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ABSTRACT Distributed Denial-of-Service (DDoS) attacks disrupt servers, services and the network,
overloading the target resources and denying normal traffic. In order to defend from this attack, mitigation
actions usually overprovision and sinkhole malicious traffic. Sooner the attack is detected, better is the
mitigation. Hence, we advocate for using a prediction technique aiming to anticipate actions against the
possible attack, before it effectively starts. Then, this article contributes to advance the state-of-the-art
presenting a distributed architecture that identifies early signals of a possible DDoS attack and detects
bots composing a botnet. The architecture identifies the malicious actors (bots) participating in the attack.
The bot detection technique is triggered by the prediction of DDoS supported by early signals. Prediction
identifies signals of attack on the network before it reaches advanced stages. Based on the metastability
theory, it provides unsupervised statistical learning and identifies the imminence of DDoS attacks. The botnet
detection is challenging because of the high dimension of data involved and because of resource constraints
(memory and processing) in network devices. Network devices are clustered based on features extracted
from the traffic and based on the causality between devices. Detection is performed per cluster. Performance
evaluations took as input the CTU-13 Czech Republic University, CAIDA and Botnet 2014 datasets,
efficiently detecting the bots in the dataset with an accuracy of 99.9%.

INDEX TERMS Attack prediction, botnet detection, cybersecurity, network traffic analysis.

I. INTRODUCTION
Botnets pose a huge threat to Internet users and devices.
Given the easiness in accessing the Internet, social and com-
mercial relations rely on the online world. Services and social
relation moved to the Internet (as banking, commerce, health,
interpersonal relations, news and recreation) [1], [2]. With
more people and services connected and generating infor-
mation, data has become a valuable asset. However, as in
the physical world, there are bad actors. Malicious software
infects different devices, transforming them in robots (bots)
that work in networks (botnets) targeting users, services and
devices, looking for generating profit to operators and devel-
opers of these malicious softwares.

Once a malicious software infects a machine, it may exe-
cute commands controlled by a remote attacker. The remote
attacker tries to breach and compromise as many devices
as possible, including each bot into a botnet. Botnets are
able to perform much more powerful attacks than a single
machine would do. These bad actors, the bots, harm data
confidentiality, integrity, and/or data and service availability.
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A well-known attack lies in Distributed Denial-of-Service
(DDoS), in which an attacker (botmaster) commands all bots
of a botnet to flood the bandwidth and target resources.
Hence, the resources of the targeted system are denied to
legitimate users. The largest DDoS attack ever recorded has
targeted Amazon AWS reaching a stunning 2.3 Tbps [3].
Detecting, controlling, and restraining DDoS attacks pose a
huge challenge to systems and network administrators.

Measures can be taken to avoid that a device becomes part
of a botnet (hence avoiding its participation in such attacks),
such as patching devices with security updates, not using
default credentials on devices and services, using antivirus
and not installing unknown software. In local networks,
Intrusion Detection Systems (IDS) and Intrusion Prevention
Systems (IPS) detect devices that might have been breached
and became part of a botnet. Internet Service Providers (ISPs)
also want to identify malicious actions on their networks,
avoiding bad reputation and lowering costs (e.g. DDoS
attacks might incur in high bandwidth usage, hence higher
costs). However, once a botnet starts its attack, in particular,
a DDoS one, there is no much to be done by the targeted
system [4]. Mitigation approaches have sought to reduce
the impact of ongoing DDoS attacks. Overprovisioning and
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sinkholing malicious traffic are some measures that can be
taken, but they are more effective the sooner the targeted
system knows it has to act.

This article presents an architecture to jointly predict
DDoS attack and detect bots. The architecture is funded on
the fact that as early as a system has indications about the
imminence of the DDoS attack and detects its bots, better the
system can act against the attack [4]. The proposed architec-
ture operates hierarchically in two levels: local and Internet to
anticipate botnet signals and prevent DDoS flooding attacks
generated by botnets. On the local level, the early signals
of a DDoS attack are identified before it reaches advanced
stages. These signals are based on leading indicators as return
rate, autocorrelation, coefficient of variance, and skewness,
as in [5]. In contrast with other works, leading indicators
are used in this article to predict trends of DDoS attacks.
On the Internet level, the proposed system follows a hybrid
bot detection method. This hybrid method uses both clus-
tering techniques and signal processing on graphs to ana-
lyze traffic on the network. It performs statistical analysis
on the traffic, selecting features that better characterize the
analyzed traffic. Next, it uses the selected features and an
unsupervised machine learning technique to cluster devices
with similar behavior. Then, it identifies devices that behave
like bots, in the clusters, separating them from benign nodes.

For both local and Internet levels, the proposed architecture
has been instantiated in a case study. In the case study, the
system based on the proposed architecture captures the traffic
sent from and to devices and uses it to build and analyze time
series. Time series comprises data from features selected from
the traffic. On the local level, a time series comprises data
from the network load as packet size through time. On the
Internet level, several other features are extracted to sup-
port statistical analysis, clustering, and bot detection. Results
show a set of behavior that can predict trends of a disruptive
change in the network state. This disruption, detected by the
early signals of a DDoS, triggers the bot detectionmechanism
on the Internet level that, in its turn, performs a robust and
more detailed analysis on the traffic, looking for bots.

Evaluations employ CTU-13, CAIDA and Botnet 2014
datasets. These datasets are commonly employed in the
literature for botnet detection and present scenarios with
DDoS attacks. Hence, the evaluated system receives as input
60-second windows of network traffic. Based on the
60-second windows the leading indicators are calculated.
Once the system points out a critical state change, it extracts
and selects features. Hence, clusters are built and the sys-
tem analyzes the devices in each cluster. Finally, detection
accuracy are derived from the number of true-positives, true-
negatives, false-positives and false-negatives. Results show
that, based on the early signals, the system could predict
a DDoS attack. This early prediction triggers the further
investigation and bot detection. Results show accuracy and
feasibility in the bot detection.

The main contribution of this article lies in a dis-
tributed architecture to both predict and detect botnets.

The architecture starts with a local network traffic analy-
sis supported by leading indicators, i.e., statistical measures
calculated from simple data of the network traffic such as
packet size or packet transmission frequency. Such leading
indicators support the detection of early signals of DDoS
attacks caused by botnets. Also, the use of hybrid features
(extracted from traffic and graphs representing the identified
structure of interrelations between nodes) provides a wider
number of inputs that can characterize the traffic. Traffic
features are not only extracted but also selected based on the
relevance to detect botnets. Lastly, we employ a deterministic
method to detect bots in nodes that are clustered, providing a
better performance to the detection, in the internet level, that
can combine traffic from multiple local networks.

This article proceeds as follows. Section II reviews related
works. Section III describes the architecture of the solution,
its inputs and outputs and how the data is handled on mul-
tiple levels to predict and detect bots causing DDoS attacks.
Section IV describes the early signals technique and the bot
detection method, and howwe use them to build the proposed
architecture. Section V details the evaluation methodology
and discusses the results. Section VI concludes the article.

II. RELATED WORK
Early warning systems have been researched in many fields.
Recently, researchers started focusing on networking and
computational systems. In [6], Ramaki and Atani presented
a survey of architectures and techniques for early warning
threats in Information Technology (IT). The authors clas-
sified the early warning systems (EWS) in commercial or
under research and development. They pointed out a set
of challenges, such as data collection, data correlation, and
post-event data correlation [6]. The authors reinforced the
need of designing proactive solutions to predict threats and
attacks before they occur, using data analytics.

Other studies have particularly tackled the problem of
developing early warning techniques for DDoS attacks
[7]–[9]. In [8], Xiao, Chen, and He proposed a cooperative
system to produce warning signals. The system is based on
a Bloom filter technique. The authors goal lies in reducing
storage and computational resources consumption. In [7],
Tsai, Chang and Huang presented a multi-layer system based
on time delay neural networks. It is a cooperative system in
which each device in the network monitors its neighborhood.
In a timely manner, the device sends the collected data to an
expert module which analyzes all collected data and attempts
to match received data with known DDoS patterns.

In [9], Korczyński et al. presented a cooperative and
self-organized anomaly detection system inspired by honey
bee colonies. Their goal was to provide dynamic thresholds
to detect anomalous patterns in network traffic to improve
early intrusion detection that could assist attack mitigations.
In [5], Pelloso and Nogueira employed leading indicators to
detect the presence of volumetric DDoS bots on the network.
Their work, however, did not focus on the identification of
the nodes that might be causing the attack, only coming
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to the conclusion that leading indicators may provide
early signals that a DDoS attack might occur in the near
future. In [10], Moussa, Nogueira, and Guedes presented
α-investing+, an algorithm for statistical analysis of network
traffic features. The algorithm identifies relevant features on
the traffic. They presented a feature selection method for
streaming DDoS attack data. The method is able to sequen-
tially add and test features, performing the selection in an
ongoing attack. This can be a technique for DDoS detection
based on the passive monitoring of the network.

In [11], Daya, Salahuddin, Limam, and Boutaba pro-
posed a machine learning bot detection system. They pre-
sented a two-phased, graph-based bot detection systemwhich
leverages both unsupervised and supervised machine learn-
ing techniques. The first phase prunes presumably benign
hosts, while the second phase achieves bot detection with
high accuracy. They compare multiple techniques, both on
the unsupervised and supervised machine learning phases.
Similarly, in [12], the authors employed a self-organizing
map (an unsupervised machine learning technique) to cluster
nodes in the network based on graph based features. They
employ Support VectorMachine (a supervisedmachine learn-
ing technique) to further classify bots. In [13], the authors
employed protocol attributes and frequency distributions to
characterize host behaviour, and learning and classification
techniques, based on distances to labeled clusters.

The state-of-the-art in networking is always evolving.
Software-Defined Networks (SDN) is a new approach to
design networks. In [14], a DDoS attack detection system
for SDNs is proposed using two levels of security. First a
signature detection based is used. Then, machine learning
techniques (SVM - Support Vector Machine and DNN - Deep
Neural Network) detect attacks on the network. Similarly,
another trend in networking is cloud computing. In [15],
Karan B. Virupakshar, Manjunath Asundi, Kishor Channal,
Pooja Shettar, Somashekar Patil, D. G. Narayan used Deci-
sion tree, KNN (K-nearest neighbor), Naive Bayes and
Deep Neural Network (DNN), machine learning techniques,
to detect DDoS attacks on cloud computing infrastructure,
with OpenStack integrated firewall and raw socket program-
ming for monitoring the network traffic.

In [16], Mei and Moura proposed a deterministic frame-
work which identifies inter-relations in time series and
intra-relations in time series. This technique, named Causal
Graph Process (CGP), derives a low dimensional represen-
tation from a multidimensional feature set. This is repre-
sented by a directed and weighted graph that can possibly
capture causal relations on the traffic. Their work, however,
did not focus on network traffic analysis or botnet detection.
We apply this technique to early detect botnets and causal
relations that bots might exert into their victims.

III. ARCHITECTURE
Prediction is the act of knowing in advance about an
event, based on special knowledge [17]. In nature, diseases
are avoided with early identification of risk factors,

offering clinical setting, as in Acute Kidney Injury [18]. The
same takes place on cardiovascular diseases where diabetes
mellitus is associated with a significant increase in risk for
cardiovascular disease, but this risk is not uniform [19]. Even
on infectious diseases, evaluation of internal and external
drivers, that trigger emergence events, is increasingly helpful
for predicting these events [20].

The goal of predicting lies in ‘‘get ahead of the curve’’,
allowing individuals and health system to react accordingly
and promptly respond to outcomes. The same happens on
network traffic, where trends are observed and predicted.
When it comes to detecting anomalies, algorithms can bundle
normal data behavior and infer anomalous behavior. These
methodologies have a very high percentage of false positives
and may disrupt the performance of the underlying system,
if it triggers a very high number of false diagnostics (imagine
treating everyone with possible indicators of Acute Kidney
Injury as it will result in morbidity and mortality).

Instead of treating every possible patient with early risk
factors, these early signals indicate the necessity of further
analysis in patient condition. In health systems, blood tests
and tomography assist in critical cases, showing or not the
necessity of an investigative surgery. But these actions are
triggered by early indicators in the individual health system.
Early indicators focus on a fraction of organs but further
investigations are broader and may focus on the whole sys-
tem (the human body). Initial investigations may focus on a
particular organ that is not the cause of malfunction, needing
to target more organs to find bad actors.

This article presents an architecture to jointly predict
DDoS attack and detect bots. The architecture is funded on
the fact that as early as possible the targeted system knows
about the imminence of the DDoS attack and detect its bots,
better the system can act against the attack [4]. The pro-
posed architecture operates hierarchically in two levels: local
and Internet to anticipate botnet signals and prevent DDoS
flooding attacks generated by botnets. On the local level,
the early signals of a DDoS attack are identified before it
reaches advanced stages. These signals are based on leading
indicators as return rate, autocorrelation, the coefficient of
variance, and skewness, as in [5]. In contrast with other
works, we apply the leading indicators in this article to predict
trends of DDoS attacks.

We follow this analogy and we propose an architecture
that applies a two-tier approach, i.e., local and Internet levels,
to predict attacks and detect bots. The architecture is funded
on the fact that as early as possible the targeted system knows
about the imminence of the DDoS attack and detects its bots,
better the system can act against the attack [4]. Figure 1
presents the five modules that compose the architecture:
Data Collection, Feature Extraction, Processing, Analysis
and Notification. The Data Collection Module integrates
network sensors and preprocessing components. The first
component continuously captures the traffic from the net-
work, using a sensor or a sniffer. The second component pre-
processes the collected network traffic, transforming binary
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FIGURE 1. Architecture for early signals calculation and bot detection.

data in human-readable data, in a way to offer a relevant input
to the Feature Extraction Module. This module reads the
preprocessed data and splits it into windows, i.e., sets of data
generally determined by time or by the quantity of elements
(e.g., number of network packets). This module also performs
the extraction of features that characterize the traffic in that
window. It gathers information from traffic packets and its
protocol, summarizes and counts some of those data, building
a feature that is representative of that traffic.

The Processing Module performs feature selection, clus-
tering and traffic assessment by leading indicators. The Pro-
cessing Module uses data from the windows generated on
the Feature Extraction Module and calculates the selected
features, the clusters and the leading indicators. The Feature
Selection Component identifies the most relevant features
in network traffic and outputs a set of suitable features
to perform the bot detection. The Clustering Component
groups network nodes with similar behavior, according to an
unsupervisedmachine learning technique. Leading indicators
offer information about a change in network state. Calculating
these indicators is fast and less costly than doing a deep
analysis. This may indicate a DDoS, without, however, doing
an analysis of each calculation output.

The Analysis Module continuously performs attack pre-
diction and bot detection. It has as inputs the leading indi-
cators calculated by the Processing Module. The clusters
defined by the Processing Module serve as the basis for
bot detection. Both the Processing Module and the Analysis
Module communicate with the Notification Module. This
module is responsible for triggering the Detection Analysis
once an attack as DDoS is predicted. The Analysis Module
adjusts window size, from the Feature ExtractionModule, for
fine tuning, when necessary. The Notification Module also
reports results to system administrators or an automated
system that acts into the network.

Once a state change on the network traffic is verified
on the Prediction Component, the Notification Module trig-
gers the Botnet Detection Component that detects which
devices on the network that have a suspicious behavior.

Four leading indicators warn for state change in the network.
This state change may provide an indicator of the occurrence
of a DDoS in the future. As calculating leading indicators is
faster and lightweight, it is done on local networks with the
computational resources of a domestic router, for example.
Once the state change is detected, indicating the imminence
of a possible DDoS, then an extended analysis is triggered to
detect the malicious actors that may harm the network.

The Botnet Detection Component, once triggered, uses the
collected data from the networks and processed, to identify
the bots on the network causing a DDoS attack. This further
analysis is broader, with more features being analyzed and
targeting more devices. It uses the Internet traffic to classify
and identify malicious devices. The Bot Detection Compo-
nent operates not only on the traffic of a single local network,
but with Internet traffic, compounded from multiple local
network collected traffic. It can be triggered from a change
on the state of any of the local network behavior. Once it is
triggered, it uses collected traffic and processed data, as input,
and classifies devices as bots or not. The detection acts in
each cluster, possibly in parallel, analyzing causality between
network nodes. The bot detection analysis is triggered once
a change on the state of the network is detected on the
Prediction Analysis Component. The output for the Detection
AnalysisModule is the classification of devices in bots or not.

Combining these two techniques, prediction and detection,
as in health systems, this system is able to early identify
suspicious activity, with a fast method, easy on computational
resources. Detection is broader and deeper, needing a more
powerful computational device to operate its detection. Using
prediction and detection, in a distributed fashion, it is possible
to identify bots on a reliable and scalable way, without the
overhead of continuously performing a costly bot detection.

IV. CASE STUDY
This section details a case study for the proposed architecture.
It starts describing how to collect network data and prepro-
cess it into time series that are subsequently processed and
analyzed. Next, it details the employed prediction mechanism
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(i.e., early signals on local networks) and bot detection. With
data from local network, the implemented mechanism in the
Prediction Component has as input the leading indicators
calculated on the built time series and has as output a sig-
nal that indicates a significant change in the network state.
When this change occurs, in any local network, it triggers
the implemented mechanism in the Detection Component,
through the Notification Module. The bot detection mecha-
nism combines traffic from multiple local networks to detect
malicious devices. The Data Collection Module stores the
data from the traffic so it can be further analyzed.

Specific behaviors on a network may indicate a volumetric
flooding-based DDoS attack. Tomeasure such behaviors, this
case study employs a set of classical statistical leading indi-
cators: return rate, autocorrelation, coefficient of variance,
and skewness [21]. Leading indicators (calculated by the Pro-
cessing Module) are calculated to identify metastable states
changes (verified by the Analysis Module) and identify such
attacks. Leading indicators are well known in Statistics [21].
Here, they offer a prediction about a disruptive transition on
the network state. This is based on certain properties from
metastability theory that uses leading indicators to predict
trends of volumetric DDoS attacks [5].

The Bot Detection Component takes as input the network
traffic (from the Data Collection Module) and the extracted
features from packet headers (from the Feature Extraction
Module). This component uses only the selected features for
cluster the nodes (ProcessingModule). The Feature Selection
Component (in the Processing Module) identifies the most
relevant features in the network traffic and outputs a set of
suitable features to detect bots. The Clustering Component
(in the Processing Module) groups network nodes with sim-
ilar behavior, according to an unsupervised machine learn-
ing technique. The Detection Component (in the Analysis
Module) acts in each cluster, preferentially in parallel,
analyzing causality between network nodes, by a
deterministic method.

Figure 2 presents an overview of the distributed architec-
ture, when running on multiple devices, on the local and
Internet levels. The figure shows data being collected and
analyzed on multiple local network devices and the trigger
for botnet detection in a centralized device.

Traffic from local network devices (desktops, smart TVs,
smartphones, tablets, notebooks) are forwarded to a router,
a hub or a modem, that, being part of the network, captures
the traffic in real time. This traffic is collected by the device
through a network sensor. Data (binary data) is pre-processed,
enabling further analysis, in human-readable format. All the
pre-processed traffic is split into windows, that is analyzed
and it characterizes the time frame. From the traffic data of a
window, leading indicators are calculated and the prediction
component may indicate a critical transition in the network or
not. If a critical transition is detected, the local network device
triggers the botnet detection system. This prediction is light
on computational resources and provides early signals of a
possible DDoS attack in the network.

FIGURE 2. General overview on multiples devices.

Once a critical transition is detected, in any local network
state, the goal is to investigate possible bots on that traffic.
New features, different from the local network features, are
extracted. These features require more computational power
to be extracted. After that, features are selected, being only
the statistically relevant features used for clustering. After
nodes are grouped in clusters, detection indicates nodes that
may or may not have a bot behavior in that window (triggered
by the local network device). The result of the detection is
then reported to a network administrator or, possibly, an auto-
mated tool that will act in the network, avoiding damage that
the bot may cause.

A. THE DATA COLLECTION AND FEATURE EXTRACTION
MODULES
Both the early signals and the botnet detection mechanism
uses time series as input. A time series is a series of data
points indexed by time. In order to predict and detect bots,
the network is monitored and the module and its components
act (i) collecting data from the network, (ii) defining window
size and (iii) extracting features. Packets are collected from
the network with a network monitor or sniffer and the raw
packet (bits) are preprocessed into relevant human-readable
data to be stored. Windows are used to segment data streams
that can be analyzed in a scenario where data is continu-
ously generated. Common segmentation methods are slid-
ing window approach with a fixed window size and timely
fixed windows. For that, a window size must be defined
based on the evaluated data features. Two ways of sizing
the windows are fixing the duration for the window in a
time unit (e.g. a window is 60 seconds of data collection) or
fixing the amount of collected samples (e.g. 1000 network
collected packets). Once awindow is defined, its size could be
dynamically adjusted, matching a given network requirement
(the Analysis Module could indicate the need of a bigger or
smaller window). This dynamic adjustment makes feasible
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the analysis of a large data amount, without compromising
the detection performance [22].

Each packet size is observed from the perspective of the
packet destination, and it is indexed per time unit t (a time
series). Each packet is collected sequentially, hence each
packet is labeled by a unique timestamp. For each time win-
dow, observations are organized in a matrix, in which cells
contain the packet size per time unit (matrix column) and
packet destination (matrix row). The packet size is chosen
because of the general behavior of a volumetric DDoS attack.
The packet size is a network feature susceptible to attacker
manipulation. Attackers can easily produce fake network
packets containing bigger sizes in order to overload the net-
work bandwidth. Hence, this feature is used to analyze and
investigate the network behavior and patterns over time.

After collecting data, the Feature Extraction Module will
process the data and extract information from the traffic so
it can be further processed and analyzed. A feature is a
representation of the collected data. Each possible feature
represents the data (hence, the traffic), in a certain way. For
example, the sum of packet lengths on the network may
represent the volume of data that is flowing in the network.
Feature extraction occurs until a window limit is reached
(may it be by time or sample). Once a window is filled, it can
be processed to bring knowledge about the network, based on
the features, and be analyzed. A feature may or not be linked
to a particular node: it can represent the overall behavior of
the network being analyzed or the behavior of a given node.

For the leading indicators calculation, the interest is ana-
lyzing the overall behavior of the network, not of particular
nodes. For the bot detection (and its Processing Components),
network traffic is collected and features extracted from it to
describe the node on the network and its behavior. Instead of
building one time series (one feature) that describes the net-
work traffic, for detecting a bot, a higher number of features is
required than to calculate the leading indicators. It is possible
to extend the use of as many features as a system should
require to improve the detection performance. Features in the
Bot Detection Component are those that better characterize
a node. Similarly to the leading indicator calculation, data is
collected in fixed time or quantity window size. But for better
analyzing bot behaviors, instead of counting the number of
packets, a different approach is required based on the number
of nodes (e.g. a window must have traffic from 50 nodes).
This happens becausemachine learning techniques group and
compare the behavior of nodes, instead of packets. As each
node is associated with one time series for each feature, these
time series are further processed and used for bot detection.

1) FEATURE EXTRACTION
This module extracts features from a graph built from the
traffic and other features are created straight out from the
network traffic. Extracting and selecting relevant features
for clustering nodes are essential for accuracy in detecting
bots [23]. Features play a key role on how the clusters are
composed, being decisive to detection accuracy. Two types

of features are extracted from the traffic: (i) features from the
traffic itself and (ii) features from relations between nodes.

The features are derived from packet headers. The
employed features are summarized in Table 1. The protocol
quantity feature counts how many protocols each node uses
to communicate with other nodes. As ICMP, DNS, TCP and
UDP are common, their percentage in relation to the total of
used protocols lead to the following features: ICMP Percent,
DNS Percent, TCP Percent, and UDP Percent, respectively.
Certain botnet-based generated attacks may use primarily
some of these protocols (e.g., Ping Flood – ICMP protocol
and Dyn Attack – DNS protocol). Hence, these percentages
are relevant to the analysis. For other protocols, the feature
Percent Others records this information.

TABLE 1. Features extracted from the network.

The TCP Window Size and Frame Length features contain
the average of TCP window size and frame length for nodes.
TCP Window Size indicates the byte-size sent before an ACK
is received by a node. The frame length refers to the frame
on the data link layer. Certain bots may benefit from having
access to privileged ports on the compromised device (lower
than 1024) while others may not have access to those ports
(sending packets from port numbers higher than 1024). The
features Privileged Source Ports and Not Privileged Source
Ports summarize the number of packets sent from privileged
ports and non privileged ports, respectively. The quantity of
ports each node tries to reach is summarized because some
bots may communicate mainly through a restricted number of
ports. The average Time To Live (TTL) of each packet is also
employed since some bots may want to hide sending packets
by setting low or high TTLs.

In addition to features extracted from the network traffic,
others are extracted from relations between nodes. A direc-
tional graph is built in order to derive for these interactions.
For each packet exchanged from a source node to a desti-
nation node, IP addresses from source and destination are
captured and stored as vertices in the graph. A directed edge
is inserted from the source node vertex to the destination
node vertex. If an edge already exists between the same
source and destination pair, a new one is not created. The
source and destination addresses from the packets are the
basis to build a graph G1 = (V ,E), where V is the set of
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IP addresses in the observed traffic, and E is the set of edges
indicated by the ordered pair of source and destination IP
addresses of a packet in the traffic. The following features are
extracted from this graph to characterize the node behavior:
out degree, in degree, out degree weight, in degree weight,
local clustering coefficient, node betweenness centrality and
eigenvector centrality.
In degree and out degree indicate the number of nodes that

communicate with other nodes. In degree is the number of
nodes that have sent at least one packet to a given node, while
out degree is the number of nodes to whom a given node
has sent at least one packet. In degree and out degree are
important because if many bots try to reach a given node, this
node could be acting as a botmaster, having a high value in the
in degree and/or out degree features. In degree weight and out
degree weight are similar to the previous features but they are
pondered by the quantity of packets sent to and from a given
node, respectively. For each exchanged packet, existence of
an edge is checked on the graph being built with the same
source and destination. If there is an edge, the current value
is incremented, otherwise an edge is created and the values
are initialized.
Node betweenness centrality quantifies the number of

times a given node acts as a link to the shortest path between
two other nodes. The higher the node betweenness centrality,
the more central the node is in a graph, which is important
to detect bots that may act in a decentralized way, such as
in a Peer-to-Peer (P2P) bot network [12]. Local clustering
coefficient indicates how concentrated is the neighborhood of
a given node, trying to identify how close the neighbors are in
the graph. Eigenvector centrality is a criterion that identifies
the influence of a node to other nodes, indicating a normalized
weight for a given node.

B. THE PROCESSING MODULE
The ProcessingModule fetches data from the Feature Extrac-
tionModule and calculates indicators that are analyzed on the
Analysis Module. Some of its processing may be triggered by
the NotificationModule, once an analysis indicates a possible
DDoS attack starting in the network. Three components com-
pose this module: Feature Selection, Clustering, and Leading
Indicators. The Feature Selection Component identifies the
most relevant features in network traffic and outputs a set
of suitable features to perform bot detection. The Clustering
Component groups network nodes with similar behavior,
according to an unsupervised machine learning technique.
Leading Indicator Component offers information about a
change in network state. Calculating the leading indicators
is fast and less costly than doing a deep analysis. This may
indicate a DDoS, without, however, doing an analysis of each
calculation output. The next subsections detail how these
components have been implemented in this case study.

1) FEATURE SELECTION
All 19 features extracted from the Feature Extraction
Module are normalized, which is important for the clustering.

However, these features may or may not be relevant to the
whole analysis. It might seem that having more features is
always interesting, but in machine learning (employed for
clustering) having many features may incur in the Curse
of Dimensionality, as described in [24]. This indicates the
existence of a bound on the number of relevant features.
Finding a relevant subset of features is critical for analysis.
This is the goal of the selecting features: having the most
relevant and most informative subset of features about the
network traffic.

The α-investing+ algorithm (Algorithm 1) [10] is used to
select the most relevant features. This algorithm has the goal
to reduce false-positive rates in the discovery of new features
on DDoS traffic. In this case, a false-positive consists in a
newly discovered feature wrongly chosen and added to the
subset of relevant features until a given time t . Following
α-investing+, a feature is added to the subset of selected fea-
tures if there is no dependence between the analyzed feature
and any other feature already in the subset. A threshold α
(l.5 on Algorithm 1) estimates the probability of including
an irrelevant feature in the subset. Furthermore, a weight w
(l.2) represents the percentage of false-positives that eventu-
ally could be acceptable in the subset across the algorithm
iterations. A false-positive, then, is a feature with some
dependency relation with another in the subset of selected
features. The p-value is the probability of two features being
independent and it is calculated through a Chi-squared test
that can work on categorical and non-parametric data, while
measuring feature independence.

Algorithm 1 α-investing+ Algorithm
Data: Network Data
Result: Selected features set

1 W ← [0.5]; // Weight set
2 w0← W0; // Initial weight
3 F ← {}; // Detected features set
4 S ← {}; // Selected features set
5 α1← 0.5;
6 i← 1;
7 while New features detected do
8 addFeature(fi, F);
9 αi← wi/2 ∗ i;

10 repeat
11 table← createContingenceTable(fi, m);
12 result← chiSquare(table);
13 if result[p-value] ≤ αi then
14 wi+1← wi − αi;
15 else
16 addFeature(fi, S);
17 wi+1← wi + α1 − αi;
18 end
19 until each s ∈ S that s 6= fi;
20 i← i + 1;
21 end
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In order to add a new feature to the set of relevant fea-
tures, the result of the statistical test should be higher than
the current α threshold (l.13 to l.18) with the feature being
analyzed. If the result is higher than the threshold, the current
weight w increases (l.17). Otherwise, when there is a depen-
dency between features, w decreases (l.18). The weight w
affects directly the threshold α (l.9), the higher the number
of selected features, the stricter the threshold becomes to
avoid adding false-positives. For each of the 19 features,
a vector (named feature vector) with the values attributed to
the features is built for each node. The algorithm has as inputs
the feature vectors and it is executed until no more features
are detected. All the 19 generated features are continuously
evaluated. The α-investing+ algorithm reduces the data set
to be subsequently analyzed, improving the method perfor-
mance without compromising data representativeness. The
algorithm output is a set of features that better represents the
analyzed traffic.

2) CLUSTERING
Self-OrganizingMap (SOM) technique is employed to cluster
nodes. SOM is an unsupervised machine learning technique
that reduces data dimensionality, without the need of data
classification (labels). Clustering aims at grouping nodes
based on the selected features. Each node provides as input to
the clustering algorithm a feature vector. The SOM technique
compares each feature vector to the ones from other nodes,
through the Euclidean distance between vectors. Given two
vectors Q1 = (q1, q2, . . . , q19) and S1 = (s1, s2, . . . , s19),
the distance is calculated as the square root of the sum of the
squared differences of the distances between the vector terms
(Eq. 1). The vector terms are the values observed from the
network traffic of the selected features per node. A node is
included in a cluster if its feature vector is closer to the center
of that cluster.

dE (Q, S) =
√
(q1 − s1)2 + · · · + (q19 − s19)2

=

√√√√ n∑
i=1

(qi − si)2 (1)

The Euclidean distances designates if a node is associated
to a cluster. With the distances, SOM returns a 5 × 5 grid.
Each item of this grid is a cluster, with the node’s IP addresses
associated to each cluster. A cluster is a collection of similar
nodes. At each iteration, cluster’s centers are readjusted by
recomputing the centroid of the cluster as it grows. Iterations
run until the cluster centers do not change (and, consequently,
no new nodes are added to the cluster) or a number of itera-
tions is reached (we set the limit to 1000).

Clustering reduces the dimensionality of the problem,
granularity now being the number of the clusters instead of
the number of nodes. This also reduces significantly the space
of the analysis, with a lower number of nodes analyzed each
time (per cluster) compared to the complete dataset analysis.
Hence, the high amount of input data is now rearranged into

a finite number of clusters. Clusters are distributed in a grid
that enables the understanding of the node relations, mainly
when there is a high volume of data, as is often the case.

It is expected that some clusters have a much higher num-
ber of nodes than others. Clusters with a higher number of
nodes have a benign behavior in the network [12]. Malicious/
abnormal behaviors are less often in the real world. Also,
node infection is not immediate and malicious behavior is not
immediate on nodes, happening over time [25]. For example,
for Wannacry ransomware, that quickly infected many com-
panies and hosts around the world, about 30% of hosts that
had TCP port 445 open to the Internet (the way this malware
infected the devices) were vulnerable [26]. This assumption
allows the detection to start from the smaller cluster, speeding
up bot detection, with amuch smaller computational cost than
carrying out the analysis on the whole network traffic at once.
Detection starts on the smallest cluster (i.e., the one with the
smallest number of nodes), followed by the second one, until
checking all clusters.

3) LEADING INDICATORS
This case study employs four leading indicators to predict
a state change on a computer network: return rate, auto-
correlation, coefficient of variance, and skewness. We asso-
ciate the metastability phenomenon with a computer network
under attack. In a network that is in a metastable state, a
DDoS attack produces a disturbance in the network state, for
instance. Disturbances can push the state towards values that
are close to conquering the barrier between two metastates.
The Analysis Module, particularly the Prediction Compo-
nent, verifies the metastates, taking as input the four leading
indicators. Small disturbances may cause changes in the net-
work state that may not be enough to make it to overcome
a barrier. If the disturbance is big enough the network state
potentially experiences a critical transition. Network states
are analyzed based on the network packet sizes in a time
window (theData CollectionModule). Hence, a network state
is characterized by the behavior of a set of network packet
sizes during a time window (Feature Extraction Module).

The first leading indicator is return rate. It measures the
rate of return or recovery to an equilibrium meta-state. It is
calculated by the dominant eigenvalues from the matrix com-
posed by the observations of a time window. Dominant eigen-
values characterize the rate of change around a metastable
state. It can indicate the proximity of a critical transition.
Particularly, it can indicate the irreversibility of a transition,
i.e., if the network state is drifting from a metastable state to
another, breaking the critical barrier that separates them. The
higher the return rate, the faster the network recovers from
small disturbances around its current state and, consequently,
the network has a higher resilience to change. The return
rate is reduced when the network approaches a critical transi-
tion, decreasing smoothly to zero as the disruptive transition
approaches [21]. The smooth reduction of the return rate close
to a critical transition is called Critical Slowing Down (CSD),
a term coined from dynamical systems theory.
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The second leading indicator is autocorrelation. It is a
metric employed to evaluate correlation between obser-
vations. It measures how much the network states have
become increasingly similar between consecutive observa-
tions. In [21] the authors observed that autocorrelation in time
series increases when critical transitions approach. Disruptive
transitions tend to increase the correlation at low lags (also
known as ‘short-term memory’) between observations on a
time series. Autocorrelation is calculated at lag-1, i.e., the
correlation of the time series to itself shifted one time-step
back. In Equation 2, the variables zt and zt+1 represent two
consecutive observations at times t and t + 1, respectively,
µ is the mean in a given time window, and σ is the variance
of the variable zt .

ρ1 =
E[(zt − µ)(zt+1 − µ)]

σ 2
z

(2)

The third leading indicator is the coefficient of varia-
tion. It is a statistical measure that indicates the level of
variance in a time series. It is calculated as CV = SD

µ
where SD is the empirical standard deviation calculated by

SD =
√

1
n−1

∑n
t=1(zt − µ)2. Critical transitions and CSD

phenomenon increase the variance in a time series [21]. With
other leading indicators, the coefficient of variance can assist
in predicting trends of a critical transition, in this case a
volumetric DDoS attack.

The fourth leading indicator is skewness, a well-known
statistical measure that indicates asymmetry observations dis-
tribution. If the skewness value is increasing, the observa-
tions’ distribution are becoming asymmetric. Skewness is
calculated as shown in Equation 3. Like variance, skewness
can also increase because of a critical transition, meaning that
the asymmetry in the observations increases. This happens
because the dynamics close to the barrier become slow. [21]
observed a rise in the skewness in different types of time
series when they are close to a critical transition. Skewness
is employed as a leading indicator and it is analyzed together
with the other three.

γ =

1
n

∑n
t=1(zt − µ)

3√
1
n

∑n
t=1(zt − µ)2

(3)

These statistical calculations are employed as leading
indicators on attacks’ trends. The individual analysis of a
single leading indicator should not be taken for conclusions,
in order to reduce false positives or false negatives. The anal-
ysis should be performed on all indicators together. In [21],
the authors demonstrated that this set of leading indicators
defines a specific behavior at the imminence of a critical tran-
sition. They observed that at the imminence of a disruptive
change (i) the return rate decreases, (ii) the autocorrelation
at-lag-1 increases, (iii) the coefficient of variance increases,
and (iv) the skewness increases. This set of leading indicators
early predicts the beginning of a volumetric attack.

C. THE ANALYSIS MODULE
This subsection presents a description of theAnalysisModule
in this case study. The next subsections focus on describing
the two main components of this module.

1) THE PREDICTION COMPONENT
The Prediction Component identifies a change on the network
state, through the identification of metastates. A system is
metastable when it tends to spend a long time in a particular
intermediate state A, as known as metastable state (or metas-
tate), and then eventually it drifts swiftly to another state B,
where it remains now for a long time (or indefinitely). /brThe
system’s dynamics can be split into three distinct time-scales:
(i) long-time at metastate A, (ii) rapid transition to a different
state B, (iii) staying on state B for a long (possibly an infinite
amount of) time. Characterizing metastability requires deter-
mining the metastates, how long the system stays on each
metastate, and how fast is the transition. The literature on the
subject is mostly of empirical studies, as a formal analysis
is impractical. Observing empirically macroscopic metasta-
bility is far more achievable than analytically studying the
microscopic interactions among agents [27].

Metastability often arises in systems that exhibit two or
more possible stable states. For instance, consider the frame-
work of diffusion of two (for simplicity, but in practice
usually more) opinions A and B in a social network of
individuals, where every individual exerts some influence
upon their peers’ opinions and is influenced by theirs as
well. There are at least two stable states: everyone adopts
opinion A or everyone adopts opinion B. The system may
swing swiftly between the two states depending on exogenous
perturbations. A stochastic system undergoes perturbations
about a stable state, and if the deviations are large enough,
it overcomes a barrier and drift quickly to another stable state.
A relevant measure of the time it takes for a system to move
from one to another stable state is the return rate.

As a metastable system undergoes a fast transition –
possibly, to an undesirable state (e.g., blackout in a power
grid, sudden compromising of IoT services, cardiac arrest) –
it is reasonable to expect early-warning signal as precursors
of the transition, which in turn can help to control it. These
precursors may be used to flag when the probability of a
transition becomes unusually high. It is an important and
subtle aspect of the problem to characterize suchmacroscopic
observations. Depending on the application, several heuristic
statistics are used in the literature to forecast a transition
beyond the four leading indicators referred to before [28].
As a general rule, in particle systems [27] (the framework that
formally studies metastability), there are no broad universal
approaches and predictive statistics are usually crafted target-
ing each scenario. One exception is the seemingly universal
usefulness of the return rate. It measures the irreversibility of
a transition, i.e., if the system is drifting from a metastable
state to another.
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2) THE DETECTION COMPONENT
Inside each cluster, correlations between nodes are calculated
to identify interrelations and their evolution across time. For
each feature and node, a time series is built, i.e., a collection
of values distributed in regular time intervals, ranging from
the start of the evaluation to its end. The collected values
are regularly spaced in time, so that the temporal sample
size is the same for all the evaluated nodes and all the series
have the same amount of data in the same analysis. Out of
the 19 extracted features, each one has its own time series.
Only the feature out degree weight is employed to assess
the correlation. As output, an influence matrix is generated,
making it possible to identify causal relations in the traffic
generated by the nodes and enabling bot identification in
traffic. Each input in the matrix matches the weight attributed
to the relation between two nodes (row and column).

With the time series defined, autoregression is applied to
estimate the influencematrix. The autoregression coefficients
are graph filters that allow an even smaller data search
space [29]. The influence degree between the identified
nodes is calculated without prior knowledge to data relation.
However, the value of a feature in a given time k is influenced
by some feature in the k-1 time window. This influence lies
in the identification provided by the autoregressive model
and is exposed in the incidence matrix. Eq. 4 describes the
mathematical details to calculate the influence matrix [29].

x [k] = w [k]+
M∑
i=1

Pi(A, c)x [k − 1]

= w [k]+
M∑
i=1

i∑
j=0

(cijAj)x [k − 1]

= w [k]+ (c10I + c11A)x [k − 1]
+ (c20I + c21A+ c22A2)x [k − 2]+ . . .
+ (cM0I + . . .+ cMMAM )x [k −M ] (4)

where x[k] is the feature value at time k , Pi(A, c) is a poly-
nomial on the matrix A with order i (i.e., Pi(A, c) are graph
filters [29]); w[k] is statistical noise to evaluate the precision
of the autoregression; cij are polynomial scalar coefficients,
with c = (c10, c11, . . . cij, . . . , cMM ) a vector of all the cij, and
M is the autoregression order [16]. All are known, except the
influence matrix A.

Given that there is a correlation between the data, a graph
G1 = (V ,A) defines this correlation, with V being the
vertices that match the network nodes and an unknown A,
that defines this correlation. To calculate A, it is done:
1) Solve for Ri = Pi(A, c): Apply graph filters, having as

input the temporal series
2) Retrieve the structure of A with one of these two

approaches: using Â = R̂ as in

R̂i = argmin
R̂

1
2

k−1∑
k=M

‖ x[k]−
M∑
i=1

Rix[k − j] ‖22

+λ1 ‖ vec(R̂1) ‖1 +λ3
∑
j6=i

‖ [Ri,Rj] ‖2F (5)

or compounding all the R̂i to find A,

Â = argmin
A
‖ R̂1 − A ‖22 +λ1 ‖ vec(A) ‖1

+ λ3

M∑
i=2

‖ (A, R̂i) ‖2F (6)

3) Estimate all cij with one of these two approaches: esti-
mating c or starting from Â and R̂i as in

ĉi = argmin
ci

1
2
‖ vec(R̂i)−Qici ‖22 +λ2 ‖ ci ‖i (7)

where

Qi = (vec(I)vec(Â) . . . vec(Âi)), ci = (ci1ci2 . . . .cii)

(8)

or from Â and the data X as in

ĉi = argmin
c

1
2
‖ Y(Â)− B(Â)c ‖2F +λ2 ‖ c ‖i (9)

At the end of this process, the correlation degrees between
the nodes are identified in the adjacency matrix. The higher
the coordination between nodes, the higher the correlation
between them. This results in a high probability to identify
a botnet [30]. The coordination between nodes lies in the
magnitude of the values on the adjacency matrix. The farthest
from zero, the higher is the influence between nodes identi-
fied in the rows and columns of the matrix.

As stated before, bots are detected per cluster. Thus,
the volume of analyzed data is smaller than in other applica-
tions of this autoregression technique [31]. For each cluster,
the relations for each node can be calculated, having as output
an N ×N matrix, where N is the number of nodes in the clus-
ter.When the influencematrix is calculated, bots have amuch
higher magnitude order for calculated values than the nodes
that do not have any correlation among them. Cluster analysis
can benefit from parallel computing, improving performance
detection. Each matrix (i.e., each cluster) is individually eval-
uated, identifying its bots. Nodes are classified in bots or not.
Hence, results can be reported by cluster for immediate action
after its analysis.

D. THE NOTIFICATION MODULE
The Notification Module interfaces components that may be
distributed on the network and also reports results from the
analysis to other systems, in a human-readable format or to
further action on the network. Once a prediction analysis
is completed, if it identifies a state change on the network,
a deeper analysis to identify the bots is started. The Analysis
Module indicates to the Notification Module to start the
processing of data in order to detect the bots. The Notification
Module triggers the Processing Module.

Once a detection is completed, an action on the network
is recommended to block action of malicious actors. The
Notification Module can indicate to system administrators
and/or network managers which nodes may be compromised,
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FIGURE 3. CTU-13 - Scenario 10 attack time frame.

with the behavior of a bot, so they can act on the network. The
Notification Module can also provide other system data so
they can act on the network, blocking its traffic flow, reducing
possible damage of a DDoS attack.

V. PERFORMANCE EVALUATION
This section presents the results for the early signals predic-
tion, that calculates the leading indicators, and bot detection,
that detects bots only when triggered by the early signals.
The goal is to detect bots, with high accuracy, reducing
false-positives and false-negatives. Results from the eval-
uation of the CTU-13 dataset, scenario 10, are discussed
and explained on Subsection V-A. This dataset was created
from a virtual environment deployed by the Czech Republic
University, with 13 different scenarios. Results from Scenar-
ios 04 and 11 from this dataset, which also contains DDoS
attacks, are presented on Subsection V-B.
CTU-13 dataset, on scenario 10, presents traffic with a

volumetric DDoS attack, with 10 infected hosts. The dataset
contains logs of the network traffic following the setting:
a Rbot malware infects the devices and those infected devices
comprise a DDoS attack. The Rbot malware exploits security
vulnerabilities in Microsoft operating systems. The whole
scenario lasted 4.75 hours with more than 90 million packets
exchanged in the network. The attack happens in multiple
time periods during the capture, allowing us to perform the
methods under a resting scenario, without the communication
of the infected hosts, before the attack starts and during it.

A window size of 60 seconds was used (from 0 to
59.99 seconds). From the second window, the Prediction
Component keeps as history 50% of the previous window.
While the Prediction Component analyzes the next window
leading indicators, the botnet detection accumulates the traf-
fic from prior windows while it is detecting the influence
of one node over the other, indicating the presence of bots.
Figure 3 shows the timeframe of the capture for scenario
10 of CTU-13 and highlights the capture period employed to
plot the results shown in the subsequent figures. The system
implemented for this case study runs continuously, calculat-
ing the leading indicators for each window and executing the
botnet detection method when triggered by the early signals
of DDoS attacks.

To calculate the leading indicators and analyze the network
behavior, time series are built with packet size and its times-
tamp. The goal lies in employing relevant but simple features

to predict the imminence of an attack. Features such as packet
generation frequency and packet size can strongly character-
ize a volumetric DDoS attack. High frequency packet gener-
ation is generally associated with DDoS attack. The increase
in packet size usually indicates that the attacker is trying to
cause network saturation. Packet sizes usually are smaller
than 250 bytes. However, one observes packet sizes reaching
1500 bytes, mostly when the network is under attack.

It is possible to observe a fast increase in the packet size on
the built time series (Figure 4, right). While in the first time
series (Figure 4, left) the size of the majority of the packets
are 60 bytes, in the second time series (Figure 4, right) it
is possible to see the transition (indicated at the red dashed
vertical line) from a period in which packets are of 60 bytes to
a period in which the majority of the packets are 1500 bytes.
Another interesting aspect lies in the two peaks (highlighted
by the red boxes) presented in the first time series (Figure 4,
left). Despite the fact that this time series is from a non-attack
phase, few packets of 1500 bytes can be seen. This behavior
was observed in other analyzed time series. We suspect that
they correspond to bots preparing and testing themselves,
a few minutes before launching the attack.

FIGURE 4. DDoS attack.

A. RESULTS
The calculation of leading indicators is done for each window
of 60 seconds that was split from the pcapfile that contains all
traffic. Three behaviors can be observed: in a resting scenario,
moments before an attack starts (where there is already bot
communication) and during an attack. Moments before the
attack, there is a state change on the network, calculated by
the leading indicators, providing us a signal that something
malicious might be happening on the network. With this,
botnet detection starts to log the traffic to be able to identify
the bots.
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FIGURE 5. Leading indicators in the imminence of an attack.

Figure 5 shows the results for the leading indicators, before
the attack starts (from Thu Aug 18 11:46:13 CEST 2011 to
Thu Aug 18 11:47:13 CEST 2011). The indicators show
an imminent beginning of a DDoS attack, i.e., there is a
decrease of the return rate curve, while there is an increase
of the autocorrelation curve, the coefficient of variation and
skewness. The decrease of the return rate indicates the pres-
ence of significant oscillations on the network traffic flow,
then, not being able to keep in a metastable state. The trend
of high increase for autocorrelation index (positive Kendall
tau of 0.896) indicates a similarity on the packet sizes though
time, meaning that there is a trend to the packets stay close
to 1500 bytes. This packet size is used during an attack to
overload the bandwidth by the attack as it is the maximum
size of a packet. The increase in the coefficient of variation
reveals a strong instability on the network due the pres-
ence of extreme values and the high variation on the packet
sizes. Finally, the positive skewness, with its increasing trend,
points the concentration of the packet size close to 1500 bytes.
Considering the indicators, a critical state change happens,
pointing out an imminent DDoS attack.

To illustrate the behavior when no critical state change is
verified, Figure 6, left, shows the state on the network on a
resting stage. At this point, the traffic capture had begun, but
without the presence of the bots that perform DDoS attacks.
Similarly, Figure 6, right, shows the leading indicators in the
middle of the DDoS attack, where also there is no critical state
change (the attack tends to continue). The return rate indicates
continuity of the metastable state due to low variance of the
data. Both autocorrelation and the coefficient of variation
indicate low data similarity, with low variance, pointing to
a change on the packet average size.

The state change, shown in Figure 5 triggers the botnet
detection. Figure 3 shows the window that data was

FIGURE 6. Leading indicators while not in the imminence of an attack.

accumulated and continuously scanned for bots. Next,
the results show the botnet detection method performing the
feature extraction and selection, the clustering and, finally,
indicating bots that behave like bots or not. During the anal-
ysis, traffic from 35477 nodes were seen on the traffic.

For all the nodes, 19 features were continuously extracted
and analyzed. Table 2 shows the result of the feature selection,
having as output selected and not selected features. It is
observed a reduction of 48% in the features total number. The
feature node betweenness centrality, not selected, is the one
that has the highest computational cost to calculate. However,
it is unknown, in advance, if this feature should or should
not be selected. In some tests, this feature took 99.9% of the
time spent to perform the calculation of all the features. In all
cases, it took over 95% of time, as in [11].

TABLE 2. Selected and not selected features during attack.

The Clustering Component creates 25 clusters using the
selected features. All the 10 bots of this dataset were clustered
on the same cluster with another node. Table 3 highlights the
cluster with the bots. Starting the analysis from the smaller
cluster and the detection might be able to detect the bots after
analyzing 27 other nodes (on 7 clusters). This speeds up the
detection and reduces the time to an action to be taken and
mitigate the attack.

Bot detection starts with the smallest cluster. Based on the
matrix of influence, it is evaluated as the influence between
nodes on each cluster, using as feature the total number of
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TABLE 3. CTU-13 Scenario 10: Clusters during the attack.

packets exchanged between pairs of nodes. When there is
no correlation between nodes, their corresponding values on
the matrix of influence are close to zero, in absolute values.
Figure 7 illustrates the matrix of influence and its higher
values for a given node.

FIGURE 7. Influence matrix on a cluster. Last column node has higher
influence on nodes than other nodes on cluster.

Results also show influence among nodes in other clusters.
When this influence is observed, the node is identified as
bot. On the cluster with the bots (10 bots on 11 nodes),
the detection correctly classified 9 out of the 10 bots,
also correctly identifying the benign node on that cluster.
Therefore, Table 4 shows the confusion matrix after the
detection is done. Nine nodes were correctly classified as
bots (true-positives), 35464 nodes were correctly classified
as benign (true-negatives), seven benign nodes were falsely
classified as bots (false-positives) and one bot were falsely
classified as benign (false-negative).

TABLE 4. Confusion matrix after bot detection.

Also, if the Detection Component needs to check all the
nodes on the dataset in the search for bots, the execution
time would turn the analysis impractical. This cluster-based
approach and doing the detection only when triggered by

early signals reduces the amount of analyzed data, without
compromising the results.

B. OTHER RESULTS
This section presents results from scenarios 04 and 11 of the
CTU-13 (CTU-13/S04 and CTU-13/S11, respectively) and
CAIDA datasets. These datasets also contain DDoS attacks.
The scenario 04 of CTU-13 has 4.21 hours of duration,
from August 15, 2011 (10:59:23 CEST to 15:11:46 CEST).
This dataset has generated over 62 million packets and
has Rbot as its malicious bot. The scenario 11 of CTU-13
database is just 15 minutes long, generating over 6 million
packets. The CAIDA dataset contains approximately one
hour of anonymized traffic traces from a DDoS attack on
August 4, 2007 (20:50:08 UTC to 21:56:16 UTC). This
denial-of-service attack has attempted to block access to the
targeted server by consuming computing resources on the
server and consuming all of the bandwidth of the network
connecting the server to the Internet.

On the CAIDA dataset and also for CTU-13, scenarios
04 and 11, it was possible to verify a critical state change
on the network before any attack began. Figure 8 presents
the leading indicators for these datasets. A critical transition
is detected before the attack starts, that is, when there is a
decrease in return rate, and an increase in autocorrelation,
coefficient of variation, and skewness.

Table 5 shows the results of the feature selection by the
ProcessingModule, for each dataset. It can be seen that the set
of selected features is not static but rather changing for each
traffic. It is worth noticing that the feature node betweenness
centralitywas not selected in any dataset. This feature has the
highest computational cost to calculate among all. However,
it is unknown in advance if this feature should or should not
be calculated. The clustering processing outputs a 5× 5 grid
with the nodes associated with each cluster.

TABLE 5. Selected features for each dataset.

For CTU-13/S04, there is only one bot. The bot is in a
cluster with another 71 nodes, as can be seen in Table 6.
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FIGURE 8. Leading indicators on the CTU-13 datasets. Critical transitions detected before the attack starts on
Scenarios 04 (left), 11 (center) and CAIDA (right).

TABLE 6. CTU-13 Scenario 04: Clusters - bot in cluster (0,4).

TABLE 7. CTU-13 Scenario 11: Clusters - 2 bots at cluster (0,1) and 1 bot
at cluster (3,4).

For CTU-13/S11, (Table 7), there are three bots: two can be
seen in a cluster with another five nodes and the other bot
is found with 456 other hosts. Having the nodes clustered
speeds up the detection, as the bot can be detected before
reaching the clusters with a higher number of nodes, which
takes more computational time and power. The number of
bots in the CAIDA dataset is unknown. However, instead of
analyzing all the 9251 nodes in one run, clustering allows a
quick detection and action in the network, reducing damages
caused by the action of the malicious bots. Table 8 shows the
clustering result for the CAIDA dataset.

TABLE 8. CAIDA: Clusters.

The detection component was able to successfully find
bots on all datasets. On CTU-13, scenario 04, the detection
component identified a significant influence between all the
nodes on the cluster that also had the bot. That explains the
high number of false-positives in this scenario. Also, this
scenario is the one that had the most analyzed nodes, with
a total of 186,206. Table 9 summarizes the results.

TABLE 9. Confusion matrix after bot detection on Scenario 04.

For CTU-13, scenario 11, the detection component marks
6 out of 7 nodes as bots on the cluster with the two real bots,
being 4 incorrectly. Also, it did not recognize the bot being the
other 456 nodes, on the cluster with the other real bot. Also,
on smaller clusters, a significant influence between nodeswas
identified. 17 nodes were incorrectly classified as bots, while
one bot was incorrectly classified as benign. The total number
of analyzed nodes is 41,892.

On the CAIDA dataset, traffic from 9251 nodes was
present. This traffic is only from the network that the victim
is part of, sending or receiving packets. As this dataset is
not labeled, the number of bots is unknown. The detection
mechanism detected high coordination between 2738 nodes,
marking them as bots.

C. COMPARING TECHNIQUES
We use Botnet 2014 [32] dataset to compare our proposed
architecture and machine learning techniques, in particu-
lar Decision Tree. This database has been chosen because
its dataset is split into training and test. This dataset was
built merging three others datasets (ISOT dataset [33], ISCX
2012 IDS dataset [34] and Botnet traffic generated by the
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TABLE 10. Confusion matrix after bot detection on Scenario 11.

Malware Capture Facility Project [35]), aiming to improve
generality, realism and representativeness. If we had to man-
ually generate a training and test dataset from the other tested
datasets (CTU-13 and CAIDA), we might interfere in the
results, masquerading the real analysis. Thus, having a dataset
built with the separation in training and testing is better.

Decision Tree was chosen to compare our results because
literature has shown it provides better results than other
techniques [11]. Also, Decision Tree provides a natural
feature selection, performing feature selection while it does
performance evaluation (in a method known as hybrid/
embedded [23]). Thus, as our distributed architecture also
performs selection (in a method known as filter), it is fair
to use Decision Tree to compare.

However, it must be pointed out that, to analyze the Deci-
sion Tree results, no clustering was done. Also, no prediction
on local networks was performed. The training dataset was
used to train the machine learning algorithm and, then, results
gathered on the testing dataset. As our distributed architecture
requires no training phase, results are from applying the
deterministic technique only in the testing dataset. Results for
the Decision Tree algorithm can be found at Table 11.

TABLE 11. Confusion matrix with decision tree to botnet 2014 dataset.

The prediction component is highly time dependent.
Even if windows are not set by time (windows split every
60 seconds), but by packet count (windows split every
10000 packets), the leading indicators are calculated based
on timestamps. This is due the fact that a critical transition
is evaluated at a given time, in an interval. The way the
dataset was built, the packets were sparse distributed in time.
Splitting the dataset every 60 seconds (or even
3600 seconds!), only one (or a few) packet was inserted
in that window. If packet count was used, as the packets
are sparse distributed, leading indicators still could not be
calculated for every window. By packet count windows,
some windows were calculated and we were able to detect
critical transitions. However, we have decided to ignore the
prediction component in the following results, as we could
not reliably rely on packet timestamps.

Considering that there was a trigger from the prediction
component, features would be selected. For this dataset,
the following features were selected: Average TTL, Desti-
nation Port Quantity, Frame Length, Percent ICMP, Percent

DNS, Percents TCP, Percent Others, Source Not Privileged
Ports, In Degree and In Degree Weight. The feature selection
reduced the data to be analyzed in 48%. These features are
the most statistically relevant features for this dataset. The
Clustering Component groups the nodes. Table 12 presents
the 5× 5 clusters For the Botnet 2014 dataset.

TABLE 12. Botnet 2014: Clusters.

Similarly to the other datasets, the detection component
classifies the nodes in bots or not. The final classification,
after the clustering phase can be seen at Table 13. Comparing
results from the Decision Tree algorithm, there was an
improvement in the detection of real bots, with more benign
nodes classified as bots.

TABLE 13. Confusion matrix with prediction and detection.

VI. CONCLUSION
This article presented a two-tier distributed architecture for
DDoS attack prediction and bot detection. The architecture
promotes a distributed and integrated analysis of the local net-
work traffic and the Internet traffic. The architecture defines
the use of prediction methods, such as the early signals of vol-
umetric DDoS attacks to trigger bot detection methods. By a
case study, we evaluate the proposed architecture. In the case
study, we employ early signals such as leading indicators,
calculated from the network traffic. These early signals have
been chosen because domestic routes can easily calculate
them. Once an early signal predicts a possible imminence of a
DDoS attack, the system triggers the bot detection to identify
malicious nodes in the network.

Hence, this article showed that it is possible to identify
changes in the network state that might indicate a DDoS
attack. Following this two-tier, the volume of analyzed data
particularly to bot detection is reduced and occurs per cluster
of nodes, without losing detection efficiency. Performance
evaluation employed the CTU-13 dataset, scenario 10 and the
results showed the efficiency in detecting malicious nodes,
infected by bots, controlled to launch DDoS attacks.

A. FUTURE WORK
The proposed DDoS prediction and bot detection architecture
follows a local network and Internet traffic analysis. Early
signals of a volumetric DDoS attack trigger a hybrid botnet
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detection method. For the early detecting signals, we have
employed four leading indicators that are commonly used in
biological systems to indicate a transition. However, other
indicators could be explored to be added.

Further features could be extracted, both from traffic and
graphs, to better characterize the traffic. Window sizes were
empirically chosen, in a trade-off between performance and
accuracy, without having a final conclusion on the best win-
dow size. Studying the best window size parameter for each
traffic will surely improve results.

Other feature selection mechanisms could be investigated.
We have employed the α-investing+ algorithm, that operates
as a filter method. Wrapper and embedded methods could be
analyzed. We have compared our proposal with a Decision
Tree algorithm. Othermachine learning techniques could also
be explored, to better emphasize the results obtained in our
architecture. Finally, the vast literature on botnet detection
focuses on machine learning techniques instead of determin-
istic methods. A hybrid method could be explored using
both, combined, to improve the accuracy of the detection
methods.
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