni∏
j=1

exp

(
ηi(1xi,j − λi1ti,j)2

−21ti,j

)
exp

(
κηi(λi − µ)2

−2

)
∼ N(λi|dλi ,Dλi ), (12)

where D−1λi = ηi(ti,ni + κ), dλi = Dλiηi(xi,ni + κµ).

3) CONDITIONAL POSTERIOR DISTRIBUTION OF ηi
The conditional posterior distribution of ηi, i = 1, 2, . . . ,N ,
is obtained as follows

p(ηi| xi, yi, λi, γi,9)

∝

ni∏
j=1

η
1/2
i exp

(
ηi(1xi,j−λi1ti,j)2

−21ti,j

)
(κηi)1/2

× exp
(
κηi(λi−µ)2

−2

)
η
vη−1
i exp

(
−
vη
uη
ηi

)
∼ G(ηi|dηi ,Dηi ), (13)

where

Dηi =
ni∑
j=1

(1xi,j − λi1ti,j)2

21ti,j
+
κ(λi − µ)2

2
+
vη
uη
,

dηi = vη + (ni + 1)/2.

4) CONDITION POSTERIOR DISTRIBUTION OF γi
The conditional posterior distribution of γi, for i =
1, 2, . . . ,N , has the following form:

p(γi|xi, yi, λi, ηi,9)

∝

ni∏
j=1

γ
1/2
i exp

(
γi(yi,j − xi,j)2

−2

)
γ
vγ−1
i exp

(
−
vγ
uγ
γi

)
∼ G(γ |dγi ,Dγi ), (14)

where

Dγi =
ni∑
j=1

(yi,j − xi,j)2

2
+
vγ
uγ
, dγi = vγ + ni/2.

5) CONDITIONAL POSTERIOR DISTRIBUTION OF
HYPER-PARAMETERS µ AND κ

The conditional posterior distribution of the parameter µ is
as follows

p(µ|θ1, θ2, . . . , θN , κ)

∝

N∏
i=1

exp
(
κηi(λi − µ)2

−2

)
exp

(
q(µ− ω)2

−2

)
∼ N(µ|dµ,Dµ), (15)

where

D−1µ = κ
N∑
i=1

ηi + q, dµ = Dµ(κ
N∑
i=1

ηiλi + qω).

For parameter κ , its formulation is as follows:

p(κ| θ1, θ2, . . . , θN , µ)

∝

N∏
i=1

(κηi)1/2 exp
(
κηi(λi − µ)2

−2

)
κa−1 exp(−bκ)

∼ G(κ| dκ ,Dκ ), (16)

where

dκ = a+ N/2, Dκ =
N∑
i=1

ηi(λi − µ)2

2
+ b.

6) CONDITIONAL POSTERIOR DISTRIBUTIONS OF
HYPER-PARAMETERS uη AND vη
The conditional posterior distribution of uη is as follows

p(uη
∣∣ θ1, θ2, . . . , θN , vη)

∝

N∏
i=1

(uη)−vη exp
(
−vη
uη

ηi

)
u
−αη−1
η exp

(
−βη

uη

)
∼ IG(uη

∣∣ duη ,Duη ), (17)

where Duη = vη
N∑
i=1
ηi + βη, duη = Nvη + αη.

The vη can be calculated using the formulation:

p(vη|θ1, θ2, . . . , θN , uη)

∝

N∏
i=1

(vη
/
uη)vηη

vη−1
i

0(vη)
exp

(
−
vη
uη
ηi

)
exp(−ξηvη)

=
(vη/uη)Nvη

0(vη)N
exp

{
−

[
N∑
i=1

(
ηi

uη
− log ηi

)
+ξη

]
vη

}
, (18)

The distribution of vη given by (18) is an unknown dis-
tribution; thus, it cannot be sampled directly. At this point,
a random sampling of this unknown distribution is obtained
via the Metropolis step. When the value of vη in (18) is high,
its PDF is similar to a gamma distribution, so the gamma
distribution may be chosen as the proposal distribution to
generate a candidate [19]. Let G(r, r

/
vη) be the proposal

gamma distribution; then, the acceptance probability of the
candidate ṽη, i.e., ṽη ∼ G(r, r

/
vη), can be calculated as

min

1, p(ṽη|θ1, θ2, . . . , θN , uη)× G(ṽη|r, r
/
v′η)

p(v′η|θ1, θ2, . . . , θN , uη)× G(v′η|r, r
/
ṽη)

 ,
where v′η is the sampling result of the previous iteration; and
r is the parameter of the proposal distribution. If the candi-
date ṽη is rejected, v′η is still retained for the next iteration.
Evidently, v′η and v

′2
η/r are the mean and variance of the pro-

posal distribution, respectively. The acceptance probability
of a candidate can be improved by adjusting the value of r .
We selected r = 10 for the subsequent experimental research.
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7) CONDITIONAL POSTERIOR DISTRIBUTIONS OF
HYPER-PARAMETERS uγ AND vγ
Similar to uη and vη, the conditional posterior distributions
of uγ and vγ are respectively:

p(uγ |θ1, θ2, . . . , θN , vγ )

∝

N∏
i=1

(uγ )−vγ exp
(
vγ
−uγ

γi

)
u
−αγ−1
γ exp

(
βγ

−uγ

)
∼ IG(uγ |duγ ,Duγ ), (19)

where

Duγ = vγ
N∑
i=1

γi + βγ , duγ = Nvγ + αγ ,

and

p(vγ |θ1, θ2, . . . , θN , uγ )

∝

N∏
i=1

(vγ
/
uγ )vγ γ

vγ−1
i

0(vγ )
exp

(
vγ γi
−uγ

)
exp(−ξγ vγ )

=
(vγ
/
uγ )Nvγ

0(vγ )N
exp

{
−

[
N∑
i=1

(
γi

uγ
−log γi

)
+ξγ

]
vγ

}
. (20)

The condition posterior distribution of vγ is also an
unknown distribution, and takes the same form as the condi-
tion posterior distribution of vη. Similarly, the sameMetropo-
lis step used for sampling vη in Section 3.2.6 can be used to
obtain a sample of vγ .
In summary, (10)-(20) constitute the Metropolis-within-

Gibbs sampler algorithm shown in Algorithm 1, used to
draw posterior samples for each parameter in 9 and each
variable in {xi, i = 1, 2, . . . ,N }. After the constructed
MCMC chain stabilizes, the simulated random samples
can be used to estimate the posterior expectation 9̂ =

{µ̂, κ̂, v̂η, ûη, v̂γ , ûγ }, {x̂i, i = 1, 2, . . . ,N }, and their confi-
dence intervals.

IV. FAILURE TIME DISTRIBUTION
Similar to previous studies on degradationmodeling [8], [10],
[14], [17], we assume that a failure occurs when the degrada-
tion process {X (t), t ≥ 0} first hits a preset failure threshold
level. Correspondingly, the concept of the first hitting time
(FHT) is used to define the failure time. Without loss of
generality, we assume that the degradation process tends to
increase with time, and the failure threshold level is w. Based
on the FHT concept, the failure time (lifetime) T of a system
can be defined as

T = inf{t:X (t) ≥ w|X (0) < w}.

For the Wiener process degradation model defined in (1),
the failure time T , given individual parameter {λ, η} and
initial state X (0), follows an inverse Gaussian distribution
[6]. Moreover, its PDF fT (t|λ, η) and cumulative distribution

Algorithm 1 Metropolis-Within-Gibbs Sampler for Condi-
tional Posterior of 9

1: Set initial value k = 0, {θ (0)1 , θ
(0)
2 , . . . , θ

(0)
N ,9

(0)
}..

2: for k = 1, 2, . . . do
3: for i = 1, . . . ,N do
4: for j = 1, . . . , (ni − 1) do
5: Draw x(k)i,j ∼ p(·|x(k−1)i,(j) , yi, θ

(k−1)
i ) using (10)

6: end for
7: Draw x(k)i,ni ∼ p(·|x(k−1)i,(ni)

, yi, θ
(k−1)
i ) using (11)

8: Draw λ(k)i ∼ p(·|x(k)i , yi, η
(k−1)
i , γ

(k−1)
i ,9(k−1))

using (12)
9: Draw η(k)i ∼ p(·|x(k)i , yi, λ

(k)
i , γ

(k−1)
i ,9(k−1))

using (13)
10: Draw γ (k)

i ∼ p(·|x(k)i , yi, λ
(k)
i , η

(k)
i ,9

(k−1))
using (14)

11: end for
12: Draw µ(k)

∼ p(·|θ (k)1 , θ
(k)
2 , . . . , θ

(k)
N , κ

(k−1))
using (15)

13: Draw κ (k) ∼ p(·|θ (k)1 , θ
(k)
2 , . . . , θ

(k)
N , µ

(k)) using (16)
14: Draw v(k)η ∼ p(·|θ (k)1 , θ

(k)
2 , . . . , θ

(k)
N , u

(k−1)
η )

using (18)
15: Draw u(k)η ∼ p(·|θ (k)1 , θ

(k)
2 , . . . , θ

(k)
N , v

(k)
η ) using (17)

16: Draw v(k)γ ∼ p(·|θ (k)1 , θ
(k)
2 , . . . , θ

(k)
N , u

(k−1)
γ )

using (20)
17: Draw u(k)γ ∼ p(·|θ (k)1 , θ

(k)
2 , . . . , θ

(k)
N , v

(k)
γ ) using (19)

18: end for
19: Estimate the posterior expectations 9̂
= {µ̂, κ̂, v̂η, ûη, v̂γ , ûγ }.

function (CDF) FT (t|λ, η) are as follows, respectively [15]

fT (t|λ, η) =
w̃η1/2
√
2π t3

exp
(
−
(w̃− λt)2η

2t

)
,

FT (t|λ, η) = 8

(
(λt − w̃)√
η−1t

)
+ exp

(
2λw̃
η−1

)
8

(
−
w̃+ λt√
η−1t

)
.

where w̃ = w− X (0).
Recall in Section 2 that λ and η are random parameters

that follow the distributions defined in (6) for models M0 and
M1. Using the law of total probability, the PDF and CDF of
the failure time of models M0 and M1 can be respectively
computed as follows [12]

fT |M0,M1(t|µ, κ, vη, uη)

=

∫ ∫
fT (t|λ, η)p(λ, η|µ, κ, vη, uη)dλdη

=
0(vη + 1

2 )w̃u
1/2
η√

2π t3vη(κ−1t + 1)0(vη)

(
1+

uη(w̃− µt)2

2vη(κ−1t2 + t)

)− vη+12

,

(21)
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and

FT |M0,M1(t|µ, κ, vη, uη) =
∫ t

−∞

fT (τ |µ, κ, vη, uη)dτ

= 1− T2vη

(
−
(µt − w̃)√uη
√
κ−1t2 + t

)
,

(22)

where Tv(·) is the CDF of the standard t distribution with v
degrees of freedom.

For model M2, only λ is the random parameter. Thus,
the PDF and CDF of the failure time T of model M2 are
respectively [10]

fT |M2( t|µ, κ, η)

=
w̃√

2π t3(κ−1t + η−1)
exp

(
−(w̃− µt)2

2t(κ−1t + η−1)

)
, (23)

and

FT |M2( t|µ, κ, η)

= 8

(
(µt − w̃)√
κ−1t2 + η−1t

)

+ exp
(
2(µ+ κ−1w̃η)w̃η

)
8

(
−
µt + (2κ−1ηt + 1)w̃√

κ−1t2+η−1t

)
,

(24)

where 8(·) is the CDF of the standard normal distribution.
It should be noted that, although models M0 and M1 have

the same form of the failure time distribution, the consider-
ation of the heteroscedastic measurement errors will affect
the estimation of the model parameter 9, which in turn leads
to differences in the failure time prediction. This effect and
differences will be illustrated in subsequent experimental
studies.

V. EXPERIMENTAL STUDIES
In this section, a numerical simulation and case study are
provided to verify the performance of the presented method.
First, we evaluate the usefulness of Algorithm 1 with a set
of simulated data. Subsequently, laser degradation data [21]
are used as a practical case to compare the model fitting and
prediction performance of the proposed model M0 with the
reference models M1 and M2.

A. SIMULATION
In this subsection, a set of degradation data is obtained by
specifying the model parameter9 and using the Monte Carlo
simulation method. Since the true values of the model param-
eter 9 and degradation states {xi} of the degradation data are
known, the purpose of this numerical example is twofold. The
first is to verify the usefulness of Algorithm 1 by comparing
the estimated parameters with the true values. The second is
to evaluate the estimation accuracy of the three models for the
degradation states.

FIGURE 2. Simulated degradation paths.

In the experiment, we specify the parameter 9 as

µ = 3, κ = 20, vη = 2, uη = 1, vγ = 2, uγ = 0.05,

and randomly generate N = 20, 50, 100 groups of degra-
dation data with the same number of measurements and the
same measurement time interval. Specifically, we set ni =
50 and 1ti,j = 3 for all i, j. Fig. 2 shows the observed
degradation paths of N = 100 simulated data.
To verify the robustness of Algorithm 1, a weak informa-

tion conjugate prior form is used to set the hyper-parameters
of the model parameter 9 in (8); specifically, we have

ω = 0, q = 0.001, ξη = ξγ = 0.01,

a = αη = αγ = 2, b = βη = βγ = 0.1.

In the experiment, Algorithm 1 runs 30000 iterations in
total. Considering the stabilization process of the Markov
chains, a posterior inference is applied to 9 using the
remaining 10000 samples after discarding the previous
20000 transitional samples. Fig. 3 shows the diagnos-
tic plots for the posterior samples of the parameters
{µ, κ, vη, uη, vγ , uγ } in 9, from which we can confirm the
convergence of the Markov chains. Table 1 summarizes the
results of the posterior means, standard deviations, and 95%
confidence intervals of 9 for N = 20, 50, 100 degradation
data.

From Table 1, we find that under the prior setting of
weak information, Algorithm 1 gives a satisfactory estimation
precision, and the true value of each parameter is within
the 95% confidence interval of the posterior estimation. Due
to the computing-intensiveness of the MCMC method, for
100 simulated data, Algorithm 1 takes about 2045 s using
MATLAB on an Intel Pentium-G4400 3.30GHz computer.
For degradation modeling offline, this computing time is
acceptable.

Since the actual degradation states are known in this
simulation experiment, the estimation accuracy of the pro-
posed model M0 for the degradation states can be examined.
Fig. 4 shows an illustration of the estimated degradation states
under models M0, M1, and M2.

As shown in Fig. 4, in the three models, the estimated
degradation states from model M0 are closer to the true
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FIGURE 3. Trace, ergodic mean, and autocorrelation plots of 9.

degradation states for this sample path, particularly showing
better robustness in cases where the measurements exhibit
large deviation.

Fig. 5 shows the estimated residuals of the degradation
states of all the simulation data from the three models.

It can be seen from Fig. 5 that the estimated residuals from
modelM0 are optimal, followed bymodelM1 andmodelM2.

Figs. 4 and 5 show that, because the proposed model M0
considers the variability in the degradation rate, degradation
volatility, and error variance simultaneously, it can eliminate
the influence of performance variation in degrading systems
and observation instruments, and improve the estimation
accuracy for the degradation states.

The mean absolute error (MAE), Akaike information cri-
terion (AIC) [22], Bayesian information criterion (BIC) [23],
and minimum description length (MDL) [24] are used as
performance measures to quantify the fitting of the three

models. The MAE can be calculated as

MAE =
N∑
i=1

ni∑
j=1

∣∣xi,j − x̂i,j∣∣/ N∑
i=1

ni,

the AIC can be calculated as

AIC = −2log-LF+ 2l,

the BIC is given by

BIC = −2log-LF+ l ln n,

and MDL can be calculated as [24]

MDL = −log-LF+ (l + 1) log2 l +
l
2
log2 n,

where xi,j is the actual degenerate state, x̂i,j is the estimated
posterior mean, log-LF is the log-likelihood, l is the number
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TABLE 1. Estimation result of model parameter 9.

FIGURE 4. Comparison of the estimated degradation states under
models M0, M1 and M2.

of model parameters, and n is the number of measurements.
The three criteria AIC, BIC, and MDL prevent the over-
parametric issue in modeling through a penalty term of the
parameter number that helps balance the model complexity
and fitting performance [23], [24]. The lower the value of the
criterion, the better the model performance. Table 2 gives a
comparison of the fitting of models M0, M1, and M2 for the
simulation data.

Table 2 shows that model M0 has the best fitting for
the simulated data among the three models. The compari-
son results are consistent with the simulation settings. The
comparison also shows that when the observed degrada-
tion data contain heterogeneous degradation volatility and
heteroscedastic measurement errors, using models M1 or
M2 will induce modeling bias and reduce the fitting for the
actual degradation processes.

B. CASE STUDY
Here, the degradation data of lasers [21] are used to verify
the fitting and prediction accuracy of the proposed method.

FIGURE 5. Box plots of estimated degradation residuals for all simulated
data.

TABLE 2. Comparison of the fitting of three models.

The operating current increases gradually as the laser degen-
erates, and the laser will fail when the operating current is too
high. The operating current reflects the degradation degree of
the laser performance [21]. Fifteen lasers were tested at 80 ◦C.
The percent increase in the operating current of each laser was
recorded every 250 h until 4000 h. Fig. 6 shows the observed
degradation paths of all the lasers. In [21], it was assumed
that the failure threshold is 10 (i.e., the laser fails when the
operating current increases by 10%), and the pseudo failure
times of 15 lasers were obtained using a linear degradation
path model. In this experiment, we also use the same failure
threshold, i.e., w = 10. Moreover, the empirical failure
distribution of the pseudo failure times and the pointwise
95% confidence intervals obtained through theKaplan–Meier
method [25] are used as the experimental reference.

With the degradation data, models M0, M1, and M2 are
used to fit the degradation processes of the lasers. Table 3 lists
the posterior means and standard deviations of the model
parameters, as well as the log-likelihood, AIC, BIC, andMDL
values.

Comparing log-LF and these performance measures,
we find that model M0 outperforms models M1 and M2 for
the laser degradation data. Moreover, the estimations of the
parameters {µ, κ, vη, uη} of models M0 and M1 are signifi-
cantly different. This indicates that the consideration of the
heteroscedastic measurement errors will have a significant
impact on degradationmodeling. This impact will in turn lead
to performance differences in the case of failure prediction
using (21) and (22).

Fig. 7 shows the posterior means of the individual param-
eters {λi, ηi, γi}, i = 1, 2, . . . , 15, of each laser. As shown,
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TABLE 3. Comparison of three degradation models.

FIGURE 6. Observed degradation paths of lasers.

FIGURE 7. Scatter plot of posterior mean for all individual parameters.

the degradation process of each laser is evidently different
in terms of the degradation rate, degradation volatility, and
error variance. These differences indicate that the influences
of the multi-source heterogeneity should not be ignored in the
degradation modeling of the laser data.

The empirical CDF of the failure time is compared with
the estimated CDF obtained using the proposed model M0,

FIGURE 8. Comparison between the estimated CDF using model M0 and
the empirical CDF.

FIGURE 9. Comparison of the estimated PDFs under models M0, M1, and
M2.

as shown in Fig. 8, including the 95% confidence intervals.
This figure shows that the estimated failure time distribu-
tion agrees well with the empirical distribution, indicating
goodness-of-fit. The PDF of the failure time obtained by
models M0, M1, and M2 are compared as shown in Fig. 9.

As shown in Fig. 9, the PDF of the failure time estimated
by model M0 is narrower than the ones estimated by models
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FIGURE 10. Q-Q plots of 1x∗

i,j ,1y∗

i,j for M0, M1, and M2.

M1 and M2, and its peak value is closer to the average
failure time of 5109.7 h given in [21]. This indicates that the
prediction uncertainty of model M0 is minimal and that the
prediction accuracy of M0 is optimal.

While the actual degradation states of the lasers are
unknown, the degradation state estimation performance of
models M0, M1, and M2 can be tested by analyzing the
consistency between the estimated states and the modeling
assumptions. From (3), we see that the normalized increment
1x∗i,j of the degradation states and the normalized residual
1y∗i,j of the degradation measurements should follow a stan-
dard normal distribution.1x∗i,j and1y

∗
i,j can be calculated as

follows:

1x∗i,j =
1x̂i,j − λ̂i1ti,j
(η̂−1i 1ti,j)1/2

, 1y∗i,j =
yi,j − x̂i,j

γ̂
−1/2
i

, (25)

where x̂i,j and {λ̂i, η̂i, γ̂i} are the estimated degradation state
and the individual parameters, respectively; 1x̂i,j = x̂i,j −
x̂i,j−1, i = 1, 2, . . . , 15, j = 1, 2, . . . , ni.

Based on the estimated states of models M0, M1, M2,
and (25), the Q-Q plots of1x∗i,j and1y

∗
i,j of the three models

are shown in Fig. 10.
Fig. 10 shows that the Q-Q plots of models M0, M1, and

M2 are close to different straight lines. Thus, the assumptions
that 1x∗i,j and 1y

∗
i,j of all three models are normally dis-

tributed cannot be rejected; nevertheless, there are differences
in the extent to which 1x∗i,j and 1y

∗
i,j of the three models

conform to the standard normal distribution. The statisti-
cal characteristics of 1x∗i,j and 1y

∗
i,j are further compared

in Table 4.
As listed in Table 4, when the assumptions of the normal

distribution are not rejected, 1x∗i,j and 1y∗i,j from model
M0 are closer to the standard normal distribution, i.e., M0 has
the best consistencywith themodeling assumptions, followed
by M1 and M2. Table 4 also shows that model M0 can elimi-
nate the inter-individual variation and improve the estimation
accuracy for the actual degradation processes.

TABLE 4. Comparison of the statistical characteristics of 1x∗

i,j ,1y∗

i,j .

The comparison results of the consistency of the modeling
assumptions in Table 4 are in line with those of the AIC mea-
sures in Table 3 and the failure probability density in Fig. 9.
This further indicates that model M0 has better fitting perfor-
mance and failure prediction accuracy than models M1 and
M2 in the laser degradation modeling.

VI. CONCLUSION
Because of the complexity and randomness of actual degra-
dation failure processes, the degradation data from differ-
ent individuals in a system population exhibit significant
heterogeneity. To improve the fitting ability of degradation
models, the heterogeneity due to the inherent differences in
the degrading systems and measuring instruments, as well
as due to the extrinsic environmental differences, should
not be neglected. This paper proposes a random effects
Wiener process model with heteroscedastic measurement
errors to capture the multi-source heterogeneity. The results
of a numerical example and practical case study verified the
feasibility and effectiveness of the proposed method. The
main conclusions are as follows:

1) The proposed model, with the drift, diffusion, and error
variance taken as unit-specific random effects, can further
interpret and quantify the influence of multi-source hetero-
geneity. It is more reasonable and generalizable than models
that consider only partial degradation heterogeneity factors.
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2) Based on a hierarchical prior structure, a Metropolis-
within-Gibbs algorithm was adopted to estimate the posterior
distributions of the actual degradation states and the model
parameters. The proposed algorithm can efficiently deal with
the statistical inference of complex models with multiple
random parameters. The simulation results helped verify the
validity of the algorithm.

3) The experimental results of laser degradation data show
that the interpretation and quantification of multiple hetero-
geneity factors and their combined effects in degradation
modeling can eliminate the inter-individual variation, and
further improve the model fitting and prediction accuracy.

4) In the future, considering the more general time-varying
degradation rate in practice, it is necessary to extend the work
conducted in this study to a nonlinear degradation model
considering multi-source heterogeneity.
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