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ABSTRACT Underwater acoustic channels are characterized by sparse channel structures, where very few
significantly strong non-zero taps exist out of long delay spreads. Though some existing works typically have
attempted to take advantage of the sparsity of multipath channels, substantial performance improvement
remains elusive. In this work, we develop an iterative Markov chain Monte Carlo (MCMC) algorithm
based on Gibbs sampling designed for sparse channels. We decompose the sparse channel response into
components of sparsity pattern and sparse coefficient, and incorporate the sparse structure of channels in
Bernoulli prior probability distribution for sparsity pattern. We derive the posterior distributions of both
sparsity pattern and sparse coefficient components, thereby sampling of sparse channels could be obtained.
Furthermore, our proposed algorithm is also generalizable to time-varying underwater acoustic channels.
Numerical results are provided to demonstrate performance of our proposed algorithm.

INDEX TERMS Semiblind equalization, Gibbs sampling, sparse channels, underwater acoustic communi-
cations.

I. INTRODUCTION
The underwater acoustic environment poses significant chal-
lenges, such as limited available bandwidth, large delay
spread, time-varying multipath propagation and low speed
of acoustic waves, etc, to the design of communication sys-
tems [1]–[5]. It is quite challenging to communicate over the
multipath channel with an excessive delay, which introduces
significant intersymbol interference (ISI).

Many underwater acoustic channels have sparse multipath
structures in the time domain. Sparse frequency selective
channels tend to have long delay spreads but only very few
significantly strong non-zero parameters. Taking advantage
of channel sparsity could substantially reduce the number
of channel parameters for estimation and tracking, thereby
substantially lowering the algorithm complexity. Therefore
exploiting sparsity nature of underwater acoustic channels to
estimate channel or/and detect transmitted symbols has been
a hot research topic.
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In [6], the estimation of sparse shallow-water acoustic
communication channels based on the delay-Doppler-spread
function representation of the channel and the impact of
estimation performance on the equalization of phase coherent
communication signals were investigated. Reference [7] pro-
posed an adaptive sparse partial response equalizer (SPRE)
well matched with the channel characteristics to mitigate
the ISI efficiently. [8] studied the practical application of an
iterative detection and decoding (IDD) framework to under-
water acoustic communications (UAC) by elaborating on
channel-estimate-based minimum mean-square error turbo
equalization (CE-based MMSE-TEQ) and a direct adaptive
turbo equalization (DA-TEQ). The dimensionality of the
equalizer is reduced by capturing sparse channel structure.
Reference [9] explored frequency-domain oversampling to
improve the system performance of zero-padded (ZP) orthog-
onal frequency division multiplexing (OFDM) transmissions
over underwater acoustic channels with large Doppler spread.
A signal design that enables the separation between sparse
channel estimation and data detection was used to reduce
equalization complexity. In [10], the authors investigated the
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multicarrier transmission in one particular type of under-
water acoustic channels, which have extremely long delay
spreads but clustered multipath arrivals. A sparse channel
estimator by treating the two clusters of the long channel
as two virtual quasi-synchronous channels was presented.
Reference [11] proposed an algorithmic framework for sparse
channel identification and a suit of algorithms by minimizing
a differentiable cost function that utilizes the underlying Rie-
mannian structure of the channel as well as the L0-norm of the
complex-valued channel taps. In [12], the authors proposed
a gradient-descent approach to refine the channel estimates
obtained by standard sparse channel estimators. Reference
[13] assumed a feedback link from the receiver with a quan-
tized estimate of the sparse channel impulse response for
adaptive modulations. Reference [14] considered a channel
parameter estimation problem using a wideband multichan-
nel receiver array and estimated the sparse underwater acous-
tic communication channel parameters including time-delay,
incidence angle, Doppler frequency, and complex amplitude
of impinging multipath components. In [15], the authors
proposed a two-stage sparse channel estimation technique,
which estimated the delay and Doppler scale sequentially,
by parameterizing the amplitude variation and delay varia-
tion of each path with polynomial approximation. Reference
[16] used the improved proportionate normalized least mean
squares (IPNLMS) algorithm for iterative channel estimation
in turbo equalization by exploiting the sparse nature of under-
water acoustic channels. Reference [17] presented a channel-
estimate-based decision feedback equalizer (CEB-DFE) that
dealt with high platform mobility by exploiting sparse multi-
path structures. Reference [18] conducted a thorough investi-
gation of preamble detection in adverse underwater acoustic
channels in the presence of various external interferences,
and proposed two novel detection methods based on the
inherent sparsity of underwater acoustic channels. Reference
[19] investigated the estimation and prediction of the sparse
time-varying channel in underwater acoustic (UWA) sys-
tems and proposed an adaptive channel prediction scheme
that extrapolated the channel knowledge from a block of
training symbols. Reference [20] presented a low complexity
frequency domain channel estimator exploiting the channel
sparsity.

However, these works did not consider blind/semiblind
data reception, which is preferable in bursty communica-
tion links from an efficiency point of view [21]. Monte
Carlo Markov chain (MCMC) technique has been exten-
sively investigated in wireless communications, and proved
to be efficient for joint channel estimation and data detection
in a blind manner [22]–[28]. MCMC is recently beginning
to make impact on UAC. In specific, the Gibbs sampler
technique has been employed as an alternative to the pop-
ular matching-pursuit-type algorithms [6], [29]. Chen and
Peng [30] proposed an MCMC-based noncoherent UAC
reception scheme, whereas in the coherent UAC context
MCMC-based detector was used with a separate channel

estimation module. In [31], the authors considered a statis-
tical semiblind equalizer implemented by the Gibbs sampler
technique. The proposed equalizer conducted channel estima-
tion and symbol detection in a joint manner, and it was robust
to the accuracy of the channel information. Nevertheless,
these works did not exploit the sparse nature of underwater
acoustic channels.

In this work, we focus on the problem of semiblind equal-
ization that deals with sparse underwater acoustic channels.
We develop an iterative MCMC algorithm based on Gibbs
sampling designed for sparse channels. We decompose the
sparse channel response into components of sparsity pat-
tern and sparse coefficient, and incorporate the sparse struc-
ture of channels in Bernoulli prior probability distribution
for sparsity pattern. We derive the posterior distributions
of both sparsity pattern and sparse coefficient components,
thereby sampling of sparse channels could be obtained. In
principle, the Gibbs-sampler-based equalizer could operate
blindly by ignoring the initial channel information. How-
ever, the performance of a blind equalizer is vulnerable to
the potential problem of phase and shift ambiguities [23].
Therefore, we incorporate rough initial channel information
to construct semiblind equalizer as in [31]. Furthermore,
our proposed algorithm is also generalizable to non-sparse
channels. Although we focus on uncoded UAC systems, the
extension to coded UAC systems is straightforward.

We summarize the contributions in this work as follows:

1) Proposal of a new semiblind equalization algorithm
based on Gibbs sampling for sparse multipath under-
water acoustic channels by using Bernoulli priors.
The posterior distributions of both sparsity pattern and
sparse coefficient are derived to obtain the proposed
algorithm.

2) The semiblind equalization algorithm in both single-
carrier (SC) and OFDM communication systems are
derived.

3) Numerical results are provided to demonstrate perfor-
mance of our proposed algorithm, showing that the
proposed algorithm outperforms existing algorithms.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and problem formulation. In
Section III, we present an iterative MCMC algorithm based
on Gibbs sampling designed for sparse channels.. We present
computer simulation results in Section IC for performance
verification before concluding with Section V.

II. SYSTEM MODEL
In this paper, we will consider both SC and OFDM com-
munication systems. For SC systems, denote a block of N
transmitting data symbols as {xn}

N−1
n=0 , which are assumed

to be independently drawn from a finite alphabet set
A = {Q1,Q2, . . . ,Q|A|}. Let {hl}Ll=0 stands for the channel
impulse response, where the length of channel is L + 1. The
received signals could be represented by the following linear
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finite impulse response (FIR) model [27]

yn =
L∑
l=0

hlxn−l + wn, n = 0, 1, . . . ,N − 1+ L (1)

where n is the time index; {wn}
N−1+L
n=0 are independent and

identically distributed (i.i.d.) complex Gaussian noise sam-
ples with zero-mean and a variance of σ 2, and are indepen-
dent of data symbols {xn}

N−1
n=0 . Note that we take the whole

received signal samples {yn}
L−1+L
n=0 into consideration due to

channel memory. Furthermore, we let x−L = · · · = x−1 =
0 and xN = · · · = xN−1+L = 0 in (1) for notational
convenience.

For OFDM systems, denote transmitting data symbols at
K subcarriers as x, where K is the number of subcarriers. Let
h0 = [h1, . . . , hL , 0, . . . , 0]T stands for the channel impulse
response in time-domain with extraK−L zeros. The received
signals yF at K subcarriers in frequency-domain are given
by [22]

yF = diag{x}Fh0 + wF (2)

where wF is a sequence of i.i.d. complex Gaussian noise
samples with zero-mean and a variance of σ 2; F is the K ×K
DFT matrix.

Note that we have assumed that the channel remains con-
stant over observed samples in (1) and (2), which is a com-
mon assumption to model underwater acoustic channels, e.g.,
in [6], [11], [16], [32]. For the case of fast channel varia-
tions, the parameter of Doppler rate may be introduced to
model the time-varying characteristic of underwater acoustic
channel such as in [9], [10], [13]. In this case, our algo-
rithm could be adapted by adding an extra step to sample
from the posteriori probability density function of Doppler
rate.

In this paper, we use Bernoulli-based model to represent
channel sparsity. In specific, sparse channel h follows the
model [33]

h = as � cs (3)

where as ∈ {0, 1}L is the sparsity pattern, whose entries
are drawn i.i.d. from Bernoulli distribution with parameter
q (q� 1), denoted by B(q); cs stands for the vector of sparse
coefficient.
Remark: Note that the sparse structure of h in (3) could

be easily removed by specifying q being 1. Therefore, the
formulation and corresponding algorithm could be generally
applied in nonsparse channels.

III. SEMIBLIND EQUALIZATION IN SPARSE CHANNELS
In this section, we propose a MCMC-based semiblind sparse
equalizer, since MCMC algorithm is able to solve nonlinear
and high-dimensional problem efficiently. In general, the
MCMC equalizer is implemented in two steps. In the first
step, the Gibbs sampler generates a collection of sample vec-
tors x(n) and h(n) for n = 0, 1, . . . , I . In the second step, the

transmitted symbols (and channel response) are determined
from the obtained samples.

A. PRIOR DISTRIBUTIONS FOR SPARSE CHANNELS
Existing works assume a conjugate prior distribution, which
is a multivariate normal distribution, or a non-informative
distribution for channel h. The posteriori distribution of h
in either case is a normal distribution with the parameters
(mean and variance) updated by the received samples. In this
work, we decompose the channel response into components
of sparsity pattern and sparse coefficient as in (3), and use
Bernoulli distribution for sparsity pattern to promote the
sparse structure of the channel prior. In specific, the prior
distribution for the ith element of as is{

p(asi = 1) = q
p(asi = 0) = 1− q

(4)

for i = 1, . . . ,L + 1, where q is the hyperparameter which
depicts Bernoulli distribution.

For sparse coefficient as, we use hierachical prior distribu-
tion as {

p(csi|asi = 0) = δ(csi)

p(csi|asi = 1) = exp(−c2si/σ
2
0 )/
√
2πσ 2

0

(5)

where σ 2
0 is the hyperparameter.

B. GIBBS SAMPLING OF SPARSE CHANNELS
In the framework of Gibbs sampling, we need to derive
posterior distributions with respect to unknown parameters.
We first derive the posterior distributions for both sparsity
pattern and sparse coefficient components, thereby sampling
of sparse channels could be obtained.

1) SAMPLING SPARSE CHANNELS IN SC SYSTEMS
To derive the posterior distribution of the channel h for SC
systems, define

X 1
=
[
x10 · · · xL0

] 1
=


x1 0
...

. . . x1

xN
. . .

...

0 xN

 (6)

Rewrite (1) as

y = X (as � cs)+ e (7)

Obviously, we transform sampling channel h into sampling
as and cs.

Now we derive the posteriori distributions for as and
cs, respectively. In specific, during the nth iteration, start-
ing with x(n−1) = {x(n−1)0 , . . . , x(n−1)N−1 }, as(n−1) =

{a(n−1)s0 , . . . , a(n−1)sL }, and cs(n−1) = {c
(n−1)
s0 , . . . , c(n−1)sL }, we

need to generate as(n) and cs(n) sequentially. We can get
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from (3) that h(n−1) = a(n−1)s � c(n−1)s . To derive the pos-
teriori distribution of asi, i = 0, . . .L, from the model in (7)
we get

p
(
asi|x, y, csi,h

)
∝ p(y|x,h)p(asi)

∝ exp
(
−

1
σ 2 ‖y− Xh‖

2
2

)
· p(asi)

∝ exp
{
−

1
σ 2

[
‖Xh‖22 − 2Re

(
yHXh

)]}
· p(asi)

∝ exp
{
−

1
σ 2

[∑
i

hixHi0
∑
j

hjxj0 − 2Re
(
yH
∑
i

hixi0
)]}

· p(asi)

∝ exp
{
−

1
σ 2

[
xHl0xl0(asicsi)

2
+ 2Re

[(∑
i6=l

hixHi0
)
xl0
]

asicsi − 2Re
(
yHxl0

)
asicsi

]}
· p(asi)

∝ exp
{
−
Nεx
σ 2 (asicsi)2 +

2
σ 2Re

[(
yH −

∑
i6=l

hixHi0
)
xl0
]

asicsi
}
· p(asi)

=


A · exp

{
−
Nεx
σ 2 c

2
si +

2
σ 2Re

[(
yH −

∑
i6=l

hixHi0
)
xl0
]

csi
}
· q, asi = 1

A · (1− q), asi = 0

(8)

where εx is the energy of transmitted symbols,<(·) represents
the real part of the corresponding term.

Similarly we can get

p(csi|x, y,h, asi = 1)

∝ p(y|x,h)p(csi)

∝ exp(−
1
σ 2 ‖y− Xh‖

2
2) · exp(−c

2
si/σ

2
0 )

∝ exp
{
−

1
σ 2

[
‖Xh‖22 − 2Re(yHXh)

]
− c2si/σ

2
0

}
∝ exp

{
−

1
σ 2

[∑
i

hixHi0
∑
j

hjxj0 − 2Re
(
yH
∑
i

hixi0
)]

− c2si/σ
2
0

}
∝ exp

{
−

1
σ 2

[
xHl0xl0c

2
si + 2Re

[(∑
i6=l

hixHi0
)
xl0
]
csi

− 2Re
(
yHxl0

)
csi
]
−c2si/σ

2
0

}
∝ exp

{
−

(Kεx
σ 2 +

1

σ 2
0

)
c2si +

2
σ 2Re

[(
yH −

∑
i6=l

hixHi0
)
xl0
]

· csi
}

∼ N
( b1
2a
,
1
a

)
(9)

where

a =
Kεx
σ 2 +

1

σ 2
0

b1 =
2
σ 2<

[(
yH −

∑
i6=l

hixHi0
)
xl0
]

(10)

One can obtain a noninformative prior by letting σ 2
0 → ∞,

then a turns into

a =
Kεx
σ 2 (11)

We also have

p(csi|x, y,h, asi = 0) = δ(csi) (12)

2) SAMPLING SPARSE CHANNELS IN OFDM SYSTEMS
Rewrite (2) as

yF = diag{x}F (as0 · cs0)+ wF (13)

To derive the posterior distribution of asi for OFDM systems,
from the model in (13) we get

p(asi|x, yF , csi, h̄)

∝ p(yF |x,h)p(asi)

∝ exp
(
−

1
σ 2

∥∥yF − diag{x}Fh∥∥22) · p(asi)
=


B · exp

[
−
Kεx
σ 2 c

2
si +

2
σ 2<

(
K∑
k=1

y∗FkxkFkl

)
csi

]
·q, asi = 1
B · (1− q), asi = 0

(14)

where y∗Fk denotes the kth element of yF ,Fkl denotes the (k, l)
element of the DFT matrix F.
Similarly we can get

p(csi|x, yF , h̄, asi = 1)

∝ p(yF |x,h)p(csi)

∝ exp
(
−

1
σ 2

∥∥yF − diag{x}Fh∥∥22) · exp(−c2si/σ 2
0 )

∝ exp

[
−

(
Kεx
σ 2 +

1

σ 2
0

)
c2si +

2
σ 2<

(
K∑
k=1

y∗FkxkFkl

)
csi

]

∼ N
( b2
2a
,
1
a

)
(15)

where

b2 =
2
σ 2<

(
K∑
k=1

y∗FkxkFkl

)
(16)

and K denotes the number of subcarriers in OFDM systems.
We also get

p(csi|x, yF , h̄, asi = 0) = δ(csi) (17)

C. GIBBS SAMPLING OF TRANSMITTED SYMBOLS
During the nth iteration, starting with x(n−1) = {x(n−1)0 , . . . ,

x(n−1)N−1 } as
(n) and cs(n), x(n) is generated bit by bit sequentially

(for SC systems) or parallelly (for OFDM systems).
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1) SAMPLING TRANSMITTED SYMBOLS FOR SC SYSTEMS
In [27], the authors have derived the sampling procedure
to obtain samples for binary symbols. It is straightforward
to extend the procedure to our finite alphabet set A. In
specific, assuming that x0 through xk−1 have been updated
during the nth iteration, given by x(n)0 , . . . , x(n)k−1, and symbols
x(n−1)k+1 , . . . , x(n−1)N−1 are updated during the (n− 1)th iteration,
now we need to update x(n)k .
The sample x(n)k is generated on the conditional probability

distribution {γg, g = Q1,Q2, . . . ,Q|A|}, where

γg = P(xk = g|x̄k , y) (18)

and

x̄k = {x
(n)
0 , . . . , x(n)k−1, x

(n−1)
k+1 , . . . , x(n−1)T−1 } (19)

From (3) we get h(n) = as(n) � cs(n). Define
xg = {x(n)0 , . . . , x(n)k−1, g, x

(n−1)
k+1 , . . . , x(n−1)T−1 } for each g =

{Q1,Q2, . . . ,Q|A|}. By assuming a uniform prior distribution
for P(xk = g), we get

γg = p(xk = g|x̄k , y) ∝ p(y|xg)P(xk = g)

∝ p(y|xg) =
N+L−1∏
j=0

p(yj|x
g
j−L:j)

=


k−1∏
j=0

p(yj|x
g
j−L:j)

N+L−1∏
j=k+L+1

p(yj|x
g
j−L:j)


×

k+L∏
j=k

p(yj|x
g
j−L:j)) (20)

where xj−L:j = [xj−L , xj−L+1, . . . , xj]T . When j ≤ k − 1 or
j ≥ k+L+1, the vector xgj−L:j is independent of g. Thus,(20)
is simplified to

γg ∝

k+L∏
j=k

p(yj|x
g
j−L:j)

= C · exp


k+L∑
j=k

− 1
2σ 2

∣∣∣∣∣yj −
L∑
l=0

hlx
g
j−l

∣∣∣∣∣
2 (21)

where C is a scaling constant to ensure that
∑

g γg = 1.

2) SAMPLING TRANSMITTED SYMBOLS FOR OFDM SYSTEMS
From (3) we have h(n) = as(n) � cs(n). For each g =
{Q1,Q2, . . . ,Q|A|}, from (2) we get

γg = P(xk = g|yFk ) ∝ P(yFk |xk = g)P(xk = g)

∝ p(yFk |xk = g) = C · exp
[
−

1
σ 2 |yFk − ghFk |

2
]

(22)

where C is a scaling constant, hFk is the kth element of hF ,
hF is defined as hF

1
= Fh, and we assume a uniform prior

distribution for P(xk = g).
Our proposed algorithm is summarized in Algorithm 1

below.

Algorithm 1 Proposed Algorithm
1. Set iteration counter to j = 1, and set the initialize value of
the unknown parameters randomly.
2. Sample from (8)-(9) for SC systems or (14)-(15) for OFDM
systems to obtain samples of sparsity pattern and sparse
coefficient.
3. Sample from (21) for SC systems or (22) for OFDM
systems.
4. Change iteration counter from j to j + 1 and return to
step 2 until convergence or maximum iteration.

After specifying the length of the ‘‘burn-in’’ period J , it
is reasonable to approximate h(n) = a(n)s � c(n)s ∼ p(h|y),
x(n) ∼ p(x|y) for n = J + 1, . . . , I . The transmitted symbols
are first estimated as x̂ = (1/(I − J ))

∑I
n=J+1 x

(n). Then the
final hard decision is made by slicing every element in x̂ to
its nearest constellation point.

Note that the dominant computational complexity of our
proposed algorithm comes from sampling of transmitted
symbols. Therefore, we focus on computation of (21), and
it turns out that the computational complexity of (21) is
O(Nh2e |A|) per iteration, where he denotes the effective num-
ber of path in sparse channels. Hence the total complexity is
of O(Nh2e |A| I ).

D. EXTENSION TO TIME-VARYING UNDERWATER
ACOUSTIC CHANNELS
Previously we have assumed that the channel remains con-
stant over observed samples. Now we extend our proposed
algorithm to time-varying underwater acoustic channels. The
block diagram of the proposed receiver is shown in Fig. 1.
The components of sparse channel sampling, transmitted
symbols sampling and symbol detection have been discussed
by assuming static channels in previous subsections. Now
we elaborate extra components which handle time-varying
characteristics of underwater acoustic channels.

1) TIME-VARYING UNDERWATER ACOUSTIC CHANNEL
MODELING
A popular method to model time-varying characteristics of
underwater acoustic channels is by modeling linear path
delays with respect to Doppler scaling factors while keeping
path gains as constants as in [9], [10], [34]. Following this
approach, the impulse responses of time-varying underwater
acoustic channels could be modeled as

h(t; τ ) =
∑
l

Alδ(τ − (τl − at)) (23)

where τl , Al and a denote the path delay, path gain
and Doppler scaling factor, respectively. At the receiver,
by resampling the received signal in passband [35], [36], one
can obtain

ỹ(t)=Re

{∑
l

Alxb

(
1+ a
1+ b

t − τl

)
e
j2π fc

(
1+a
1+b t−τl

)}
+ñ(t)

(24)
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FIGURE 1. The block diagram of the proposed receiver.

where b denotes the resampling factor, xb(t) represents the
baseband equivalent transmitted signal, fc is the carrier fre-
quency, and ñ(t) is the additive noise.

2) DOPPLER COMPENSATION
Coarse Doppler scaling factor estimation can be computed by
simply comparing the time duration of transmitted packet and
received packet as in [34], [35]. Then the baseband equivalent
received signal after Doppler compensation via resampling
can be similarly approximated as in [34] by

y(t) = ej2πεt
∑
l

Alxb (t − τl) e−j2π fcτl + n(t) (25)

The discrete version of received samples can be obtained by

yn = ej2πεnT
L∑
l=0

hlxn−l + wn, n = 0, 1, . . . ,N − 1+ L

(26)

where ε = a−b
1+b fc denotes a Doppler shift and is called carrier

frequency offset (CFO) since its role is similar as CFO in
radio communications [15], [34].

3) CFO SAMPLING
Rewrite (26) in matrix form as

y = QX (as � cs)+ e (27)

where

Q = diag
{
1, ej2πε1/(N+L−1), ej4πε1/(N+L−1), · · · ej2πε1

}
ε1 = εT (N + L − 1) denotes the normalized CFO, and T is
symbol interval.

Note that the model in (27) is nonlinear with respect
to the normalized CFO ε1. Correspondingly, the posteriori
distribution of ε1 is not standard, leading to the difficulties
of sampling from the posteriori distribution. To circumvent
this problem, in [26] and our previous work [37], the second
order truncated Taylor series approximation with respect to
the CFO term is adopted to facilitate Gibbs sampling. One
can use similar method to derive the posteriori distribution
for ε1.

In particular, we choose a conjugate normal prior distribu-
tion for ε1 as

p(ε1) =
1√

2πσ 2
ε1p

exp

{
−
(ε1 − µε1p )

2

2σ 2
ε1p

}
(28)

with µε1p and σ 2
ε1p

being associated hyper parameters.
One can approximate the exponential term exp{j2πnε1/
(N + L − 1)} (with n = 0, 1, . . . ,N + L − 1) in Q with
its second order truncated Taylor series expansion

exp
{

j2πnε1
N + L − 1

}
' exp

{
j2πnε̃1

N + L − 1

}
+

j2πn
N + L − 1

exp
{

j2πnε̃1
N + L − 1

}
(ε1 − ε̃1)

−
2π2n2

(N + L − 1)2
exp

{
j2πnε̃1

N + L − 1

}
(ε1 − ε̃1)

2

(29)

developed around the last available sample of ε̃1 (drawn at
the previous iteration). By defining

Q10 = diag
{
exp

(
j2πn · ε̃1
N + L − 1

)}
Q11 = diag

{
j2πn

N + L − 1
· exp

(
j2πn · ε̃1
N + L − 1

)}
Q12 = diag

{
−

2π2n2

(N + L − 1)2
exp

(
j2πnε̃1

N + L − 1

)}
Q is approximated by

Q ' Q10 + Q11(ε1 − ε̃1)+ Q12(ε1 − ε̃1)
2 (30)

It is straightforward to derive the posteriori distribution of ε1
as

p(ε1|x, y, as, cs)
∝ p(y|x, as, cs, ε1) · p(ε1)

∝ exp
(
−

1
σ 2 ‖y− QX (as � cs)‖22

)
· p(ε1)

∝ exp

{
2Re

(
yHQ(as � cs)HXH )

σ 2 −
(ε1 − µε1p )

2

2σ 2
ε1p

}
∼ (µε1 , σ

2
ε1
) (31)

where

σ 2
ε1
=

{
1
σ 2
ε1p

−
4
σ 2Re

[
tεQH12y

]}−1
(32)

µε1 =
−4σ 2

ε1

σ 2

[
−Re

(
tεQH11y

)
/2+ ε̃1Re

(
tεQH12y

)]
−µε1p/(2σ

2
ε1p

) (33)

and tε = (as � cs)HXH .
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FIGURE 2. Samples drawn by the proposed sparse sampling algorithm
and normal Gibbs sampling algorithm when Eb/N0 = 5dB.

One can obtain a noninformative prior by letting
σ 2
ε1p
→∞, then (32) and (33) turn into

σ 2
ε1
= −

σ 2

4

{
Re
[
tεQH12y

]}−1
(34)

µε1 =
−4σ 2

ε1

σ 2

[
−Re

(
tεQH11y

)
/2+ ε̃1Re

(
tεQH12y

)]
(35)

Clearly, our algorithm could be extended to time-varying
underwater acoustic channels by simply adding an extra sam-
pling step from (31).

IV. SIMULATION RESULTS
TheBPSKmodulation is usedwith the block lengthN = 256.
Firstly, by using pilot symbols of the whole transmitting
block, Fig. 2 compares channel samples from our proposed
algorithm with traditional Gibbs sampling algorithm when
Eb/N0 = 5dB. Obviously, the channel samples from our
proposed algorithm are more sparse and accurate compared
with traditional Gibbs sampling algorithm.

To assess the convergence of the proposed algorithm, the
output of the Markov chains have been monitored. In Fig. 2,
the first 150 samples of the most significant tap of the channel
in Fig. 2 are shown. These results provide strong evidence that
the proposed algorithm quickly converges to the true param-
eters. Note that initial samples are zeros because the sam-
ples for sparsity pattern did not converge. For other channel
taps and transmitted symbols, we observe similar behaviors.
Furthermore, we also calculate the mean squared errors of
estimated parameters and evaluate the reconstruction error as
a function of the iteration number as in [1]. Based on these
tests, which are not shown here for brevity, the burn-in and
run lengths for proposed algorithm are set to 40 and 150,
respectively, which provides some safety margin.

Next we fix the channel delay spread as L = 55. The
entries of sparsity pattern are drawn i.i.d. from Bernoulli dis-
tribution with parameter q = 0.1 as described in Section II.
The sparse coefficient is drawn i.i.d from standard normal
distribution. Assuming the transmitted symbols are known
at the receiver, the MSE performance of channel estimation

FIGURE 3. Samples drawn by the proposed algorithm for the most
significant tap of the channel in Fig 2 when Eb/N0 = 5dB.

FIGURE 4. The MSE performance of channel estimation.

by the proposed algorithm with traditional Gibbs sampling
algorithm is shown in Fig. 4. Clearly, our proposed algo-
rithm outperforms the traditional Gibbs sampling algorithm
by incorporating channel sparsity. The more accurate channel
information naturally leads to more improved BER perfor-
mance.

Then we focus on BER performance. The superimposed
modulus of the true channel response h and the channel
response initialization h(0) are shown in Fig. 5. The mismatch
between h and h(0) (

∥∥h− h(0)∥∥2 = 2.40) is for the purpose
of evaluating an outdated channel response initialization.

Fig. 6 shows the BER performance of proposed algorithm
and traditional Gibbs sampling algorithm.We can see that our
algorithm significantly outperforms traditional Gibbs sam-
pling algorithm, especially for high SNR region. The reason
is that our proposed algorithm could generate more sparse
and accurate channel samples, as demonstrated in Fig. 2 and
Fig. 4. The gap between two algorithms gets larger with
increased SNR.

Fig. 7 tests the effects of the parameter q of Bernoulli
distribution. From Fig. 5 we can observe that there are 6
nonzero taps out of delay spread L = 55. Therefore the
correct q should be q = 6/55 = 0.1. When q = 0.2 is
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FIGURE 5. The modulus of the true channel response and channel
response initialization.

FIGURE 6. Performance comparisons of various receivers over the sparse
channel.

FIGURE 7. The effect of different q when Eb/N0 = 5dB.

used, the resulting BER performance is similar as shown in
Fig. 7. We can observe that our proposed algorithm is robust
to selecting q.

We then exhibit the BER performancewith respect to block
length. The BER results with block lengths of N = 512

FIGURE 8. Performance comparisons with different frame size over the
sparse channel.

FIGURE 9. BER performance for the OFDM system.

and N = 256 are shown in Fig. 8, respectively. Intuitively,
BER performance should be improved with the increase of
the block length since the unknown channel is assumed to be
static during a whole block. Indeed, one can observe from
Fig. 8 that the BER performance gets improved by increas-
ing the block length. On the other hand, the assumption of
static channel for whole transmitting block gets weaker with
increase of block length.

In Fig. 9 we show the BER performance of proposed
algorithm for the OFDM system. 256 subcarriers each with
BPSK modulation are used in the OFDM system. One can
observe comparable BER performance with SC counterpart
shown in Fig. 6.

Finally, we test our proposed algorithm in the time-varying
underwater acoustic channel. Based on the experimental
results from [34], we choose the CFO ε = 5Hz in the
simulation.We further assume T = 2×10−4s, corresponding
to the transmission rate of 5kbps. The normalized CFO with
N = 256 is then ε1 = 0.31. Fig. 10 shows the BER
results in the time-varying underwater acoustic channel. The
resulting BER performance is similar as the results in the
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FIGURE 10. BER performance in the time-varying underwater acoustic
channel.

static channel as shown in Fig. 6, demonstrating our proposed
algorithm could work well in time-varying underwater acous-
tic channels.

V. CONCLUSION AND FUTURE WORK
This paper investigates semiblind equalizer for sparse under-
water acoustic channels. Existing relatedworks assumed non-
sparse channels, and could not work well in sparse channels.
In this manuscript, we have proposed a Gibbs-based semi-
blind equalization algorithm for sparse channels. Different
from existing literature using conjugate priors for channels,
we decompose the sparse channel response into components
of sparsity pattern and sparse coefficient, and incorporate the
sparse structures of channels in Bernoulli prior probability
distributions for sparsity pattern. We derive the posterior
distributions for both sparsity pattern and sparse coefficient
components, thereby sampling of sparse channels could be
obtained. Traditional Gibbs sampling algorithm could be
viewed as a special case of our proposed algorithm. More-
over, our algorithm could be applied in underwater acous-
tic channels. Numerical results are provided to demonstrate
performance of proposed algorithm. Future work in this field
includes the application of the proposed algorithm with data
from sea or lake experiments.
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