IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 10, 2020, accepted August 26, 2020, date of publication August 31, 2020, date of current version September 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3020262

Efficient and Scalable FPGA-Oriented Design of
QC-LDPC Bit-Flipping Decoders for
Post-Quantum Cryptography

DAVIDE ZONI™, ANDREA GALIMBERTI, AND WILLIAM FORNACIARI", (Senior Member, IEEE)

Dipartimento di Elettronica Informazione e Bioingegneria (DEIB), Politecnico di Milano, 20133 Milan, Italy

Corresponding author: Davide Zoni (davide.zoni@polimi.it)

This work was supported by the EU H2020 “RECIPE” Project under Grant 801137.

ABSTRACT Considering code-based cryptography, quasi-cyclic low-density parity-check (QC-LDPC)
codes are foreseen as one of the few solutions to design post-quantum cryptosystems. The bit-flipping algo-
rithm is at the core of the decoding procedure of such codes when used to design cryptosystems. An effective
design must account for the computational complexity of the decoding and the code size required to ensure
the security margin against attacks led by quantum computers. To this end, it is of paramount importance
to deliver efficient and flexible hardware implementations to support quantum-resistant public-key cryp-
tosystems, since available software solutions cannot cope with the required performance. This manuscript
proposes an efficient and scalable architecture for the implementation of the bit-flipping procedure targeting
large QC-LDPC codes for post-quantum cryptography. To demonstrate the effectiveness of our solution,
we employed the nine configurations of the LEDAcrypt cryptosystem as representative use cases for
QC-LDPC codes suitable for post-quantum cryptography. For each configuration, our template architecture
can deliver a performance-optimized decoder implementation for all the FPGAs of the Xilinx Artix-7
mid-range family. The experimental results demonstrate that our optimized architecture allows the imple-
mentation of large QC-LDPC codes even on the smallest FPGA of the Xilinx Artix-7 family. Considering the
implementation of our decoder on the Xilinx Artix-7 200 FPGA, the experimental results show an average
performance speedup of 5 times across all the LEDAcrypt configurations, compared to the official optimized
software implementation of the decoder that employs the Intel AVX?2 extension.

INDEX TERMS QC-LDPC codes, bit-flipping decoding, code-based cryptography, post-quantum cryptog-

raphy, applied cryptography, FPGA, hardware design.

I. INTRODUCTION

The recent advances in quantum computing pose a serious
threat to traditional public-key cryptography, whose secu-
rity relies on the hardness of factoring large integers and
of computing discrete logarithms in a cyclic group. In fact,
Shor’s algorithm [1] can compute the integer factorization
and the discrete logarithm operations in polynomial time on
a quantum computer, thus dramatically reducing the security
margin of the current public-key cryptography primitives.
To cope with this risk, the National Institute of Standards
and Technology (NIST) is in the process of evaluating and
standardizing novel quantum-resistant cryptosystems. The
design of such cryptosystems must rely on computationally

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Chi Chen

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

hard problems for which no polynomial-time solutions are
possible even by leveraging quantum computers. In this sce-
nario, code-based cryptography emerged as one of the few
promising frameworks, together with lattice-based and hash-
based cryptography [2], to design post-quantum cryptosys-
tems. The security of code-based cryptography relies on the
hardness of decoding a syndrome obtained with a random
linear block code, i.e., the syndrome decoding problem [3],
that has been proven to be a NP-complete problem. More-
over, the best solvers for this problem still offer exponential
complexity even when implemented on quantum comput-
ers [4]. To this end, the syndrome decoding problem is
widely assumed to have no polynomial-time solutions even
on quantum computers. McEliece [5] proposed the first cryp-
tosystem relying on the hardness of the syndrome decoding
problem, although the huge state-space representation due to

163419

https://orcid.org/0000-0002-9951-062X
https://orcid.org/0000-0001-8294-730X
https://orcid.org/0000-0002-5577-0016

IEEE Access

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

the use of Goppa codes prevented its wide adoption. How-
ever, the post-quantum resistance of the syndrome decoding
problem motivates a huge amount of research to find out
code families with a more efficient state-space represen-
tation that allows to reduce the size of the cryptographic
key pairs. In this scenario, quasi-cyclic low-density parity-
check (QC-LDPC) [6] and quasi-cyclic moderate-density
parity-check (QC-MDPC) [7] codes, emerged as viable alter-
natives to ensure post-quantum resistance, while provid-
ing an efficient state-space representation. Such codes are
at the core of two post-quantum candidate cryptosystems,
i.e., LEDAcrypt [8] and BIKE [9], that have been recently
admitted to the third round of the NIST’ post-quantum
competition. In this scenario, it is crucial to provide effi-
cient hardware support for such quantum-resistant public-key
cryptosystems, since their available software implementa-
tions [8], [9] reveal the impossibility to cope with the required
performance. Considering the wide range of scenarios requir-
ing the use of cryptographic primitives, a goal of the NIST
competition is to ensure the possibility of implementing the
selected post-quantum cryptosystems on the largest variety
of computing platforms. To this end, for each proposal the
software must be coded in the C language while a set of com-
mercial FPGAs has been proposed as the reference hardware
technology. The software realization allows to deploy the
cryptosystem on a wide set of computing platforms ranging
from embedded microcontrollers to servers and High Per-
formance Computing (HPC) platforms. The FPGA imple-
mentation constitutes a common hardware technology to pro-
vide a fair comparison among different hardware solutions.
In particular, the quality of the cryptosystems can be assessed
independently from any specific optimization or technology,
possibly made available by large silicon providers participat-
ing to the NIST post-quantum competition.

From the computational point of view, the binary poly-
nomial multiplication and the syndrome decoding dominate
the encryption and decryption primitives of QC-LDPC-based
cryptosystems, respectively. However, the hardware primi-
tives to support both the binary polynomial multiplication
and the syndrome decoding problem in QC-LDPC codes
are meant for small key-sizes, i.e., few thousands of bits at
most, and mostly targeting telecommunication applications.
Consequently, they cannot be readily employed to support
QC-LDPC codes for post-quantum cryptography, for which
the key-sizes are in the range of dozens of thousands of bits
and the operativity is expected far beyond the range sup-
posed for telecommunication applications. To the best of our
knowledge, the work in [10] presents a flexible and scalable
binary polynomial multiplier conceived for post-quantum
QC-LDPC-based cryptosystems, while no equivalent solu-
tion is available to support the syndrome decoding of large
codes.

To this end, the manuscript proposes an efficient and
scalable bit-flipping architecture to support the decoding in
QC-LDPC codes for post-quantum cryptography. We note
that the literature contains several hardware implementations

163420

of QC-LDPC decoders. However, the majority of them are
meant to support QC-LDPC codes in the field of telecommu-
nications, thus preventing the use of such hardware solutions
in post-quantum cryptography. More in detail, the per-
formance of the available hardware decoders for current
QC-LDPC codes is achieved by exploiting the channel infor-
mation. This characteristic makes the use of such decoding
algorithms unfeasible in the design of QC-LDPC decoders
for post-quantum cryptosystems. In fact, such cryptographic
primitives must be employed in scenarios where the chan-
nel information is not available, e.g., encryption of digitally
stored data.

As a consequence, the bit-flipping algorithm represents
the most widely adopted decoding scheme for two reasons.
First, it avoids relying on the information from the physical
medium, thus allowing the cryptosystem to operate in a wider
range of scenarios. Second, it allows an efficient hardware
implementation without employing the expensive real-value
computation support required to exploit the information from
the physical medium [11]. In particular, the real-value compu-
tation increases the complexity of the decoders thus limiting
its scalability against large QC-LDPC codes [12]. It is impor-
tant to note that both the LEDAcrypt [8] and the BIKE [9]
cryptosystems, that are finalists of the NIST competition,
make use of the bit-flipping decoding procedure.

In the following, the contributions of the manuscript
are highlighted in Section I-A, while the background on
QC-LDPC codes is detailed in Section I-B. The rest of
the manuscript is organized in four parts. Section II details
the state-of-the-art related to the bit-flipping decoding. The
proposed decoder design is discussed in Section III and
Section IV presents the experimental results. Finally, some
conclusions are drawn in Section V.

A. CONTRIBUTIONS

The manuscript presents an FPGA-optimized hardware
design methodology to implement efficient and scalable
QC-LDPC bit-flipping decoders for post-quantum cryptogra-
phy. We note that we are not proposing a novel post-quantum
QC-LDPC cryptosystem. The crucial contribution of our
research is the hardware implementation of a family of
decoders that exploits the bit-flipping decoding algorithm
and allows to accelerate any QC-LDPC-based cryptosys-
tem. The assessment has been carried out against the Xilinx
Artix-7 FPGA family, since it is the recommended target
technology for any hardware implementation within the NIST
post-quantum cryptography competition. Our solution allows
the designer to trade the resource utilization with the obtained
performance in terms of throughput, adding two relevant
contributions with respect to the state-of-the-art:

« Efficient computing architecture - By leveraging the
sparseness and quasi-cyclic properties of the considered
QC-LDPC codes used to design post-quantum cryp-
tosystems, the proposed architecture is optimized to
efficiently compute the time-consuming vector-matrix
multiplications that is at the core of the bit-flipping

VOLUME 8, 2020

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

IEEE Access

decoding algorithm. Moreover, the level of parallelism
to perform each vector-matrix multiplications is a
design-time parameter. According to the NIST guide-
lines, we demonstrated the effectiveness of our solu-
tion by implementing each configuration of the
LEDAcrypt [8] cryptosystem on the entire family on
the Xilinx Artix-7 FPGAs. The comparison of our
solution implemented on the Xilinx Artix-7 200 against
the performance-optimized software reference solution,
which exploits the Intel AVX2 extension, shows an aver-
age speedup of 5 times across the entire range of the
LEDAcrypt configurations.

o Scalable architecture - The proposed decoder allows
to optimally select the resource-performance trade-off
regardless of the parameters of the underlying code.
Indeed, the bandwidth of the decoder datapath is a
design-time parameter. Moreover, the use of the FPGA
block RAMs (BRAMs) instead of flip-flops to store the
inputs, the intermediate values and the results allows
to manage underlying codes with a codeword length
ranging from few bits up to dozens of thousands bits,
even on small FPGA targets. In particular, our exhaus-
tive design space exploration demonstrates the possibil-
ity of implementing a performance-optimized decoder,
for each configuration of the LEDAcrypt cryptosys-
tem, over the entire Xilinx Artix-7 family of mid-range
FPGA:s.

B. BACKGROUND ON QC-LDPC CODES

Quasi-Cyclic Low-Density Parity Check (QC-LDPC) codes
emerged as a viable solution to design post quantum cryp-
tosystems due to their inner structure that allows to greatly
reduce i) their software and hardware implementation com-
plexity, and ii) the size of the used secret keys. The rest
of this part reviews the basic elements of the QC-LDPC
codes to ease the reading of the following parts of the
manuscript.

1) LOW-DENSITY PARITY-CHECK CODES

Low-density parity-check (LDPC) codes are linear error cor-
rection codes introduced by Gallager [13], that allow to
transmit messages over noisy channels. However, the recent
advance in quatum-computing highlighted the possibility of
using such codes to support the design of post-quantum
cryptosystems.

Without loss of generality, we are focusing on binary
LDPC codes since they are the most widely adopted in
code-based cryptography. Starting from the definition of the
Galois field of order 2, i.e., GF>, we denote as GFé‘ the
k-dimensional vector space defined over GF;. To this end,
a binary linear code denoted as C(n, k) is defined as a map-
ping which univocally associates each binary k-tuple, i.e., the
information vector, to a binary n-tuple, i.e., the codeword (see
Equation (1)).

C:GF} - GF? (1)

VOLUME 8, 2020

updated syndrome
computed syndrome

parity-check nodes

variable nodes

received codeword

UpPC

updated codeword

FIGURE 1. Tanner graph of an LDPC code with n = 7 and r = 3. The steps
of the bit-flipping algorithm used to correct the bit of the codeword
associated to the Vg variable node are marked from T to 7.

In general, an LDPC code C(n, k) is defined by its parity-
check matrix H that has r rows and n columns, where r =
n — k [11]. Such matrix can be graphically represented by
the associated Tanner graph, that is a bipartite graph made
of n variable nodes and r check nodes. A codeword bit is
associated to each variable node, while each parity-check bit
is associated to a check node. In particular, the set of all the
parity-check bits defines the so-called syndrome vector s.
Each #; j element of the H matrix set to 1 indicates that the
Jj-th bit in the codeword participates in the i-th parity check
equation. The i-th syndrome bit is therefore computed as the
bitwise XOR of all the codeword bits involved in the i-th
parity-check equation. For example, the Tanner graph of a
binary LDPC code with n = 7 and r = 3 is depicted
in Figure 1, while Equation (2) defines the corresponding H
matrix. For each parity-check node, the number of incoming
edges is equal to the number of ones in the corresponding
row of the H matrix, while the number of incoming edges to
each variable node is equal to the ones in the corresponding
column of the H matrix.

1 01 0010
H=]101 010 01 2)
1 01 01
Once a codeword is received, the decoding procedure ana-
lyzes the parity-check equations by generating the syndrome
s of the codeword c¢ through H, according to Equation (3).

s=c-HT' 3)

The received codeword is considered to be error-free when
the syndrome is a null vector. In case the received code-
word contains errors, the error correction algorithm itera-
tively recovers such errors in the codeword until either all the
parity check equations are satisfied, i.e., the syndrome is the
null vector, or the codeword is declared unrecoverable and,
thus, it has to be retransmitted by the sender. We note that
regardless of the use of soft-, e.g., Logarithmic-Likelihood-
Ratio Sum-Product Algorithm (LLR-SPA) [11], or hard-
decision, e.g., bit-flipping (BF), error correction algorithms,
all the available codeword decoding algorithms implement

163421

IEEE Access

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

an iterative procedure. Soft-decision decoders represents the
most employed decoding solutions in telecommunication
applications due to their superior performance coming from
the exploitation of the availalbe channel information [11].
In contrast, the bit-flipping algorithm represents the most
employed decoding solution when no medium information
is available, the floating point support is not available, and
an efficient decoder design is required [11]. Considering its
vast applicability and the possibility of delivering efficient
decoders, the bit-flipping decoding algorithm is the sole solu-
tion adopted by the code-based cryptosystems participating to
the NIST post-quantum competition.

Figure 1 depicts an example of the iterative bit-flipping
decoding procedure, made of one iteration and five time-
steps, i.e., T1-Ts, to correct a received codeword by means
of the bit-flipping algorithm. At time T} the sender transmits
the codeword ¢ = 0100101, that is received with an error
by the receiver at time 7 as ¢ = 0110101. In this example,
the received codeword contains an error in the bit associated
to Va, i.e., its value is 1 instead of 0. The bit-flipping decoding
algorithm associates each bit of the received codeword to the
corresponding variable node, and the syndrome is computed
at time T according to Equation (3). We note that the syn-
drome is made of three bits, i.e., one bit for each parity-check
node. In particular, the parity-check equations corresponding
to the parity-check nodes Cy and C are not satisfied and,
thus, the error-recovery strategy of the bit-flipping algorithm
takes place. For each iteration, the bit-flipping algorithm can
flip one or more bits in the received codeword according to the
information contained in the unsatisfied parity-checks (UPC)
vector. For each variable node, the corresponding UPC value
corresponds to the number of failed parity-check equations,
i.e, the number of connected parity-check nodes whose asso-
ciated syndrome bit has a value equal to 1. The UPC vector
is defined by Equation (4) and it is computed at time 73 (see
Figure 1).

UPC=s-H 4

Starting from the UPC vector, the bit-flipping algorithm flips
each bit in the codeword for which the corresponding UPC
value is above a certain threshold. We note that the threshold
selection is a parameter of the bit-flipping algorithm and it
strongly depends on the specific LDPC code. The threshold
is selected to minimize the trade-off between the decoding
failure rate (DFR), i.e., the number of times the algorithm
fails decoding the received codeword, and the number of
decoding iterations. At time 7'4, the codeword is updated
by flipping the bits corresponding to UPC values greater
or equal to the threshold (which, as an example, can be
set to the maximum of the values assumed by the UPC
vector). In our case, the codeword bit corresponding to the
variable node V3 is flipped from 1 to 0, since its UPC value
is equal to 2 (the maximum value assumed by the UPC
vector). Finally, at time T'5, the syndrome bits associated to
the flipped codeword bits are also flipped, which is a faster
way to update the syndrome vector than recomputing the

163422

vector-matrix multiplication in Equation (3). In the example
in Figure 1, the syndrome bits corresponding to parity-check
nodes Cp and C, are both flipped from 1 to 0. Being the
syndrome after 75 equal to the null vector, the decoding
procedure can be interrupted since the codeword has been
certainly recovered correctly, i.e., all the transmission errors
have been corrected. Otherwise, if the syndrome vector were
not a null vector, the iterative procedure would have been
continued by repeating the steps executed at the time-steps
from T3 to T'5.

2) CIRCULANT MATRICES

A circulant matrix is defined as a square matrix where each
row is obtained by shift-rotating the preceding row to the
right by one position. By construction, a circulant matrix is
therefore regular, i.e., both columns and rows have constant
weight. A p x p circulant matrix A, where each element is
denoted as a; withi € [0, ..., p—1],is shown in Equation (5).

ap aj a ... ap—|
ap—1 ap a ... ap-2
A= ap_z ap_l apg ... a[,_3 (5)
aj a as ... ap

We note that the arithmetic of circulant matrices of size p
is isomorphic to the arithmetic of the polynomials modulo
xP — 1 over the same field as the coefficients of the circulant
matrices. The circulant matrix A is therefore isomorphic to
a polynomial a(x) with coefficients given by the elements of
the first row of the matrix, as shown in Equation (6).

a(x):ao+a1~x—|—a2'x2+...+aP,1~xp_1 6)

Considering the case of binary linear block codes, the arith-
metic of p x p circulant matrices over Z, can be substituted
by the arithmetic of polynomials in Z,[x]/(x” + 1), which
provides a reduction in the storage requirements and a faster
execution of the arithmetic operations.

3) QC-LDPC CODES

Quasi-cyclic (QC) codes are linear block codes C(n, k) whose
parity-check matrices H are composed of ry x ng circulant
blocks, each of size p x p, where n = ng - p, k = ko - p and
ro = ng — ko. Considering post-quantum code-based cryp-
tosystems, we focus on the ro = 1 case, for which the corre-
sponding family of QC codes has a rate of (ng — 1)/ng. In this
case, the parity check matrix is defined by Equation (7),

where each block H; with i € [0, ..., ng — 1] is a circulant
matrix of size p X p.
H=[Hy H Hyy—1] ©)

The structure of quasi-cyclic codes enables efficient encod-
ing implementations by means of fast binary polynomial
multipliers. However, the lack of an efficient decoding sup-
port, due to the inherent structure of the H matrix, prevented
their widespread use for a long time. QC-LDPC codes have
been explored as a particular class of quasi-cyclic codes

VOLUME 8, 2020

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

IEEE Access

that are characterized by parity-check matrices which are
well-suited for LDPC decoding algorithms, i.e., the matrix is
sparse and it avoids the presence of short length cycles in the
associated Tanner graph [11]. In particular, QC-LDPC codes
combine the efficient decoding and the low decoding failure
rate (DFR) of LDPC codes, with the efficient encoding and
the small memory footprint of QC codes.

Il. RELATED WORKS

Traditionally, LDPC and QC-LDPC codes are used in
wired, e.g., 10GBase-T Ethernet [14], and wireless, e.g.
WiMax (IEEE 802.16e) and WiFi (802.11n) [15], telecom-
munication applications, due to their superior error-
correction capabilities [11]. However, the recent advances in
quantum computing highlighted the possibility of employing
the class of QC-LDPC codes to design quantum-resistant
cryptosystems [2]. In particular, two of the 17 cryptosystems
admitted to the final round of the post-quantum U.S. NIST
contest employ QC-LDPC codes [8], [9].

From the decoding point of view, the state of the art con-
tains several proposals addressing the optimized design of
decoders to support QC-LDPC codes. In the following we
classified them in two main groups: i) soft-decision decoders,
e.g., Belief Propagation (BP), Sum-Product Algorithm (SPA)
and their variations, that employ a message passing structure,
and ii) hard-decision decoders, i.e., bit-flipping algorithms,
designed to offer a simple decoder implementation. Tradi-
tionally, soft-decision decoders offer superior decoding per-
formance than hard-decision ones, i.e., bit-flipping solutions,
thanks to the use of the channel information. In contrast,
bit-flipping decoders have a favorable less complex design.
The rest of this section discusses the state-of-the-art propos-
als on decoding, targeting QC-LDPC codes. We note that
the review aims to highlight the main limitations and con-
straints that prevent the use of current state-of-the-art solu-
tions in the design of QC-LDPC decoders for post-quantum
cryptography.

Among the soft-decision decoders, [16] proposed a FPGA-
based QC-LDPC decoder for the Chinese Digital Television
Terrestrial Broadcasting (DTTB) standard, which is based
on the soft-decision min-sum algorithm. Reference [17]
describes a parallel GPU implementation of the soft-decision
min-sum decoder for QC-LDPC codes, targeting both the
WiMax and WiFi standards. Despite the interesting perfor-
mance of the proposed parallel GPU decoder, the underlying
QC-LDPC C(n, k) codes for WiFi and WiMax have the (n, k)
pair of parameters equal to (1944, 972) and (2304, 1152) for
WiFi and WiMax, respectively, thus tens of times smaller
than the ones employed in post-quantum QC-LDPC cryp-
tosystems. An additional hardware implementation of a
soft-decision decoder for the 802.11n WiFi standard, thus
targeting small codes, is proposed in [18]. In contrast, [19]
presents a 90nm CMOS implementation of a soft-decision
decoder for QC-LDPC codes with n values up to 96000 bits.
Despite the code size is aligned with the one employed in
current QC-LDPC-based cryptosystems, the decoder in [19]

VOLUME 8, 2020

is tailored to a specific code structure that is intended for
telecommunications. To this end, the underlying code cannot
offer the security margin required by post-quantum code-
based cryptosystems.

Considering telecommunication applications, the use of
soft-decision decoders represents the optimal choice due to
the possibility of implementing a system approaching the
channel capacity limit [11]. However, such superior perfor-
mance is achieved by leveraging the channel information in
the decoding procedure. To this end, QC-LDPC codes meant
for post-quantum cryptosystems can not employ soft-decision
algorithms, since the cryptosystem is expected to operate
even when the channel information is not available, e.g.,
encryption and decryption of digitally stored data. Moreover,
the complexity of soft-decision decoders limits their scala-
bility in supporting large QC-LDPC codes [12]. The state-of-
the-art contains several families of proposals, i.e., Weighted
Bit Flipping (WBF) [20], Modified WBF (MWBF) [21],
and Gradient Descent Bit Flipping (GDBF) [22], aiming
at optimizing the performance of the baseline bit-flipping
algorithm, i.e., hard-decision decoders. However, for each
of them, the performance improvement is obtained by
leveraging some sort of channel information, thus prevent-
ing their use in the design of QC-LDPC decoders for
post-quantum cryptosystems [12]. In summary, the base-
line bit-flipping algorithm represents the most important
candidate to deliver hardware accelerated decoders for
quantum-resistant QC-LDPC cryptosystems. We note that
such design choice is also supported by the fact that all
the QC-LDPC-based cryptosystems that entered the final
round of the post-quantum NIST competition make use of the
vanilla bit-flipping decoding procedure.

Among the hard-decision decoders, [23] presents a hard-
ware implementation of the Key Encapsulation Mecha-
nism (KEM) for the LEDAcrypt cryptosystem submitted
to the first round of the NIST competition. Such version
of the cryptosystem proposes a variant of the bit-flipping
decoder, i.e., Q-decoder, that has been dismissed due to a
set of security vulnerabilities in the theoretical decoding
scheme [24]. In fact, the current LEDAcrypt submission to
the third round of the NIST competition employs a baseline
bit-flipping decoder, thus making the work in [23] obso-
lete. Reference [25] proposes a lightweight implementation
of a bit-flipping decoder for QC-LDPC codes. Despite the
fact that the solution in [25] does not offer a configurable
area-performance trade-off, it suffers two other limitations.
First, the decoding performance is in the order of tens of
milliseconds, while our solution offers a performance that
is 100 times better, on average. Moreover, the design is
limited to small QC-LDPC codes that offer an 80-bit security
level, while our solution targets larger QC-LDPC codes to
achieve a security level between 128 and 256 bits. The BIKE
round 3 specification document [9] discusses the decoder
implementation of the BIKE cryptosystem, that leverages
a light variant of the bit-flipping algorithm. In particular,
the baseline bit-flipping algorithm has been slightly modified

163423

IEEE Access

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

in its first iteration to conditionally perform an additional
error correction task. We also note that a software implemen-
tation of the BIKE bit-flipping decoder employing the Intel
AVX512 extension is discussed in [26]. In a similar manner,
both the reference C/] and the optimized Intel AVX2 soft-
ware implementations of the bit-flipping decoder employed
in the current version of the LEDAcrypt cryptosystem, are
discussed in its third round specification document [8].

We note that despite the huge effort in designing efficient
bit-flipping decoders for post-quantum QC-LDPC cryptosys-
tems, all the available solutions are software-implemented,
while the available hardware solutions target telecommunica-
tions QC-LDPC codes. To this end, it is of paramount impor-
tance to provide efficient and scalable hardware decoders
to support the emerging QC-LDPC cryptosystems, since
the available software solutions reveal the impossibility to
cope with the required performance also considering the stiff
increase of the key-size expected in the near future.

ill. METHODOLOGY

This section describes the architecture of an efficient and scal-
able bit-flipping decoder for large QC-LDPC codes employed
in the design of post-quantum cryptosystems. The efficiency
is achieved by means of an optimized architecture to perform
the time-consuming vector-matrix multiplications within the
decoding procedure. In addition, the proposed decoder is
meant to scale across a wide range of FPGAs rather than
being hard-coded to a specific target. In particular, the config-
urable architecture allows to implement the decoder for large
QC-LDPC codes even on resource-constrained FPGA targets.
The rest of this section discusses the proposed bit-flipping
architecture. Section III-A presents the architectural details
of the dual-memory component at the core of our solution,
while Section III-B is devoted to the complexity analysis.

The architecture of the proposed bit-flipping decoder
is built upon the bit-flipping procedure described in
Algorithm 1. The main bit-flipping decoder function, i.e.,
BFDecoding, executes a predefined number of itera-
tions (see lines 3 — 9 in Algorithm 1) to produce the error
vector (e) and the decoding failure boolean flag (fail) as
outputs.

Each iteration consists of a sequence of six opera-
tions: i) threshold computation (line 4), ii) unsatisfied-
parity-check (UPC) computation (line 5), iii) error bit-flip
computation (line 6), iv) error update (line 7), v) syn-
drome bit-flip computation (line 8), and vi) syndrome update
(line 9). From the computational complexity viewpoint,
the UPC computation (see line 5 in Algorithm 1) and the
syndrome bit-flip computation (see line 8 in Algorithm 1)
represent the two most critical operations. In fact, both
the UPC and the syndrome bit-flip computations impose
a vector-matrix multiplication, i.e., the former between the
syndrome and the H matrix and the latter between the error
bit-flip vector and the H matrix. In particular, the UPC com-
putation is performed in the integer domain, while the syn-
drome bit-flip computation is instead performed in the binary

163424

Algorithm 1 Bit-Flipping Decoding Procedure for LDPC
Codes. H Is a p x n Parity Check Matrix, Where n = p - ng.
s Is a p-Bit Syndrome Vector. e Is an n-Bit Error Vector. fail
Is a 1-Bit Flag That Is Set in Case of Decoding Failure
: function [e, fail] BFDecoding(H, s)
e =0; fail = 0;
fori e 1 : itery,, do

thr = Threshold(s);

upc =s-H;

epr = (upc >=1thr)?1:0;

e=edep;

spr = epy OH T

s=5& Sbfs
fail=(s==0)70:1;
return e, fail;

R AN A R

_ =
= e

domain. Concerning the remaining operations, the threshold
computation procedure is usually customized to minimize
both the decoding failure rate (DFR) of the underlying
QC-LDPC code and the number of iterations required to
decode a codeword, and it is negligible from the computa-
tional viewpoint. Finally, the other three operations, namely
the error bit-flip computation and the update of both the
error and the syndrome vectors, are also negligible from the
computational point of view, since they consist in vector
operations with a linear complexity.

Starting from the bit-flipping procedure, Figure 2 shows
the architectural top level view of the proposed decoder
(BF-decoder). The BF—decoder takes the syndrome (s)
and the parity-check matrix (H) in input, and it outputs the
error vector (e) and the boolean flag (fail) to signal any failure
in the decoding procedure.

From the computational viewpoint, the BF-decoder is
made of two stages to calculate the UPCs (calcUpc) and
the syndrome bit-flips (calcBf). We note that the decoding
architecture is optimized by leveraging the sparseness and
quasi-cyclic properties of QC-LDPC codes. Indeed, only the
positions of the dv ones of the first row of each H; block are
stored, since each H; block is both a sparse and a circulant
matrix.

The calcUpc stage takes the syndrome and the blocks
of the H matrix in input and it outputs the UPCs and the
weight of the syndrome. At the beginning of a new decoding,
i.e., when the isNewDec signal of MUX1 is equal to 1,
the initial syndrome is received from the primary inputs.
In contrast, for each subsequent iteration of the decoding
algorithm, the syndrome is updated with the syndrome bit-flip
vector generated by the calcBf stage. At the start of each
iteration, the weight of the syndrome is computed by the
sWeight module, and its value is used by the upc2bf
module. The calcUpc module sequentially computes the
UPCs for each H; block of the H matrix. Once the UPCs
from the H; block, i.e., UPC;, have been computed, they are
passed to the upc2bf module with a bandwidth equal to BW

VOLUME 8, 2020

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

IEEE Access

LMUXI |UPC| x BW
BW BW
ﬂ s =s o sBf UPC>Thr?1:0 sBf=@® (eBf; . H.;"
BW
s 11 = _ e ___upc2bf] e=e@I0,.,0,eBf,0.,01 | BV]°
UPC; =s.H,; log,([s])
IcUpc % calcBf
ca
isNewDec fail
BW, r———————————
H ! [Ho,
------------ [Ho]
H
nod BF-decoder
FIGURE 2. Top level view of the proposed bit-flipping decoding architecture.
dualMem
BW vOp calc acc
BW-Toffset Toffset Mres [Elem] * BW §9
M, @ AlignBuf ISRStMres SEBEE
0 \7777ZTARR] !
1 BBBBH| *
BW > @ |Elem| * BW
\
N-2[VWYV Coneat - '
N-1 perator
S—
T@ " Poftset

FIGURE 3. Detailed view of the proposed dual-memory architecture.

times the size in bits of the maximum UPC value (which is v).
The upc2bf module filters the incoming UPCs by com-
paring them with the UPC threshold to produce, as a result,
the error bit-flip vector (eBf;). We note that the eBf; vector is
fed to the calcBf stage to i) compute the syndrome bit-flips,
and to ii) update the error vector.

Within each iteration of the bit-flipping algorithm, the
calcBf stage updates both the syndrome bit-flips and the
error vector starting from any incoming error bit-flip vec-
tor (eBf;). In particular, the chain made of the calcUpc
and the upc2bf modules produces a set of ng eBf; vectors,
where each of them corresponds to a specific H; block of the
parity-check matrix. To this end, the calcBf stage receives
no eBf; vectors, i.e., one for each H; block in the A matrix,
to compute the fully updated syndrome bit-flip vector (sBf),
as well as the update of the error vector.

We note that the error vector e is made by ng blocks of size
1 x p, thus each error bit-flip vector (eBf;) updates a portion
of the error vector (seethee = e P [0, ..., 0, eBf;, 0, ..., 0]
update equation in Figure 2). In contrast, sBf is a 1 X
p row-vector obtained by performing the bitwise XOR of
all the received eBf; row-vectors (see sBf = @®j(eBf; -
Hx,i') equation in Figure 2). At the end of each iteration
of the decoding procedure, i.e., lines 4 — 8 in Algorithm 1,
the bitwise XOR between the current syndrome and the syn-
drome bit-flip vector is performed in the next iteration (see

VOLUME 8, 2020

line 9 in Algorithm 1). From the architectural viewpoint,
the syndrome update is performed by the calcBf mod-
ule (see the s = s @ sBf equation in Figure 2).

A. THE DUAL-MEMORY COMPUTING ARCHITECTURE
Apart from the configurable bandwidth (BW) that is used to
trade the performance with the resource utilization, the pro-
posed decoder implements a dual-memory architecture to
perform the efficient and scalable computation of the two
most time-consuming operations in the bit-flipping decoding
procedure, i.e., the UPC computation (UPC; = s- H;) and the
generation of the syndrome bit-flip vector (sBf; = eBf; - HZ.T).

This section discusses the proposed dual-memory archi-
tecture that is meant to perform the efficient vector-matrix
multiplication between a vector v and a sparse circulant
matrix A. We demonstrate that the use of such an architecture
allows to adopt an efficient divide-and-conquer approach in
the computation, thus delivering an additional knob to trade
the performance with the resource utilization.

Figure 3 shows the dualMemory architecture as
made of three stages, i.e., vOp, calc, and acc. The
operand (vOp) and accumulator(acc) stages implement two
memory elements to store the vector v and the partial result
vector, respectively. In contrast, the compute stage (calc)
performs the actual vector-matrix computation starting from
the inputs from both the accumulator and the operand

163425

IEEE Access

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

stages. The dual-memory architecture receives two inputs,
i.e., the vector v and the position of the ones in the A matrix,
and outputs the vector resulting from the vector-matrix multi-
plication. The v vector is actually a primary input of the dual-
memory module and it is stored in the memory of the operand
stage (M,). In contrast, the circulant matrix A is never stored
nor received as input in its dense representation.

We note that the computational efficiency of the proposed
dual-memory architecture sits on the possibility of substitut-
ing the time-consuming vector-matrix multiplication with a
set of fast shift-rotate additions due to the fact that the A
matrix, i.e., the H; blocks of the H matrix in QC-LDPC codes,
is both circulant and sparse. In particular, it is sufficient to
store the positions of the ones in the first column of A.

To this end, each T value in input to the dual-memory
module represents the position of a one in the first column
of the A matrix. For each T value, the dual-memory module
performs a shift-rotate of the v vector by T positions before
adding the result to the accumulator by means of the compute
stage (calc). We note that the generic o operation performed
by the compute stage calc, can be specialized depending on
the actually required operation.

For example, Equation 8 shows the vector-matrix multi-
plication between a 4-bit row-vector (b) and a 4 x 4, binary,
circulant matrix (C).

r=>b-C
0110
0011
=[bo o b2 bs]- g g
1100

:[b2+b3 bo+ b3 bo+ by b1+b2] 8)

In particular, the sparse representation of the C matrix,
i.e., C*P, that is made of the positions of the 1s in its leftmost
column, is defined in Equation 9.

cv=[2 3] ©

To this end, the vector-matrix multiplication between b
and C* can be computed as the sum of the dense vector
shift-rotated to the left by amounts equal to the elements
of C*P. This is shown in Equation 10, where b is the dense
vector and the sparse-represented positions of the 1s in C
are identified as C;p . The x <<< y notation specifies a left
shift-rotate of vector x by y positions.

r=>b-C

v—1

= Z(b <<< C;p)
i=0
=b<<<2)+b<<<id)

=[by b3 by bi]+[b3 by b1 by]
=[ba+b3 by+by bo+by bi+b] (10)
From the computational viewpoint, the dual-memory mod-

ule updates the accumulator’s memory with a sequence of
five steps for each T value in input. At time 7'1 a new T

163426

position is received by the vOp module that performs the
readout from the M, memory. We note that the 7" position
can be misaligned with respect to the BW-bit size of each
line in the M, memory, thus the AlignBuf in the vOp
module is used to store the trail of the first readout line at
time 72, e.g., AAA in Figure 3. After the first clock cycle
used to align the reads from the M,, memory, the vOp module
produces BW bits of data for the successive sets of clock
cycles required to completely readout the v vector. Each line
produced by the vOp module is obtained by concatenating
the content of the A1 ignBuf with the initial part of the next
readout line from M,. In particular, each readout line from
M, has the first part used to compose the BW-bit output,
while the remaining part is stored in the A1ignBuf buffer
to be concatenated in the next clock cycle. Considering the
scenario depicted in Figure 3, the vOp module outputs the
first BW bits, i.e., AAABBBBB, at time T'3. At the same time,
the M,.; memory is completely read starting from line O.
In particular, the content of each line g of M, is combined
with the output from the vOp module at time 74, before being
stored at the same g-th line of M,.es at time T'5.

parDualMem

BW

dualMem, []

= O
. p
. . |Elem| * BW
: : : "
Taa : :
Tm-l)'ﬂ

FIGURE 4. Detailed view of the proposed parallel dual-memory
architecture.

ASP=

dualMemp_,[—

1) DIVIDE-AND-CONQUER APPROACH

Figure 4 shows the parallel architecture (parDualMem) made
of a set of dual-memory modules to perform the efficient
vector-matrix multiplication. The module takes the vector v
and the sparse representation of the binary circulant matrix A
(AP) in input and produces the vector-matrix product in out-
put. Depending on the actual operator implemented in place
of the generic o one, the size of each element of the output
can vary. To this end, the bandwidth of the parDualMem
module allows to output BW elements of the result at once,
while |Elem| identifies the size of the generic element of
the result vector. Starting from the sparse representation of
the binary circulant matrix A, each dual-memory module
receives a subset of positions and, for each of them, it
accumulates the shift-rotate of the v vector. The final result
is obtained by combining the outputs from all the imple-
mented dual-memory modules operated by the op computing
block (see Figure 4). We note that the parDualMem archi-
tecture allows a design-time configurable parallelism ranging

VOLUME 8, 2020

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

IEEE Access

from 1 to the number of ones in the first column of the A
matrix.

2) THE parDualMem MODULE IN THE DECODER

Within the proposed decoder, the parDualMem architecture
is employed to efficiently perform the UPC computation in
the calcUpc module (see UPC; = s - H; in Figure 2) and
the generation of the syndrome bit-flip vectors inthe calcBf
module (see sBf; = eBf; - HiT in Figure 2). In particular,
the UPC computation, i.e., upc; = s - H;, corresponds to
a vector-matrix multiplication in the integer domain. Thus,
the configurable calc stage in the dualMemory module is cus-
tomized to perform the integer addition. Differently, the syn-
drome bit-flip computation, i.e., sff = e?f OH l.T, corresponds
to a vector-matrix multiplication computed in the binary
domain, or equivalently, since circulant matrices are isomor-
phic to polynomials modulo x” — 1, to a binary polynomial
(or carry-less) multiplication. To this end, the configurable
calc stage in the dualMemory module is customized to imple-
ment the bitwise XOR operator.

‘We note that each instance of the parDualMem module
allows to independently configure the level of parallelism
between 1 and v, i.e., the number of ones in each column of
the parity-check matrix.

B. TIME AND SPACE COMPLEXITY ANALYSIS

This section discusses the complexity analysis of the pro-
posed bit-flipping decoding architecture in terms of both
time and space. The goal is to highlight the architec-
tural optimizations that allow to implement a family of
decoders for large QC-LDPC codes across a wide range of
resource-performance trade-offs.

1) TIME COMPLEXITY

Equation (11) is a 6-parameter equation that defines the time
required to perform a complete decoding procedure (7ge.),
expressed in terms of number of clock cycles. The parameter
itermgy represents the maximum number of decoding itera-
tions, p is the number of syndrome bits, ng is the number
of circulant blocks that compose the parity-check matrix H,
v is the weight of each column of the H matrix, bw is the
bandwidth of the decoder datapath in bits, and par is the
parallelism in the UPC and syndrome bit-flips computation.
Note that we do not have control over the iteryqy, no, p and
v parameters, since they are parameters of the QC-LDPC
code. In contrast, the scope of our investigation is to pro-
vide an efficient and scalable hardware decoder to support
the implementation of any already parametrized QC-LDPC
cryptosystem.

Tgec = itermay X (ng + 1) x {bi—‘ X lrl—‘ (11)
w

par

More in detail, iter;,qx is a parameter of the decoding algo-
rithm, p, ng, and v are parameters of the considered QC-LDPC
code, while bw and par are configurable parameters of the

VOLUME 8, 2020

proposed decoding architecture that can be tuned to explore
different resource-performance trade-offs.

Equation (11) is the product of four terms. Once the param-
eters of the code, i.e., p, n,, and v, are set, the first term,
1.€., iter;yay, defines the maximum number of iterations in
the bit-flipping decoding procedure to achieve the required
Decoding Failure Rate (DFR). The second term, i.e.,
(np+ 1), accounts for the calcUpc and calcBf operations
across the entire set of blocks in the H matrix. In particu-
lar, the decoding architecture is optimized to perform such
processing in a pipelined fashion by leveraging two compu-
tational aspects. First, the computation on each block of H
is independent from all the others. Second, for each block
of H, the computations within the calcUpc and calcBf
can be performed independently. Table 1 shows the pipelined
execution of the decoder to perform a single iteration when
the underlying code features a parity-check matrix H made of
three circulant blocks, i.e., the ng code parameter is equal to 3.
Time is expressed in time epochs, i.e., 1, 2, 3 and 4, where the
duration of each epoch depends on the computational time
required by the slowest of the calcUpc and calcBf stages.
The pipelined execution allows to reduce the computational
time from 2 X no, if the calcUpc and calcBf stages were
completely serialized, to (ng + 1).

TABLE 1. Temporal evolution of the pipelined execution of one iteration
of the decoding procedure, when the parity-check matrix H is composed
of three blocks (ng = 3).

Time epoch 1 2 3 4
Ho calcUpc calcBf
H; calcUpc calcBf
Ho calcUpc calcBf

To optimize the performance of the pipelined architecture,
the par and bw parameters are set to the same values for
both stages. The stages are thus balanced, i.e, they have the
same execution time. The third term, i.e., |_bp—w-|, represents
the number of memory lines to be read and written for each
1 position in the H matrix. As shown by Equation (11),
the computational time decreases when the bandwidth bw
increases. Last, the fourth term, i.e., (}%-I , accounts for the
parallel computation of the ones of the H matrix. Indeed, for
each block in the H matrix, our decoding architecture allows
to configure how many 1 positions of H are processed in
parallel in the calcUpc and calcBf stages.

2) SPACE COMPLEXITY

Equation (12) defines the memory requirement (M) of the
proposed bit-flipping decoding architecture, expressed as the
cumulative memory required by the calcUpc,i.e., Mcaictpe
and the calcBf, i.e., Mcqcpr stages. The memory require-
ment is provided in terms of number of BRAM memories,
that are the de-facto storage memory in the FPGA. We note
that the flip-flops, that represent the other type of memory
resource in FPGAs, are not accounted for in the rest of
the analysis for two reasons. First, their storage capacity

163427

IEEE Access

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

is only a tiny fraction of the capacity offered by BRAM
memories. Second, flip-flops are usually employed to store
partial, i.e., temporary, results within a computational stage,
thus minimally affecting the memory space requirements.

Mgee = McalcUpc + Mcachf
= <MH + par X (M +Mupc))

+ (MH + par x (MY + MY + Me) (12)

According to Equation (12), the calcUpc stage requires to
store the H matrix (Mpg) the syndrome (M), and the com-
puted UPCs (M,¢). We note that the term (M;+M,;,.) defines
the memory requirement of a single dual-memory component
within the calcUpc stage. In particular, the architectural
parameter par is the multiplier to the cumulative memory
requirement, that accounts for the possibility of implementing
a parallel set of dual-memory blocks to compute the UPCs in
the calcUpc stage.

In a similar manner, the calcBf stage requires to store
the H matrix (M), the error bit-flips (Mff), the syndrome
bit-flips (Mff) and the error vector (M,). In particular,
the term (Mff + Msbf) defines the memory requirement of
a single dual-memory component within the calcBf stage.
As for the calcUpc stage, the architectural parameter par
represents the multiplier to the cumulative memory require-
ment, that accounts for the possibility of implementing a
parallel set of dual-memory blocks to compute the bit-flips
in the calcBf stage.

Given the bandwidth (BRAMjp,,) and the size in bits
(BRAM;iz,) of a single FPGA BRAM memory, Equa-
tions (13)- (16) define the detailed memory requirements
to store each of these matrices and vectors. In particu-
lar, Equation (13) defines the number of BRAM memories
required to store the syndrome (M), error bit-flips (Mff) and
syndrome bit-flips (Mff) vectors. We note that all of them
share the same size of p bits.

b
My=MY =m¥ = | P x Y| a3
BRAM;z, BRAMy,,

In a similar manner, Equation (14) defines the number of
BRAM memories necessary to store the error vector (M,).

b
P x id (14)
BRAM 1, BRAM,,

Last, the number of BRAMs required to store the UPCs
(Mypc) and the positions of the ones in the H matrix (Mp)
are defined by Equation (15) and Equation (16), respectively.

x log(v) bw
Mype = | E228000 (15)
BRAM,., BRAM,,,

v x log(p) bw
My = ng X X (16)
BRAM BRAMy,,

bw . .
We note that the term BRAMW-‘ is common to Equations

(13)-(16), and it defines the integer number of BRAM
memories as a function of the bandwidth parameter (bw).

Me=n()X’7

163428

In particular, a bw value exceeding the available BRAM band-
width imposes an integer increase in the number of BRAMs,
regardless of the actual occupation in bits of the stored
element. Given the code parameters, the space complexity
highlights that the actual memory requirement to implement
the decoder is a function of the two configurable architec-
tural parameters, i.e., par and bw, that allow to regulate the
resource-performance trade-off.
Considering Equation (13) and Equation (14), the term
m defines the number of BRAM elements as a func-
tion of the size of p with respect to the storage capacity of a
single BRAM, i.e., BRAM;;.. The additional ny multiplier in
Equation (14) highlights that the size of the error vector is ng
times bigger than the syndrome. Considering Equation (15),
the term p x log(v) accounts for the need to store p UPCs, each
of which is the sum of v syndrome bits. In a similar manner,
the term v x log(p) in Equation (16) accounts for the need to
store the v positions of the ones for a block of the H matrix,
where each of the v positions requires log(p) bits.

IV. EXPERIMENTAL EVALUATION

This section discusses the characteristics of the proposed
hardware decoder in terms of area and performance (execu-
tion time) with the final goal of highlighting the efficiency,
flexibility and scalability of our solution. We note that we
are not proposing a novel post-quantum QC-LDPC cryp-
tosystem. In contrast, the proposed design methodology is
meant to deliver an efficient and flexible hardware implemen-
tation to support any QC-LDPC cryptosystem that employs a
bit-flipping decoding procedure. To the end of demonstrating
the value of the proposed QC-LDPC bit-flipping (BF) decod-
ing architecture, we employed the LEDAcrypt IND-CPA
key encapsulation module (KEM) as our representative use
case. In particular, the proposed decoder has been imple-
mented on all the FPGAs of the mid-range Xilinx Artix-7
family. However, for the sake of readability and without
loss of generality, results are reported only for the smallest
and the largest FPGAs in the family, i.e., Artix-7 12 and
Artix-7 200. We note that the Xilinx Artix-7 family offers the
best price/performance and it has been suggested by NIST as
the reference FPGA family for its post-quantum cryptogra-
phy competition. Performance results are compared with two
state-of-the-art software implementations running on an Intel
i7 processor.

The rest of this section is organized in three parts.
Section IV-A overviews the LEDAcrypt cryptosystem, with
emphasis on the characteristics of the underlying code.
Section I'V-B details the experimental settings, encompassing
both hardware and software. Finally, the experimental results,
in terms of both resource utilization and performance, are
discussed in Section I'V-C.

A. LEDAcrypt CRYPTOSYSTEM

We consider the IND-CPA Key Encapsulation Module
(KEM-CPA) from the LEDAcrypt post-quantum cryptogra-
phy suite [27] as a representative use case for our QC-LDPC

VOLUME 8, 2020

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

IEEE Access

BF decoder. The LEDAcrypt KEM-CPA is a code-based
cryptosystem that relies on the Niederreiter cryptoscheme
and employs a QC-LDPC code. LEDAcrypt is one of the
finalists in the National Institute of Standards and Technol-
ogy (NIST) initiative for the standardization of quantum-
resistant public-key cryptosystems. This part overviews the
LEDAcrypt configurations with the goal of demonstrating the
wide applicability of our decoding architecture. The inter-
ested reader can find all the information related to the charac-
teristics of the code in the publicly available documentation
of the cryptosystem [8].

The code underlying the KEM-CPA has a code word length
that is p - ng and an information word length of p - (ng — 1),
where ng € {2,3,4} and p is a large prime number. The
LEDAcrypt KEM-CPA provides three security levels (equiv-
alent respectively to AES-128, AES-192 and AES-256) and
for each security level three different code rates, i.e., three
different values of ng. The block size p, the weight v of
each H; block and the number of decoding iterations ifery,qy,
are reported in Table 2 for each LEDAcrypt-KEM-CPA con-
figuration. Considering the decoding stage, the LEDAcrypt
KEM-CPA cryptosystem employs the standard bit-flipping
decoder, for which the pseudocode has been reported in
Algorithm 1. We also note that the BIKE cryptosystem,
i.e., another QC-LDPC-based cryptosystem that accessed the
final stage of the NIST contest, employs the same decoding
scheme with a marginal change that solely affects the first
decoding iteration [9]. The experimental results detailed in
this section have been obtained for code parameters corre-
sponding to each of the nine configurations (see Table 2) of
the LEDAcrypt IND-CPA KEM [8].

TABLE 2. Code parameters of the LEDAcrypt-KEM-CPA configurations [8].

Configuration SL no p v termax
Cl 2 10883 71 6
Cc2 AES-128 3 8237 79 5
C3 4 7187 83 4
Cc4 2 21011 103 6
C5 AES-192 3 15373 117 5
C6 4 13109 123 4
C7 2 35339 137 4
C8 AES-256 3 25603 155 4
c9 4 21611 163 4

B. EXPERIMENTAL SETUP

1) HARDWARE SETUP

The architecture for QC-LDPC bit-flipping decoding dis-
cussed in Section III has been described in System Verilog and
it has been implemented using the Xilinx Vivado 2018.2 hard-
ware design suite. The experimental evaluation has been
carried out on two FPGAs from the mid-range Xilinx Artix-7
family. In particular, the Artix-7 12 (xc7al2tcsg325-1) and
the Artix-7 200 (xc7a200tsbg484-1) FPGAs are respectively
the lowest and the highest end of the Xilinx Artix-7 fam-
ily (see the details of their available resources in Table 3).

VOLUME 8, 2020

TABLE 3. Available resources on the Artix-7 12 and Artix-7 200 FPGAs.

Artix-7 12 | Artix-7 200
LUT 8000 134600
FF 16000 269200
BRAM 20 365

Each design has been implemented considering a 100 MHz
operating frequency, i.e., a 10 ns clock period. It is worth
noticing that for each considered FPGA we only reported the
best decoder configuration, i.e., the feasible one providing
the best performance in terms of the time to compute the
entire decoding. Such configurations have been identified
after an extensive design space exploration considering all
the combinations of values for the configurable parameters
of our design, across a wide range of variability. In particular,
we explored four bandwidths (BW), i.e., 32, 64, 128 and
256 bits, while the parallelism in the UPC (Stagel) and
syndrome update computation (St age2) has been explored
considering a large set of values comprised between 1 and 32,
ie., 1,2,4,8, 16,24 and 32 bits.

2) SOFTWARE SETUP

We used two reference implementations for QC-LDPC BF
decoding, extracted from the official implementation of the
LEDAcrypt KEM-CPA [8]. First, the C11 implementation is
used as the reference design for performance evaluation. Sec-
ond, the optimized software implementation employing the
Intel AVX2 extension has been considered as the top-notch
software implementation from the performance point of view.

To ensure a fair performance assessment, the C11 and the
Intel AVX2 software implementations of the QC-LDPC
BF decoder have been adapted to execute iter,,,, iterations.
In the same way, early-termination is not available on our
decoding architecture, i.e., the number of decoding iterations
is fixed to itery .

The experimental evaluation of the software-implemented
decoding has been carried out on an Intel Core i7-6700HQ
processor, forcing a fixed operating frequency of 3.5 GHz
to avoid performance variability due to the power manage-
ment controller. For each LEDAcrypt-KEM-CPA configura-
tion (see Ci with i € [1,..9] in Table 2), the execution time
of the decoding procedure for the two considered software
implementations, i.e., C11 and AVX2, was obtained by aver-
aging the results of 30 executions.

3) FUNCTIONAL VALIDATION

The functional validation is meant to check the correct-
ness of the decoding results obtained from the hardware
implementation of our decoder template architecture. As the
golden reference for our functional validation, we employed
the QC-LDPC BF decoding procedure extracted from the
publicly available LEDAcrypt-KEM-CPA, i.e., the official
C11 software implementation of the entire cryptosystem. In
particular, for each configuration defined in the LEDAcrypt-
KEM-CPA cryptosystem, i.e. the 9 configurations reported

163429

IEEE Access

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

in Table 2, we collected the results of the software execution
of 10000 different decoding procedures. The same decodings
have been computed through both the post-implementation
(timing) simulation and the board prototype execution of dif-
ferent implementations of our decoder template architecture.
We note that the hardware implementation takes in input the
H matrix and the initial syndrome computed by the software
while, at the end of the decoding procedure, the error vector
and the value of the boolean flag used to signal the possible
decoding failure are compared to the values computed by
the software implementation. For the post-implementation
(timing) simulation, we implemented our decoder targeting
the Xilinx Artix-7 12 (xc7al2tcsg325-1) and Artix-7 200
(xc7a200tsbg484-1) FPGAs. For the board prototype
execution, we implemented our decoder targeting the
Digilent Nexys 4 DDR FPGA board, which features a
Xilinx Artix-7 100 (xc7al00tcsg324-1) FPGA. In particu-
lar, we implemented a performance-optimized instance of
our decoder for each combination of the nine LEDAcrypt-
KEM-CPA configurations and the three considered FPGAs,
i.e., Xilinx Artix-7 12, Artix-7 100 and Artix-7 200. Each
one of the 27 implemented decoders executed the 10000
decodings and the output results were compared with the
output of the corresponding software-executed decoding.

clk
rst
|

cmdDec

tx cmdM2S H
= X weM2S S
UART |dataM2S| FpGACtrl E Decoder
dataS2M Fail

ackS2M ack2Host

decDone

Functional Validation Architecture (FVA)

FIGURE 5. Hardware setup for the functional assessment of the proposed
QC-LDPC BF decoder. The hardware setup is made of three parts. The
UART module allows the communication between the host computer and
the d Functional Vvalidation Architecture. The FPGA controller
(FPGACtrl) coordinates the communication with the host computer and
the hardware execution of the decoding procedure. The decoder
(Decoder) implements the version of the proposed QC-LDPC BF decoder
architecture optimized for the underlying FPGA and LEDAcrypt-KEM-CPA
configuration.

A functional validation architecture (FVA) is employed to
provide a unified validation infrastructure for both the post-
implementation (timing) simulations and the board prototype
executions (see Figure 5). The FVA is made of three parts.
The FPGA controller (FPGACt r1) communicates with the
host computer to collect the input H matrix (H) and syn-
drome (S) and returns the error vector (e) and the failure
flag (Fail). The UART module (UART) creates a simple
yet effective communication channel between the FPGA con-
troller and the host computer. The Decode r block represents
the performance-optimized implementation of our QC-LDPC
BF decoder architecture, that is specifically tailored for

163430

each combination of FPGA and LEDAcrypt-KEM-CPA
configuration.

To perform a decoding, the FPGACt r1 module drives the
cmdM2 S and the weM2 S signals to collect the H matrix and
the initial syndrome from the UART interface. We imple-
mented a blocking communication protocol between the
FPGA controller and the UART, thus the FPGA controller
waits until the UART has sent the required data before closing
the communication. Once the inputs have been collected,
the cmdDec signal is used to load the operands into the
decoder and to start the decoding. For each clock cycle, BW
bits of the H matrix and the syndrome are passed to the
decoder through the H and S signals. The decoder reports
the end of the decoding through the decDone signal while,
for each clock cycle, BW bits of the decoding result, i.e., the
error vector, are loaded into the FPGA controller through the
e signal. The cmdDec and the ack2Host signals are used
to implement the acknowledged protocol to feed the inputs
and to retrieve the output from the decoder. Last, the FPGA
controller sends the decoding result to the host computer
through the UART by means of the dataM2s data signal.
We note that the cmdM2S and the ack2Host signals are
used to implement the acknowledged protocol to exchange
the decoding operands and the result between the FPGA
controller and the UART module.

C. AREA AND PERFORMANCE RESULTS

This section discusses the area and the performance of the
proposed decoder, to demonstrate its efficiency and scala-
bility across the entire family of mid-range Xilinx Artix-7
FPGA:s.

1) AREA RESULTS

The proposed decoder makes use of the BRAMs of the FPGA
as the primary means of storage for the inputs, the interme-
diate values and the result, allowing the decoder to fit on tiny
FPGAs even for codes with a large block size p. In such a way,
the maximum allowed dimension of the dense vectors that
store the syndrome, the error and the UPCs is not a function
of the available amount of flip-flops, that easily become the
scarcest resources on small FPGAs, but it is instead a function
of the available BRAM storage capacity. We note that a single
BRAM can store up to 36kb and the smallest considered
FPGA features 20 BRAMs.

For each configuration of the LEDAcrypt cryptosystem,
considering the Xilinx Artix-7 12 and Artix-7 200 FPGAs,
Figure 6 reports the normalized resource utilization of the
LUT, flip-flop and BRAM elements, as a percentage on the
total available.

As expected, the use of BRAM resources dominates each
design on both the Xilinx Artix-7 12 and Artix-7 200 thus
minimizing the use of flip-flops, which are therefore never the
scarcest resource or a major showstopper. We note that even if
the flip-flop utilization is low, the unused flip-flop resources
can not be exploited to further improve the design. For exam-
ple, on average the FF utilization on the Xilinx Artix-7 12 is

VOLUME 8, 2020

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

IEEE Access

LUT mFF mBRAM

|| || || I| || || || I| i
Cl1 Cc2 C3 C4 C5 C6 C7 C8 C9

Configuration
(a) Xilinx Artix-7 12

100

N A Y X
(=R — A]

Resource utilization (%)

(=)

LUT mFF mBRAM

|| I| I| || || I| || || I|
Cl1 C2 C3 C4 C5 Cé6 C7 C8 C9

Configuration
(b) Xilinx Artix-7 200

100

N A N ®
(=)

Resource utilization (%)

(=]

FIGURE 6. Resource utilization of the proposed QC-LDPC BF decoder implemented on the Xilinx Artix-7 12 and Artix-7 200 FPGAs. Look-Up Table (LUT),
Flip-Flop (FF) and Block-RAM (BRAM) resource types are considered. The utilization for each resource type is expressed as a percentage of the available

resources on the target FPGA.

below 15%, while the BRAM utilization is above 95% (see
Figure 6a). However, the entire Xilinx Artix-7 12 features
16,000 FFs, thus their contribution is lower that the storage
capacity of a single BRAM. In a similar manner, the FF
utilization on the Xilinx Artix-7 200 is lower than 15% for
each LEDAcrypt configuration. Even in such scenario, it is
impossible to improve the design by leveraging on the FF
resources. Instead, the average BRAM resource utilization
is 82%, thus the storage capacity is never the bottleneck of
the implemented designs. In contrast, the limiting factor to
a better resource utilization is the timing, which becomes
the bottleneck on the decoder implementations on the Xilinx
Artix-7 200, due to the massive parallelism that is achieved
thanks to the vast amount of available resources. However,
a complete performance discussion is left to the performance
evaluation part in the following of this section.

Considering the Look-Up Tables (LUTs), we note an aver-
age utilization of 55% and 50% on the Xilinx Artix-7 12
and Xilinx Artix-7 200, respectively. Despite such resource
type never becomes the scarcest one across the entire set
of considered decoder implementations, its utilization varies
depending on the actual level of parallelism of each imple-
mented decoder, since LUTs are used to implement the com-
binational logic of the decoder. Table 4 reports the level of
parallelism for the two design-time knobs of our decoding
architecture for each combination of FPGA and LEDAcrypt
configuration. The 32-bit bandwidth (BW) is found to be the
optimal value to implement each LEDAcrypt configuration
on the Xilinx Artix-7 12 FPGA, while the optimal level of
parallelism (PAR) to maximize the computation of the two
vector-matrix multiplications in the bit-flipping procedure,
ie., UPC = H - sand s = H - e, ranges between 1 and 4,
thus determining a variability in the used LUTs depending
on the implemented LEDAcrypt configurations. For example,
LUT utilization is around 60% for configurations in the range
C1 — C6, while it drops down to 30% for C7 and C9 and it
peaks to almost 90% for C8 (see Figure 6a). We note that PAR
is equal to 4 for C1 — C6 configurations, thus determining a

VOLUME 8, 2020

TABLE 4. Configuration parameters for the hardware instances on the
Artix-7 12 and 200 FPGAs.

Configuration Artix-7 12 Artix-7 200
BW PAR | BW PAR
Cl 32 4 128 24
Cc2 32 4 128 32
C3 32 4 128 32
C4 32 2 128 24
(O3] 32 4 128 24
Co 32 4 128 24
C7 32 1 128 24
C8 32 2 128 24
C9 32 1 128 24

higher use of LUTs with respect to C7 and C9 configurations,
since even if the latter targets larger QC-LDPC codes, they
are implemented with PAR = 1. Similarly, the large use of
LUTs for C8 is motivated by both the larger QC-LDPC code
compared to the one of C1 — C6 and the possibility of using
PAR = 2 without exceeding the available hardware resources
of the FPGA. Considering the implemented decoders on
the Xilinx Artix-7 200, the average LUT utilization is 50%
with small variations between different configurations (see
Figure 6b). The 128-bit bandwidth has been found optimal
for the entire set of LEDAcrypt configurations, while PAR =
24 is employed for all the configurations but C2 and C3, for
which 32 is used instead (see Table 4). Such increase in the
parallelism for C2 and C3 impacts the used LUTs, for which a
value slightly below 60% is reported (see LUT for C2 and C3
in Figure 6b). We note one more time that the impossibility
of resorting to either a more aggressive level of parallelism
or a larger bandwidth for the decoders implemented on the
Artix-7 200 FPGA, is due to the imposed timing constraints
equal to 10ns and not to the available resources on the board.
However, as it is explained in the following, such decoder
implementations allow to overcome the performance of opti-
mized software-implemented decoders employing the Intel
AVX2 extension by 5 times, on average.

163431

IEEE Access

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders

Cll ®WAVX2 mArtix-7 12 ® Artix-7 200
1.000,00

100,00
10,00

1,00
|| “ “ i ‘l |l
0,01 I I I

cCl C2 C3 C7 C8 C9

Configuration

Execution time (ms)

FIGURE 7. Execution time (in milliseconds) of QC-LDPC BF decoding.
Results are shown for software decoding on the Intel i7 processor and for
hardware decoding on the Artix-7 12 and Artix-7 200 FPGAs.

BAVX2 ®Artix-7 12 ® Artix-7 200

Cl C2 C3 C4 C5 Co6 C7 C8 C9
Configuration

1.000

Performance speedup

FIGURE 8. Performance improvement with respect to C11 software
decoding executed on the Intel i7 processor. Results are shown for
AVX2 software decoding on the Intel i7 processor and for hardware
decoding on the Artix-7 12 and Artix-7 200 FPGAs.

2) PERFORMANCE RESULTS

Figure 7 reports the performance results expressed as the
execution time to complete the bit-flipping decoding proce-
dure for all the LEDAcrypt configurations. The results are
reported for each configuration considering the two software
implementations, i.e., C11 and AVX2, and the two hardware
implementations, which targets the Xilinx Artix-7 12 and
Artix-7 200 FPGAs, respectively. As expected, the execution
time increases with the size and the weight of the QC-LDPC
code for all the implementations. For example, C11 takes
32 ms and 229 ms to complete the decoding of C1 and
C9, respectively (see Figure 7). In order to highlight the
actual performance speedup across the different implemen-
tations of the decoding procedure, Figure 8 reports the per-
formance speedup of the AVX2 software and of the two
hardware implementations, normalized with respect to the
C11 software version. The decoders targeting the low-end
Xilinx Artix-7 12 FPGA show an execution time comprised
between 1 and 25 milliseconds, with a corresponding per-
formance improvement between 9 and 36 times (23 times
on average) with respect to the C11 software implemen-
tation. We note that the optimized software implementa-
tion employing the Intel AVX2 extension (AVX2) shows
an average performance speedup of 108 times compared to
the C11 reference software version. However, our decoders
targeting the Xilinx Artix-7 200 FPGA show an average
5 times speedup against the performance-optimized software

163432

employing the Intel AVX2 extension (see Figure 8). Such
results demonstrate the superior performance and scalability
of our decoding architecture against optimized software solu-
tions exploiting custom and hardware-accelerated instruc-
tions offered by recent high-end Intel processors.

V. CONCLUSION

This work presented an efficient and scalable architecture of
QC-LDPC bit-flipping decoders for post-quantum cryptogra-
phy. The design efficiency is achieved through an optimized
architecture computing the time consuming vector-matrix
multiplications that are at the core of the bit-flipping decoding
procedure. The design scalability is achieved by exploit-
ing both a configurable bandwidth in the decoder datap-
ath and via the massive use of the available FPGA block
RAMs (BRAMs) to store the inputs as well as the partial
and the final results, without affecting the flip-flops that are
typically the scarcest hardware resource of any design.

To demonstrate the effectiveness of our solution, we con-
sidered the nine configurations of the LEDAcrypt cryptosys-
tem as representative use cases for QC-LDPC codes suitable
for post-quantum cryptography. For each configuration, our
template architecture can deliver a performance-optimized
decoder implementation for each FPGA of the Xilinx Artix-7
mid-range family. The experimental results demonstrate that
our optimized architecture allows the implementation of
large QC-LDPC codes even on the smallest FPGA of the
Xilinx Artix-7 family. Considering the implementation of our
decoder on the Xilinx Artix-7 200 FPGA, the experimental
results show an average performance speedup of 5 times
across the full range of the LEDAcrypt configurations, com-
pared to the official optimized software implementation of
the decoder employing the Intel AVX2 extension.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., Nov. 1994,
pp. 124-134.

[2] N. Sendrier, “Code-based cryptography: State of the art and perspectives,”
IEEE Secur. Privacy, vol. 15, no. 4, pp. 44-50, 2017.

[3] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems (Corresp.),” IEEE Trans. Inf.
Theory, vol. 24, no. 3, pp. 384-386, May 1978.

[4] D. J. Bernstein, “Grover vs. mceliece,” in Proc. Int. Workshop Post-
Quantum Cryptogr. Berlin, Germany: Springer, 2010, pp. 73-80.

[5S] R.J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” Commun. Syst. Res. Sect., NASA, Washington, DC, USA, DSN
Prog. Rep. DSN PR 42-44, Jan. 1978, pp. 114-116.

[6] M. Baldi, M. Bodrato, and F. Chiaraluce, “‘A new analysis of the McEliece
cryptosystem based on QC-LDPC codes,” in Proc. Int. Conf. Secur. Cryp-
togr. Netw., Amalfi, Italy, Sep. 2008, pp. 246-262.

[7]1 R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L. M. Barreto, “MDPC-
McEliece: New McEliece variants from moderate density parity-check
codes,” in Proc. IEEE Int. Symp. Inf. Theory, Istanbul, Turkey, Jul. 2013,
pp. 2069-2073.

M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini.

LEDAcrypt Website. Accessed: Sep. 3, 2020. [Online]. Available:

https://www.ledacrypt.org/

[9]1 N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy,
J.-C. Deneuville, P. Gaborit, S. Gueron, T. Giineysu, C. A. Melchor,
R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich, V. Vasseur, and
G. Zémor. BIKE Website. Accessed: Sep. 3, 2020. [Online]. Available:
https://www.bikesuite.org/

[8

VOLUME 8, 2020

D. Zoni et al.: Efficient and Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders IEEEACC@SS

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. Zoni, A. Galimberti, and W. Fornaciari, ‘‘Flexible and scalable FPGA-
oriented design of multipliers for large binary polynomials,” IEEE Access,
vol. 8, pp. 7580975821, 2020.

M. Baldi, QC-LDPC Code-Based Cryptography. Cham, Switzerland:
Springer, 2014.

M. Ismail, I. Ahmed, J. Coon, S. Armour, T. Kocak, and J. McGeehan,
“Low latency low power bit flipping algorithms for LDPC decoding,” in
Proc. 21st Annu. IEEE Int. Symp. Pers., Indoor Mobile Radio Commun.,
Sep. 2010, pp. 278-282.

R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21-28, Jan. 1962.

Z.Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “An efficient
10GBASE-T Ethernet LDPC decoder design with low error floors,” IEEE
J. Solid-State Circuits, vol. 45, no. 4, pp. 843-855, Apr. 2010.

S. H. Gupta and B. Virmani, “LDPC for Wi-Fi and WiMAX technolo-
gies,” in Proc. Int. Conf. Emerg. Trends Electron. Photonic Devices Syst.,
Dec. 2009, pp. 262-265.

N. Jiang, K. Peng, J. Song, C. Pan, and Z. Yang, ‘‘High-throughput QC-
LDPC decoders,” IEEE Trans. Broadcast., vol. 55, no. 2, pp. 251-259,
Jun. 2009.

G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, “A massively parallel
implementation of QC-LDPC decoder on GPU,” in Proc. IEEE 9th Symp.
Appl. Specific Processors (SASP), Jun. 2011, pp. 82-85.

I. Tsatsaragkos and V. Paliouras, “A reconfigurable LDPC decoder opti-
mized for 802.11n/AC applications,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 26, no. 1, pp. 182-195, Jan. 2018.

M. Zhao, X. Zhang, L. Zhao, and C. Lee, “Design of a high-throughput
QC-LDPC decoder with TDMP scheduling,” IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 62, no. 1, pp. 56-60, Jan. 2015.

Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes
based on finite geometries: A rediscovery and new results,” IEEE Trans.
Inf. Theory, vol. 47, no. 7, pp. 2711-2736, 2001.

J. Zhang and M. P. C. Fossorier, “A modified weighted bit-flipping decod-
ing of low-density parity-check codes,” IEEE Commun. Lett., vol. 8, no. 3,
pp. 165-167, Mar. 2004.

T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and
I. Takumi, “Gradient descent bit flipping algorithms for decoding LDPC
codes,” in Proc. Int. Symp. Inf. Theory Its Appl., Dec. 2008, pp. 1-6.

J. Hu, M. Baldi, P. Santini, N. Zeng, S. Ling, and H. Wang, “Lightweight
key encapsulation using LDPC codes on FPGAs,” IEEE Trans. Comput.,
vol. 69, no. 3, pp. 327-341, Mar. 2020.

D. Apon, R. Perlner, A. Robinson, and P. Santini, “Cryptanalysis
of ledacrypt,” Cryptol. ePrint Arch., Springer, Cham, Switzerland,
Tech. Rep. 2020/455, 2020. [Online]. Available: https://eprint.iacr.
org/2020/455

1. V. Maurich and T. Guneysu, “Lightweight code-based cryptography:
QC-MDPC McEliece encryption on reconfigurable devices,” in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), 2014, pp. 1-6.

N. Drucker, S. Gueron, and D. Kostic, “Qc-mdpc decoders with several
shades of gray,” in Post-Quantum Cryptography, J. Ding and J.-P. Tillich,
Eds. Cham, Switzerland: Springer, 2020, pp. 35-50.

M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini,
“LEDAcrypt: QC-LDPC code-based cryptosystems with bounded decryp-
tion failure rate,” in Code-Based Cryptography, M. Baldi, E. Persichetti,
and P. Santini, Eds. Cham, Switzerland: Springer, 2019, pp. 11-43.

VOLUME 8, 2020

DAVIDE ZONI received the M.Sc. and Ph.D.
degrees from the Politecnico di Milano, Italy.
He is currently a Postdoctoral Researcher with
the Politecnico di Milano. He has published more
than 40 papers in journals and conference pro-
ceedings. He filed two patents on cybersecurity.
He is also the Principal Investigator of the LAMP
proof-of-concept project that aims at delivering
a side-channel resistant RISC-based system-on-
chip. His research interests include RTL design
and optimization for multi-cores with particular emphasis on low power
methodologies and hardware-level countermeasures to side-channel attacks.
He received two HiPEAC collaboration grants in 2013 and 2014, two
HiPEAC industrial grant in 2015 and 2017, and the Switch2Product Compe-
tition in 2019.

ANDREA GALIMBERTI received the M.Sc.
degree in computer science and engineering from
the Politecnico di Milano, Italy, in 2019, where
he is currently pursuing the Ph.D. degree. His
research interests include computer architectures,
hardware-level countermeasures to side-channel
attacks, and design of hardware accelerators.

WILLIAM FORNACIARI (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees. He is cur-
rently an Associate Professor with the Politec-
nico di Milano, Italy. He has published six books
and around 300 papers in international journals
and conferences, collecting six best paper awards,
and one certification of appreciation from IEEE.
He holds three international patents on low-power
design. He has been a coordinator of both FP7 and
H2020 EU-projects. In 2016, he received the
HiPEAC Technology Transfer Award. His research interests include embed-
ded and cyber-physical systems, energy-aware design of SW and HW,
run-time management of resources, high-performance computing, design
optimization, and thermal management of multi-many cores.

163433

