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ABSTRACT In a dynamic and complex environment, to improve the cooperative operation efficiency of
multiple AUV groups, a bionic neural wave network (BNWN) algorithm, and a velocity vector synthesis
(VVS) algorithm are proposed. A strategy of space decomposition and node space recursion is adopted
to provide dynamic navigation maps for AUV monomers and to modularize the tasks. A closed boundary
function is introduced to construct a dynamic grid model to autonomously avoid obstacles with multiple
moving forms. The results of three sets of simulation experiments show that the number of changes in
direction, the total path length, and the collision rate of AUV individuals are greatly reduced. These results
prove that the proposed algorithm has high autonomy and strong adaptability.

INDEX TERMS Boundary function, multiple AUV, space decomposition, dynamic navigation maps,
dynamic grid model.

I. INTRODUCTION
Due to the shortcomings of low efficiency, narrow cover-
age, and insufficient research and development capabilities,
AUVmonomers, and therefore, multi-AUV underwater oper-
ations, have become the focus of research [1]. For multi-AUV
system underwater collaborative operation, the most impor-
tant thing is to be able to complete the task efficiently,
accurately, and steadily with limited energy support. In the
process of multi-AUV system cooperation, AUV individu-
als can detect the environment through their sensors and
process the information returned by each sensor to achieve
the purpose of estimating and determining the positions of
obstacles and targets [2]; then, combined with the control
algorithm and path planning algorithm, the target can be
captured. However, in complex environments, it is difficult
to meet the requirements of accurate, efficient, and stable
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operation only through sensor data processing and the fusion
of traditional algorithms [3]. In addition, because, the time
delay error and integral cumulative error of a sensor are
difficult to eliminate, research on control algorithms has
gradually become a research hotspot. After years of research
and exploration, many control algorithms have emerged.
Currently, widely used path planning algorithms include ant
colony algorithms [4]–[6], bee swarm algorithms [7], [8],
the virtual artificial potential field method [9], [10],
quasi-annealing algorithms [11], Neural network algori-
thms [12]–[14] and particle swarm optimization [15]–[17].
However, the most commonly used task allocation strate-
gies are artificial self-organizing neural network algorithms
(SOM) [18] and tree structure algorithms [19]. To improve the
adaptive ability of AUVs, Huang et al. [20] proposed a coop-
erative search path planning algorithm for multiple under-
water robots based on biologically inspired neural networks.
However, the grid division method is simple, and unchanged
so it has difficulty meeting the requirements of high
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efficiency, stability, and accuracy in a dynamic environment.
Cheng et al. [21], proposed a full coverage path planning
algorithm based on graph theory knowledge. This algorithm
decomposes the space into multiple subspaces to adapt to
multiple forms of a robot and realizes the optimization
of the path. Although the research integrates graph the-
ory knowledge and multiple decompositions of space, this
decomposition process is an offline decomposition, which
obviously cannot adapt to a complex dynamic environment.
Luo and Yang [22], proposed an AUV exploration algo-
rithm based on a bionic neural network. The algorithm
can be applied to an unknown environment with obstacles,
and through full coverage, search to obtain the required
information to build an environment model. Although this
algorithm is suitable for complex dynamic environments,
the algorithm has high complexity and large robot energy
consumption and is not suitable for long-term online plan-
ning. Cao and Zhu [23] proposed a multi-AUV path plan-
ning and task assignment method based on BISOM and
VS algorithms. However, in this method, an AUV cannot
achieve variable-step autonomous obstacle avoidance, the
influence of dynamic obstacles is not considered, and the
adaptive ability is weak. Guo and Zhang [24], employed
graph theory knowledge to apply a curvature constraint to a
path planning algorithm, update the path planning algorithm,
and redefine polygonal obstacles by introducing influence
range parameters. However, in an actual situation, the data
provided by the sensor after real-time measurement of the
obstacle are discrete or incomplete and have poor accuracy.
The adaptive ability of the algorithm in a dynamic com-
plex environment is not strong. Cao et al. [25], proposed
a potential field-layered reinforcement learning method that
can control multiple underwater robot systems to effectively
capture a target. However, this algorithm can be improved in
the processing of environmental information and the control
of robot step size.

Base on the above research, combined with knowledge
of graph theory, this paper proposes the concepts of spatial
decomposition and sub-decomposition. The obstacle domain
is divided by stimulating cell proliferation to achieve spa-
tial decomposition. According to the results of the spatial
recursion of the subgoals, the decomposed subspaces are
meshed to realize the spatial sub-decomposition. Dynamic
grid space is formed by the boundary function constraint
and the introduction of horizontal and vertical density func-
tions. Considering the turning radius of the robot, the energy
consumption of the operation, and the interference of ocean
currents, a target tracking and capturing algorithm based
on a bionic neural wave network (BNWN) and a veloc-
ity vector synthesis (VVS) algorithm are proposed. The
fusion of the two algorithms improves the adaptive abil-
ity of the multi-AUV system to the dynamic environment
and meets the design requirements of high efficiency and
mixed online and offline planning. The contribution of this
research and the advantages of the proposed algorithm are as
follows:

1) Cell proliferation is simulated to decompose the obsta-
cle group and realize spatial reconstruction.

2) Solving sub-target nodes using spatial recursion strat-
egy, and the task, which reduces the algorithm
complexity.

3) Through the design of boundary functions and the
introduction of horizontal and vertical grid density
functions, a dynamic grid space is constructed.

4) Through the research and design of the BNWN algo-
rithm and VVS algorithm, the adaptive ability of mul-
tiple AUV systems under a dynamic environment is
improved.

The logical structure and research process of the full text are
shown in the following flowchart:

In addition, comparedwith traditional algorithms, the algo-
rithm and strategy proposed in this paper have the advan-
tages of high efficiency, strong adaptive ability and low
power consumption. For example, compared with the A star
algorithm [26], it has the advantages of smooth trajectory,
speed stability, low calculation complexity, and real-time
dynamic characteristics; compared with the improved APF
algorithm [27], it has the advantages of stable trajectory,
fast convergence, short time consumption, high calculation
accuracy and autonomous learning; compared with GBSOM
and SOM [13], it has the advantages of dynamic and flexible
grid space, efficient arrangement of neurons, step size can be
adaptively changed, and adapt to time-varying ocean currents.

II. PROBLEM STATEMENT
The cooperative operation of multiple underwater agents
requires highly efficient and accurate control algorithms.
However, the complex environment, the variability of obsta-
cle movement patterns, and the interference of ocean cur-
rents; greatly affect the efficiency of cooperative operation.
Therefore, to reduce the calculation difficulty and improve
the planning efficiency, this study uses basic knowledge of
graph theory and spatial planning mechanisms to construct
a static grid. To improve the obstacle avoidance efficiency
and self-adaptability, this study introduces a boundary func-
tion and grid density function to construct a dynamic grid.
To realize the utilization of and overcome ocean currents, this
study proposes a fusion algorithm of a BNWN algorithm and
VVS algorithm.

III. REGIONAL DIVISION AND SPATIAL DECOMPOSITION
A. DIVISION OF OBSTACLE SPACE
In the process of constructing the underwater environment,
AUV individuals not only need a variety of sensors to collect
external data but also need efficient and stable algorithms to
process the data. The focus of the research in this section is on
determining how to combine incorporate graph theory knowl-
edge and integrate the region division strategy to efficiently
process the obtained external data.

Due to the high complexity of 3-D space, the descrip-
tion process is cumbersome and the composition does not
clearly express the content of the study, so this article uses
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FIGURE 1. Flow chart of the full text research process.

FIGURE 2. Space model diagram.

a 2-D space model for study and explanation. As shown
in Fig. 2, the multi-AUV system will capture the target
autonomously, collaboratively, and without collision in a
complex environment.
Definition 1: The coordinate of the static obstacle center in

space is {pi (xi, yi) , i ∈ N ∗, i < N1}, and the influence range
of the obstacle is expressed as a circular domain with pi as
the center and ζR as the radius.

In the definition, ζ is the hazard coefficient,R is the turning
radius, and the parameter N1 is used to control the number
of obstacles. The selection of the hazard coefficient ζ is as
follows:0 < ζ < 1 if

(
Dpi � 3 ∗ R

)
∩

(
Dpi∗j > 2 ∗ R

)
ζ ≥ 1 if

(
Dpi < 2 ∗ R

)
∪

(
Dpi∗j ≤ 2 ∗ R

) (1)

Figure.3 shows that each circle corresponds to an obstacle,
and the influence range of the circle represents the magnitude
of the risk factor. An AUV can evaluate the risk factor of each
obstacle according to definition 1.
Definition 2: Obstacle hazard coefficient:

{
Dpi , i ∈ N ∗,

i < N1
}
, which is the similarity of the obstacle to the straight

line Las.
In the definition, the straight line Las is the connection

between the AUV and the target.
After the evaluation of the hazard coefficient of each

obstacle is completed, the obstacles are classified and the
corresponding node information is assigned to the obstacles.
The node information includes: node coordinate values and
node types, as shown in definition 3.
Definition 3: The obstacle that satisfies the condition

Dpi < 2 ∗ R ∩ (i ∈ N ∗, i < N1) is set as a black
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FIGURE 3. Schematic diagram of obstacle division.

node, and the black node is used as the center for local
diffusion to form an obstacle domain. In the hierarchi-
cal interval

{
x ∗ R < Dpi <

(
x + 1

)
∗ R ∩

(
x ∈ N ∗, x ≥ 2

)}
of the domain space,

{
i∗ = i if

{
Dpi∗j ≤ 2 ∗ R ∪ 0 ≤ 2∗

abs(sin
〈
Pij,Pij∗

〉
) ≤ 1

2+2∗Qp

}}
represents the effective

obstacles contained in the obstacle domain of the Qp layer,
which are represented by gray nodes. All other invalid obsta-
cles are indicated by green nodes.

According to a graph theory theorem, the information
stored in the black nodes and the gray nodes is expressed as:{
Dpi , pi (xi, yi) ,Dpi∗j

}
, where Dpi∗j is the similarity between

the affected child obstacle and the parent obstacle in the
parent obstacle domain; and the information contained in the
green nodes is

{
Dpi , pi (xi, yi)

}
.

As shown in Fig. 4, the obstacles are divided into multiple
domain spaces according to definitions 2 and 3, and then
a derived subgraph with threatening obstacles is extracted
according to the export subgraph lemma.

The data points of the derived subgraph are subjected to
cubic Hermite interpolation, and the interpolation result is
used as the boundary function of the obstacle domain for
the spatial recursion of the sub-target node coordinates. The
cubic Hermite interpolation formula is as follows:

H3 (x) = f0α0 (x)+ f1α1 (x)+ f ′0β0 (x)+ f
′

1β1 (x) (2)

The interpolation basis function {αi (x) , βi (x) i = 1, 2} can
be expressed by the following formula:

β0 (x) = (x − x0)
(
x − x1
x0 − x1

)2

β1 (x)

= (x − x1)
(
x − x0
x1 − x0

)2

(3)
α0 (x) =

(
1+ 2

x − x0
x1 − x0

)(
x − x1
x0 − x1

)2

α1 (x) =
(
1+ 2

x − x1
x0 − x1

)(
x − x0
x1 − x0

)2 (4)

where, {fi i = 0, 1} is the function value of nodes 0 and 1,{
f ′i i = 0, 1

}
is the first derivative value of nodes 0 and 1, and

H3 (x) represents the coordinate value of the cubic Hermite

interpolation at time t or step t or the fitted curve of a static
obstacle.

The results of the obstacle division obtained by imitat-
ing the principle of cell proliferation are shown in Fig. 4.
Each obstacle field contains a unique black node, which is
distributed near the line between the AUV and the target.
Multiple gray nodes are distributed around the black node.
However, obstacles with a low-risk factor are included in the
green space.

FIGURE 4. Demonstration of obstacle division.

The advantages of dividing obstacles as described above
in a complex environment are as follows: First, this approach
can be combined with acoustic sensors for long-distance
environment modeling, which provides stable and effi-
cient operation information for AUV underwater operations.
Second, combined with the BNWN algorithm, the approach
can reduce the amount of calculation, shorten the total job
path length, and reduce energy consumption. Finally, com-
bined with the graph theory theorem to store the information
of graph edges and graph nodes, this approach can realize
the tracking and capturing of objects with memory, and pro-
vide a shared space for the cooperative operation of multiple
AUV systems.

B. SPACE RECURSIVE SOLUTION OF SUBTARGET POINT
COORDINATES
To reduce energy consumption, reduce the total path length,
and reduce the amount of calculation, this paper designs
subtarget points near the obstacle domain based on the above
research.
Definition 4: Set the threat distance of the obstacle domain

to the subtarget point as {D = (ζ + 1) ∗ R, ζ ≥ 1}, where{
Rni , (i = 1 (AUV ) , 2 (Sub− goal)) , n ∈ N ∗

}
is the radius

of the virtual diffusion domain, θni represents the diffusion
angle, and αi is the diffusion constraint angle, which is used
to avoid collision and adjust the number of red nodes.

As the diffusion domain expands, θni gradually decreases,
and the similarity between the intersections An

(
x ′, y′

)
and

Tn
(
x ′, y′

)
gradually increases. After multiple iterations,

the red node coordinates can be obtained as follows (5), as
shown at the bottom of the next page, where, the parameter
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{
{βi, (i = 1, 2)} ∩ 0 < βi ≤

π
4

}
is the gain of the diffusion

constraint angle. By adjusting this parameter, the number of
subgoals can be adaptively reduced during operation. The
parameter ε is the discriminant factor, where R > ε ≥ 0.
Adjusting the parameter ε can be used to realize the nor-
malization of subtarget points near the obstacle domain. The
parameter K is the effective distance gain, which depends
on the result of cubic Hermite interpolation and has a limit
K ≥ 5. By adjusting this parameter, the total path length
can be shortened efficiently and collision avoidance for large
obstacles can be achieved. The spatial recursion process of
the subtarget node position is shown in Fig. 5.

FIGURE 5. Schematic diagram of space recursion.

The spatial recursion method of the virtual sub-target node
should depend on the specific working conditions. For exam-
ple, when the black nodes are prominent, the following simple
derivation algorithm should be used, and when the black
nodes are surrounded by gray nodes, the derivation strategy
mentioned in Definition 4 should be used. The following
will take the example where the black node can be observed
by both AUV and target. The specific solution process is as
follows.

Quote: The normal vector solution formula is as follows:
En =
−−−→
Pi−1Pi ×

−−−→
PiPi+1 =

∣∣∣∣∣∣∣
i j k

xi−1,i yi−1,i zi−1,i
xi,i+1 yi,i+1 zi,i+1

∣∣∣∣∣∣∣{−−−→
Pi−1Pi =

(
xi−1,i, yi−1,i, zi−1,i

)
−−−→
PiPi+1 =

(
xi,i+1, yi,i+1, zi,i+1

)
(6)

where, Pi−1 is the current position coordinate of AUV, Pi is
the coordinate of the transition sub-target position, Pi+1 is the
coordinate of the target point, and En is the normal vector of
the above three points.
The virtual sub-goals are selected according to the follow-

ing constraints.

1) The pheromone content of neurons around the virtual
sub-target point is positive.

2)



min
(
COS

〈
−−−→
PiPi−1,

−−−→
PiPi+1

〉)
Dbi+1 ≤

√
2βζ

R&Dbi−1 ≤
√
2βζR

max
(
COS

〈
−−−→
PiPi−1,

−−−→
PiPi+1

〉)
Dbi+1 >

√
2βζ

R&Dbi−1 >
√
2βζR

i = 1, 2, 3, · · · · · ·
3) max

(
COS

〈
−→n ,−→n1

〉
−→n1 = (0, 0, 1)

)
4) 0 < arccos

〈
−−−→
Pi−1Pi,

−−−−→
Pi−1Pb

〉
< arccos

〈
−−→
PiPb,

−−−→
PiPi+1

〉
<

90
5) 0 < arccos

〈
−−−→
PiPi−1,

−−−→
PiPi+1

〉
< 90

where, Dbi+1 is the relative distance from the obstacle to the
target point;Dbi−1 is the relative distance from the obstacle to
the AUV; β is the deformity rate or non-circular rate of the
obstacle; ζR is the radius of influence of the obstacle.
Definition 5: The graph node of a subgoal is repre-

sented as {STw,w ∈ N ∗}; and which is represented by
a red node in the graph, and the information stored
in this node is

{
STw

(
x ′, y′

)
, ϑw, aw, ϕw, λhw, λlw

}
. Let{

Eij (G) i, j ∈ Vw (G)
}
be the edge of the graph connecting

the red nodes in the graph, and the storage information
is
{
Zij, µij, ϑij

}
.

In the w_th subspace, ϑw is the grid vector angle, which is
generally set to 0 ≤ |ϑw| ≤ π ; aw is the semi-real axis length
of the grid space; and ϕw is the boundary function of the grid
space, λhw is the horizontal density of the grid space, λlw is the
vertical density of the grid space; Zij is the relative distance
between two adjacent nodes, µij is the number of nerve wave
diffusion layers, and ϑij is the vector angle of the boundary
function.

When the subtarget position coincides with the target posi-
tion, the red node position is updated to the target position
coordinates. According to the various color graph nodes
and graph edge constraints defined above, the 2-D space
is decomposed, and the resulting topology graph is shown
in Fig. 6.

The above research combines graph theory knowledge
with space decomposition theory. Through the calculation
of nodes, space recursion and interval planning of obstacles,

when
{
θm1 ≤ α1 ∩ θ

n
2 ≤ α2

}
⇒



STw
(
x ′, y′

)
= Tn

(
x ′, y′

)
orAn

(
x ′, y′

)
if
{
DTnAn < ε

}
ζ = ζ ±1ζ

αi = αi ± βi

STw
(
x ′, y′

)
= Tn

(
x ′, y′

)
orAn

(
x ′, y′

) if
{
ε < DTnAn < K ∗ R

}
STw

(
x ′, y′

)
= Tn

(
x ′, y′

)
and An

(
x ′, y′

)
if
{
DTnAn ≥ K ∗ R

}
(5)
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FIGURE 6. Topological diagram of environmental decomposition.

the complex environment is spatially decomposed. In addi-
tion, the task is modularized into multiple sub-tasks, and the
subtasks are studied and designed below.

IV. CAPTURE ALGORITHM AND SPACE
RE-CDECOMPOSITION
A. BNWN ALGORITHM
This study proposes a path planning algorithm based on
the structure of a bionic neural wave network to complete
subtasks. The principle of the algorithm is as follows: the
subspace after the decomposition is turned into a point set,
and then the point set model is virtualized into a multilayer
crossing neural wave network. As shown in Fig. 7, each node
in the network structure represents a neuron, and targets,
AUVs, and obstacles correspond one-to-one with the virtual
network structure points. Targets, obstacles, and AUVs are
the source points of neural waves, where target objects and
AUVs are global source points; however, obstacles are set as
local source points.
Definition 6:The neurons contained in the neural wave net-

work structure will be selectively activated by AUV individ-
uals, the neuron pheromone content decreases layer by layer
with the origin of the nerve wave as the center, the number of
nerve wave layers is planned online by the boundary function,
and grid density, subtarget point and AUV position.

The formula of neuron pheromone content is expressed as
follows:

X i(j) = Ea − αDtj · Dtj + (
1

Dbj
−

1

Dmax
) ·
dDbj
D2
bj
·
∂Dbj

∂Nb
· Eb

(7)

where, X i(j) is the pheromone content of the j_th neuron
in the structure of the i_th neural wave network; Ea is the
pheromone content of the red node;Dtj is the relative distance
between the red node and the neuron; Dbj is the relative
distance between the black and gray nodes and the neuron;
Dmax is the maximum range of the local influence of the
obstacle space; Eb is the pheromone content of the black
and gray nodes; dDbj stands for the local risk factor, namely,
the repulsion factor; αDtj stands for the learning efficiency,

FIGURE 7. Re-decomposition diagram.

that is, the gravitation factor; and αDtj ’s learning field is
0 < αDtj < 1.
The gravity factor αDtj is set using the following improved

logistic function:

αDtj = 1
/(

3+ exp−x
)
= 1

/(
3+ e−Dtj

)
(8)

The repulsion factor dDbj can be expressed by the following
formula:

dDbj =

∣∣∣∣∣ 1

e−Dbj
∗
2− e−Dbj

1+ e−Dbj

∣∣∣∣∣ (9)

The formula for calculating the relative distance between
nodes is as follows:

Dij =
∣∣N i − N j

∣∣ = √(xi − xj)2 + (yi − yj)2 + (zi − zj)2
(10)

The formula for updating the waypoints proposed in this
paper is as follows:

Ro (t + 1) =

{
Ro (t)+ yi × [Zn − Ro (t)] , Dri > Dmin

T l , Dri ≤ Dmin

(11)

where,Ro (t + 1) represents the navigation coordinates of the
next moment of an AUV during operation; Ro (t) represents
the current coordinate value of the AUV;Dmin is the shortest
distance to judge whether the AUV reaches the target point;
T l is the position coordinate of the target point (red node);
yi is the domain function of the AUV; and Zn is the next
coordinate of AUV when tracking and capturing the target.
WhenDri > Dmin, the multiple AUV system keeps tracking;
otherwise, capture is performed.

The definition of the neighboring function is as follows:

yi =


1

1+ e
−

√(
λ2
hw
+λ2

lw

) if Drj ≤ Dnmax

0 if Drj > Dnmax

(12)

where, λhw is the horizontal density of the grid space, λlw
is the vertical density of the grid space, Drj . is the relative
distance between neuron and AUV.
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Definition 7: The neighborhood constraint function in real-
time path planning is η. By adjusting η, AUV individuals
can independently choose the best waypoint to activate as
follows:

η =


DH
rj < DH

nmax =
√
µ ∗

2 ∗ aw
λhw

DL
rj < DL

nmax =
√
µ ∗

2 ∗
(
(aw)2 − (Drt)

2
)1
2

λlw

(13)

where, DH
rj is a horizontal constraint, DL

rj is a longitudinal
constraint, aw is the semi-major axis of the boundary func-
tion, the parameter µ is the dimension control coefficient.
The specific waypoint update process is as follows:
First, calculate the neighboring neurons that meet the

requirements of Drj < Dmax, and extract the correspond-
ing neuron coordinate values, and extract the corresponding
neuron coordinate value.

Second, calculate the vector difference
−→
V rj between the

AUV and neuron and the vector difference
−→
V rt between the

AUV and red node, and then obtain the Cosine of vectors
−→
V rj

and
−→
V rt according to the cosine theorem, that is, the similarity,

as follows:
cos

(
−→
V rt ,
−→
V rj

)
=

[
−→
V rt ×

−→
V rj

]/
[Drt × η]

−→
V rt = Nr − N t
−→
V rj = Nr − N j

(14)

Third, calculate the difference between the similarity value
and the grid vector angle valueϑw, and record it as a candidate
set χi.

Finally, when the neuron pheromone content is positive,
the next coordinate Zn of the AUV is

Zn =

{ [(
minDtj ∩min (χi)

)
∪maxXi (j)

]
Zm ∈

◦

U (εlϕw,Zo)

}
(15)

where, Zo is the AUV coordinate point, Zm is the coordinate
of them_th neuron in the Zo domain, ϕw is the boundary func-
tion, and the parameter εl is the zoom ratio, which realizes the
scaling of the boundary function ϕw.
The above research has realized the re-decomposition of

space, through the selective activation of neurons under time-
varying conditions to optimize the trajectory path, and finally
reach the subtarget node. Multiple iterations can complete the
job task.

B. BOUNDARY FUNCTION
The concept of the boundary function proposed in this paper
is to enable an AUV to autonomously activate the neurons
in the neural network structure, which greatly reduces the
amount of calculation. AUV individuals can adjust the vector
angle of the boundary function to achieve the optimization
of the path point update, and can adjust the grid density to
achieve the AUV variable step size of travel. The boundary
function selected in this paper is the elliptic function in the
conic curve.

The following is the derivation process and parameter
design of the ellipse formula:

Turn the general equation of an ellipse into the following
equation:

A (x − x0)2 + B (x − x0) (y− y0)+ C (y− y0)2 + f = 0

(16)

Select the parameter
[
x ′, y′

]
, and set: x ′ = x − x0y′ = y− y0,

Then the simplified equation is as follows:

Ax ′2 + Bx ′y′ + Cy′2 + f = 0 (17)

For the coordinate rotation of the elliptic curve, set its rotation
angle to {θn, n ⊆ N ∗}; then, the equation is:[

x
y

]
=

[
cos θn sin θn
− sin θn cos θn

] [
x ′

y′

]
⇔

{
x = x ′ cos θn + y′ sin θn
y = −x ′ sin θn + y′ cos θn

(18)

Substitute the result of the rotation into the standard equation
and simplify it to obtion the following equation:(
a2 sin2 θn + b2 cos2 θn

)
· x ′2 +

(
a2 cos2 θn + b2 sin2 θn

)
· y′2 + 2

(
a2 − b2

)
sin θn cos θn · x ′y′ − a2b2 = 0

(19)

After extracting the parameters and performing substitution
assignment, the following formula is obtained:

A = a2 sin2 θn + b2 cos2 θn
B = 2

(
−a2 + b2

)
sin θn cos θn

C = a2 cos2 θn + b2 sin2 θn
f = −a2b2

(20)

Definition 8: The boundary constraint function of the neu-
ral wave network structure is {ϕw, n ⊆ N ∗}, The grid vec-
tor angle parameter ϑw is equivalent to the rotation angle
{ϑn, n ⊆ N ∗} of the elliptic curve, The horizontal density
parameter λhw of the grid space corresponds to aw

τ
, and the

vertical density λlw of the grid space corresponds to bw
κ
.

Definition 9: τ = E1+(−1)f+1∗ψ1∗vb, κ = E2+(−1)f ∗
ψ2∗vb are the horizontal and vertical steps of an AUV, respec-
tively, and T1 < (τ ∪ κ) < T2; that is, considering the actual
situation to prevent the AUV from jumping or overloading,
the step constraint parameter {Tii = 1, 2} is proposed.
where: {Eii = 1, 2E2 ≤ E1} is the set initial step constant

of the AUV individual. vb is the obstacle speed parameter,
where vb = 0 stands for a stationary obstacle; otherwise
it represents a dynamic obstacle or other AUV individuals.
{ψii = 1, 2} stands for the step learning efficiency, which
satisfies 0 < ψi < 1. The introduced decision parameter f
has the following characteristics:

f =

{
0 if vb > ve
1 if 0 < vb ≤ ve

(21)
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where, the constant ve is the velocity threat boundary coef-
ficient. When the speed of an obstacle is greater than ve,
the AUV traveling at the rated maximum step at this time
cannot guarantee the complete success of collision avoidance.
Therefore, increasing the lateral density and decreasing the
longitudinal density reduces the axial velocity, which realizes
lateral azimuth collision avoidance. Conversely, reducing the
lateral density and increasing the longitudinal density can
achieve longitudinal acceleration and lateral deceleration,
which achieves high-speed linear collision avoidance.

The change process of the neural network structure caused
by the horizontal and vertical density changes in the dynamic
grid space is shown in Fig. 8, where the red pentagon repre-
sents a dynamic obstacle.

FIGURE 8. Dynamic grid space.

Figure. 8 demonstrates that boundary curve 1 represents
the situation when the obstacle is stationary or there is no
dynamic obstacle intrusion. Boundary curve 2 represents the
situation when the moving speed of the dynamic obstacle
is slow. Boundary curve 3 represents the situation when the
dynamic obstacle moves faster.

An efficient and accurate recognition mechanism is the
premise of a multi-AUV system to avoid dynamic obstacles
autonomously. Based on this premise, this paper proposes a
dangerous judgment (DJ) algorithm.

In the process of cross-variation of various working con-
ditions, AUV individuals can collect external information
through their sensors. For example, an AUV individual uses
sonar to collect the coordinate information of the obstacle tra-
jectory path points that appear in its detection S-angle. These
data are used as the input of the path planning subalgorithm
in the BNWN algorithm and DJ algorithm for reprocessing.
Finally, the obstacles can be avoided by adjusting the grid
density and the vector angle of the boundary function.

According to the real-time update characteristics of the
neural network structure and the need for adaptive grid divi-
sion, the important parameters contained in the boundary
curve are defined as follows:

Half focal length: cw =
DAnSTw

2 ;

Dangerous Judgment Algorithm for Dynamic Obstacles
Definition
OB_move: Repository of obstacle track points.
JD_AT: The intersection of the trajectory of the AUV and the
obstacle
V_OB: Speed of obstacles
D_tance: Maximum sensing range of AUV monomer
Main loop:
Lck = size (OB_move,2);
If lck < 2
Dangerous_single = 0;

Else
Calculate:
1. Fit the travel path of dynamic obstacles and AUV,
and record them as curves A and B, respectively.
2. Calculate the intersection point JD_AT;
3. Calculate the relative distance D_d1 of point JD_AT
and AUV;
4. Calculate the relative distance D_d0 of point JD_AT
and sub-target node;
5. Calculate the time Time_1 from AUV to point
JD_AT;
6. Calculate the distance D_d00 from AUV to the
sub-target node;
7. Calculate the distance setD_d2 of all dynamic obsta-
cles in the library and the point JD_AT, the distance set
D_d7 from the AUV and the distance set D_d6 from
the sub-target node;
8. [∼, d1] = find(D_d2 == min(D_d2));
9. Time_2 = floor(D_d2(d1)/V_ OB);
10. D_tance = D_d00∗ tan(S_angle);
Decision loop:
If D_d2(lck) < D_d2(lck−1) & D_d6 (lck−1) >
D_d6(lck) &D_d7(lck−1)>D_d7(lck) &D_d 0<=
D_d00
if D_tance< D_d7(lck) & abs(Time_2−Time_1)> 2
Dangerous_single = 0;

Elseif D_d2(d1) > sqrt(3∗F^2)
Dangerous_single = 0;

Else
Dangerous_single = 1;

End
End

End
UntilMultiple AUV systems complete underwater tasks

Semi-short axis:

bw =


√
a2w −

(
DAnSTw

2

)2

if (f = 0 ∪ vb > ve)

DAnSTw
2

if (f = 1 ∪ 0 < vb ≤ ve)

(22)
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Semi-major axis:{(
DAnSTw

2
+β1 ∗ τ

)
≤ aw ≤

(
DAnSTw

2
+β2 ∗ τ

)
β1<β2

}
(23)

where, the role of parameter {βii = 1, 2} is to reserve grid
space for the reverse movement of the AUV, which meets
the circumferential movement requirements of the AUV. The
range is set to 3 ≤ β1 < β2 according to experience.
According to the above parameter definition and formula
derivation, the horizontal and vertical density functions of the
dynamic grid can be obtained as follows (24) and (25), as
shown at the bottom of the page.

Through the above research and design, we have completed
the decomposition and re-decomposition of the environment
and completed the construction of the dynamic grid. Research
shows that by adjusting important parameters of the bound-
ary function, autonomous collision avoidance for static and
dynamic obstacles can be achieved, and the total path length
can be minimized. This paper verifies the practicability of
the strategies and algorithms proposed in this paper through
simulation experiments.

V. VELOCITY VECTOR SYNTHESIS ALGORITHM
Under the influence of ocean currents, the trajectory of
the multi-AUV system will deviate from the shortest path
planned by the BNWN algorithm. When performing tasks
such as map construction, target search, tracking, and captur-
ing, maintaining the set travel trajectory with multiple AUV
systems is the key to improving work efficiency and reducing
energy consumption. Therefore, it is very important to control
the actual trajectory of an AUV to be consistent with the
trajectory calculated by the BNWN algorithm, which is also
the research focus of this chapter.

This chapter decomposes and synthesizes the speeds of
AUVs and ocean currents, and proposes a VVS algorithm.
In the 3-D environment, the decomposition process of AUV
and ocean current velocities can be drawn from Fig.9, where
vector Px is the projection of vector OPi on the XOY plane,
and α2 is the internal angle; vector Py is the projection of
vector OPi on the ZOY plane, and α2 is the internal angle;
and vector Pz is the projection of vector OPi on the ZOX

FIGURE 9. Velocity vector decomposition.

plane, and α1 is the internal angle. From this Figure, the speed
decomposition expression can be derived as follows:

Px = V0 ∗ cos (α1) ∗ cos (α2)
Py = V0 ∗ cos (α1) ∗ sin (α2)
Pz = V0 ∗ sin (α1)

(26)

where, V0 is the initial setting value of the AUV velocity.
Figure. 10 shows how the VVS algorithm can optimize the

waypoints of the AUV update under ocean current interfer-
ence. In the Figure, the vector Va represents the velocity of
the AUV, the magnitude is adjusted according to the design
parameters of the AUV, and the vector Vc represents the
velocity of the ocean current. The vector Vas is a vector
synthesis of Va and Vc, and the three vectors are all in the
same plane.

FIGURE 10. VVS algorithm implementation process.

To clearly express the VVS algorithm, Fig. 10 is converted
into a 2-D plane containing vectors Vc, Va and Vas, as shown
in Fig. 11. In this Figure, Vcn is the component of ocean cur-
rent velocity perpendicular to the desired trajectory direction,

3 ≤ β1 < β2 ⇔


β1 +

DAnSTw
2 ∗

(
E1 + (−1)f ∗ ψ1 ∗ vb

) ≤ (aw
τ
= λhw

)
(aw
τ
= λhw

)
≤

(
β2 +

DAnSTw
2 ∗

(
E1 + (−1)

f
∗ ψ1 ∗ vb

)) (24)

λlw =
bw
κ
=



√
a2w −

(
DAnSTw

2

)2

E2 + (−1)f+1 ∗ ψ2 ∗ vb
if (f = 0 ∪ vb > ve)

DAnSTw
2

E2 + (−1)f+1 ∗ ψ2 ∗ vb
if (f = 1 ∪ 0 < vb ≤ ve)

(25)
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FIGURE 11. 2-D space velocity decomposition and synthesis.

and Van is the component of AUV velocity perpendicular to
the desired trajectory direction. In addition, Vcl is the compo-
nent of ocean current velocity parallel to the desired trajectory
direction, and Val is the component of AUV velocity parallel
to the desired trajectory direction.

In addition, according to the vector inside accumulate the-
orem, another expression is concluded as follows:

β = arccos
(
(V1 ∗ V2)
|V1| ∗ |V2|

)
(27)

In the formula, β is the angle between the vectors V1 and
V2. When the vectors V1 and V2 represent Va and Vas,
β represents β1; when the vectors V1 and V2 represent Vc and
Vas, β represents β3.
However, the size of the angle β3 depends on the quadrant

where the vector Vc is located. As shown in Fig.11, when
Vc and Vas are in different quadrants, the angle between V ′c
and Vas is the sum of β2 and β5; when Vc and Vas are in the
same quadrant, the angle between Vc and Vas is the difference
between β2 and β4.

Keeping the vertical component offset and the vector sum
of the parallel components consistent with the desired tra-
jectory direction is the key to controlling the AUV travel
trajectory.

The objective function expression of the VVS algorithm
can be obtained as follows:

|Va| ∗ sin (β1) = |Vc| ∗ sin (β3)

0 ≤ arccos
(
(Va + Vc) ∗ Vas
|(Va + Vc)| ∗ |Vas|

)
|Va| ∗ cos (β1)+ |Vc| ∗ cos (β3) > 0

(28)

Based on the above derivation, we can calculate the AUV
trajectory travel angle and the desired velocity Vas.

The multi-AUV system can overcome the interference
of ocean currents when using the VVS algorithm. In this
chapter, the parameterized ocean current information (includ-
ing the speed and direction of the ocean current) clearly
shows the state of the ocean current. In addition, the premise
of the application of the VVS algorithm is that an AUV
can obtain ocean current information in real-time through its
sensors (e.g., using anemometer measurements). The current
information is reprocessed by the VVS algorithm, and the
reprocessing result is used as the input of the bottom con-
trol system of the AUV. Sequential circulation can realize

real-time control of AUV speed. However, the development
of the underlying control system and how the AUV collects
data through its sensors are not the focus of this article.

VI. SIMULATION ANALYSIS
There are 4 capture points evenly distributed around the
target. In the simulation experiment, a simple match is made
between the AUV group and the capture point according
to the similarity. When all 4 capture points are occupied,
it represents the completion of underwater operations.

The behavior of each monomer in the multi-AUV system
during the simulation experiment is as follows: First, the
environment simulation map is built independently, and the
simulation map is converted into a set of points. Each point
corresponds to a neuron, and the pheromone content of all
neurons is set to zero. Second, based on the graph node
information and the real-time update characteristics of the
boundary function, the neurons in the neural wave layer are
automatically selected for activation. Finally, the monomer
based on the BNWN algorithm, and the VVS algorithm
achieves collision-free capture of the target. During the sim-
ulation experiment, the size of the working space of the
multi-AUV system is set to 300 × 300. The parameters of
the simulation experiment are shown in Table 1.

TABLE 1. Control parameters.

A. WITHOUT CURRENT INTERFERENCE
This experiment simulates cooperative operation in low-level
sea conditions, which is suitable for fault point inspection and
dangerous water detection. The operation process of multiple
AUV systems is simulated to track and capture the target
under the condition of random distribution of various state
obstacles. The functions of obstacle region division, subtarget
node space recursion, and optimal path point selection in
the BNWN algorithm are verified. The simulation results are
shown in Fig. 12.

Figure. 12 shows the specific presentation of the calcula-
tion process of the BNWN algorithm during the collaborative
operation of the multi-AUV system. In this Figure, the closed
elliptic curve is used to represent the update of the boundary
function in real-time. The curve marked in green indicates
the boundary constraint of neural wave diffusion when the
AUV is traveling normally. However, the black marked curve
indicates the boundary constraint of neural wave diffusion
when the AUV avoids dynamic obstacles. The set of points
contained inside the closed elliptic curve is an optional neu-
ron node. The density of the grid inside the black curve is
significantly different from that of the green curve because
of the intrusion of dynamic obstacles. The AUV completes
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TABLE 2. Control parameters.

FIGURE 12. Operation chart without the interference of ocean currents.

the avoidance of dynamic obstacles under the constraint of
the black curve. It is proven that dynamic obstacles can be
avoided by changing the mesh density.

Real-time data are extracted during the operation of the
multiple AUV system in the simulation experiment, as shown
in the following Figure and table. Figure. 13 (a) and 13 (c)
represent the horizontal and vertical density data curves of
the grid during the collaborative operation of the AUV group
respectively. Figure. 13 (b) and 13 (d) represent the horizontal
and vertical step data curves of the AUV monomer, respec-
tively. It can be concluded from Fig. 13 that the grid density is
linearly distributed as the relative distance between the AUV
and the capture point gradually shortens with the same step
size. When a dynamic obstacle appears within the detection
S-angle of the AUV at a certain speed, the mesh density
and the step size of the AUV will change significantly and
present a nonlinear distribution. The nonlinear distribution of
the data curve provides the possibility for the AUV to achieve
autonomous obstacle avoidance. The data of the nonlinear
curve part are extracted as shown in Table 2.

After the environmental information is processed by the
BNWN algorithm, the static obstacle group is divided into

multiple domain spaces. This provides a basis for achiev-
ing the spatial recursion of subgoal nodes. The subtarget
node information extracted from the simulation experiment
is shown in Table 3:

TABLE 3. Control parameters.

From the simulation results, we can conclude that the
multi-AUV system efficiently completes the tracking and
capturing of the target based on the BNWN algorithm in
a complex environment, and reduces the total length of the
path and the number of turns, which fully reduces the energy
consumption.

B. STATIC OCEAN CURRENT INTERFERENCE
This simulation experiment adds static ocean current interfer-
ence based on the above research, which has a global impact.
In this paper, the amplitude of the ocean current velocity is 2
and the angle with the X axis is 30 degrees (counterclockwise
is positive). The simulation results are shown in Fig. 14.
In actual working conditions, an AUV can measure the speed
of the ocean current in real time according to its sensors. For
this reason, the hybrid algorithm designed by this research
has reserved an interface for the import of ocean current data.

Figure. 14 (a) shows that under the influence of ocean
currents, the trajectory of the AUV has changed significantly,
and the number of redirections and the total path length
haves increased significantly. In addition, AUV1 collided
with obstacles, which caused AUV1 to fail to proceed and
to be declared scrap, which ultimately led to the failure of
the mission. It can be seen that ocean current interference
poses a great threat to the cooperative operation of multiple
AUV systems. Therefore, to solve the above problems, this

159434 VOLUME 8, 2020



X. Ma et al.: Multi-AUV Collaborative Operation

FIGURE 13. Data analysis.

FIGURE 14. Operation process under the disturbance of steady ocean current.

paper proposes theVVS algorithm,which has low complexity
and can achieve a significant reduction in response time.
Comparison simulation results are shown in Fig. 14 (b). These
results prove that the combination of the BNWN algorithm
and the VVS algorithm can play a good role in optimizing
the path, reducing the number of turns, and ensuring the
success rate of tasks. Furthermore, the improvement of work
efficiency and a reduction in total energy consumption are
realized.

C. DYNAMIC OCEAN CURRENT INTERFERENCE
This experiment simulates complex sea conditions and
mainly deals with target tracking and search under advanced
sea conditions. Based on the above simulation experi-
ments, time-varying ocean current interference is added. The
time-varying curve of ocean current interference is shown
in Fig. 15 (a), and the vector angle of ocean current velocity
is expressed in radians. For time-varying ocean currents, this
article assumes that the changes in the amplitude and angle of
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FIGURE 15. Real-time simulation results.

ocean currents follow non-fixed periodic linear incremental
changes. Set the sub-target point as the inflection point of the
linear interval, that is, the boundary of the non-fixed period.
The update frequency of ocean current interference is set
to 1/3 times the update frequency of AUV waypoints, that
is, three waypoint updates correspond to one ocean current
interference update. The simulation experiment results are
shown in Fig. 15.

From Fig. 15 (c), it can be concluded that the travel
trajectory of the AUV under the time-varying ocean current
disturbance has changed more obviously than that under the
static ocean current disturbance. As shown in Fig. 15 (e),

under the interference of time-varying ocean currents, the col-
lision rate of the AUV, and the loss rate of mission connection
nodes will increase. Because of the simple structure, low
complexity, short calculation time, and real-time update of
the VVS algorithm and BNWN algorithm mentioned in this
paper, this approach provides the basis for real-time control of
the AUV trajectory path. It is concluded from Fig. 15 (d) that
the VVS algorithm has the characteristic of keeping the tra-
jectory path of the AUV consistent with the optimal trajectory
path. The curves of the step size of the multi-AUV system
are shown in Fig. 15 (b). The mutation in this Figure repre-
sents that the AUV successfully reaches the subtarget node.
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The AUV updates and resets the graph node while it occupies
the subtarget node. A comparison of Fig. 15 (c) and Fig. 15 (d)
can verify the timeliness and accuracy of the algorithms
proposed in this paper.

VII. COMPARATIVE ANALYSIS
For underwater robots, the complexity of the control algo-
rithm, the length of the total path, and the smoothness of
the trajectory are important indicators for evaluating the effi-
ciency of the operation and the task completion rate.

In order to verify that the algorithm proposed in this paper
has high efficiency and strong self-adaptive ability, multiple
sets of comparative experiments will be conducted to verify
the following. The selected comparison objects are the APF
algorithm and A-star algorithm, both algorithms have repre-
sentative significance.

The comparison simulation results are shown in Fig. 16.
As shown in Fig 16, the BNWN algorithm has the advan-

tages of short path length, high smoothness, low collision
rate, and strong stability compared to other algorithms. And
the data extracted from the simulation experiment is shown
in Table 4, which records the total length of the path and turn
times base on different algorithms.

TABLE 4. Compare experimental data.

FIGURE 16. Simulation experiment comparison.

According to Table 4, the smoothness of the trajectory
curve planned based on the BNWN algorithm is significantly
higher than that of other algorithms, and the total length of
the path is significantly shortened.

In addition, due to the establishment of the boundary
function and the dynamic mesh model, the complexity of

FIGURE 17. Path planning based on improved A-star algorithm.

FIGURE 18. Path planning based on BNWN algorithm.

the BNWM algorithm is simplified and the stability of the
BNWN algorithm is improved. Figure. 17 and Figure.18
show the working process of the A star algorithm and the
BNWN algorithm under the same operating conditions.

Obviously, under the condition of boundary function con-
straints, the neuron nodes required for real-time update and
calculation in the BNWN algorithm are greatly reduced,
and through the construction of dynamic grids, turn times
are greatly reduced. The more complex the environment,
the more obvious the advantages.

In addition, the BNWN algorithm can also enhance the
stability of the algorithm by adjusting the control parameters
of the obstacle domain. For example, to expand the influence
range of the obstacle domain so that the sub-target nodes
are far away from the obstacle space, which provides fault
tolerance space for the errors caused by ocean current inter-
ference and sensor imbalance during the operation of the
AUV individuals

In addition, we consulted a large number of documents
related to this research and discovered a widely used
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FIGURE 19. Comparative simulation test results between BNWN and SOM/Improved APF.

SOM algorithm [13], which has gradually become a research
hotspot. However, the SOM algorithm and the improved
A-star algorithm [26] have similar drawbacks, that is, there
is a risk of speed jumping during the operation. In order
to verify the accuracy of the algorithm proposed in this
paper, we conducted a comparison simulation experiment
between BNWN and SOM/Improved APF. In order to make
the contrast effect more obvious, this article scales the speed
accordingly. The result is shown in Fig. 19(Under the same
simulation environment.):

In Fig. 19, themutation point of the BNWNwaypoint curve
represents that the AUV has reached the sub-target point.
In addition, it can be concluded from Fig.19 that the multi-
AUV system based on the BNWN algorithmwill not have the
phenomenon of speed jump. Furthermore, the operation effi-
ciency is improved and the energy consumption is reduced.

VIII. CONCLUSION
1) Decomposition of the workspace and space recursion

of subtarget nodes realize the modularization of tasks.
2) The space sub-decomposition and the substitution of

the constraint function construct a dynamic grid space,
which has strong adaptability.

3) The DJ algorithm realizes autonomous judgment of a
dynamic obstacle hazard field, prompting AUV indi-
viduals to avoid dynamic obstacle interference.

4) In a certain range, the combination of the BNWN algo-
rithm and the VVS algorithm successfully overcomes
the time-varying ocean current interference, which sig-
nificantly reduces the number of redirections and the
total path length.
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