
Received July 30, 2020, accepted August 23, 2020, date of publication August 31, 2020, date of current version September 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3020265

Scheduling of a Robot’s Tasks With the
TaskER Framework
WOJCIECH DUDEK , (Student Member, IEEE), AND TOMASZ WINIARSKI , (Member, IEEE)
Warsaw University of Technology, Institute of Control and Computation Engineering, 00-665 Warsaw, Poland

Corresponding author: Wojciech Dudek (wojciech.dudek@pw.edu.pl)

This work was supported by the AAL JP (Active and Assisted Living Joint Programme) funded by the European Union’s Horizon2020
Research and Innovation Programme Project ‘‘INCARE—Integrated Solution for Innovative Elderly Care,’’ under Project
AAL-2017-059-INCARE.

ABSTRACT Robots, in contrast to typical computational systems, affect the physical environment directly.
Therefore, other assumptions must be considered for task management procedures in these system types.
Robots coexist with humans in the environment and act upon potentially dangerous objects (e.g., a cooker);
hence, extra safety procedures in robot task harmonisation must be ensured. Additionally, an algorithm that
schedules tasks for a robot and optimises the robot’s operation needs to consider the robot motion time,
dynamics of the physical processes, changes in the robot user preferences and changes in the environment
made by other habitants. In this article, we investigate the problem of switching between various independent
tasks safely and state requirements for a control system resolving it. The tasks are uploaded to a store,
launched on a robot at the user’s request (similar to smartphone applications) and scheduled following
a configurable algorithm. Furthermore, we design a model of systems satisfying the requirements. The
systems are structured with agents of different classes. We propose a task-switching procedure and dedicated
states of the finite-state machines describing the operation of the agents. Finally, we present a TaskER
framework implementing the model, and we verify the model through the execution of an exemplary system
in scenarios showing the benefits of the model implementation. As a result of our approach application, the
robot tasks can be safely interrupted, postponed, resumed, and potential danger (e.g., leaving a cooker on
for a long time) can be minimised.

INDEX TERMS Intelligent robots, cyber-physical systems, agent-based modeling, multitasking, robot
programming.

I. INTRODUCTION
The development of cutting-edge technology increases the
applicability, universality and popularity of robots. In the
robot classification according to application field that was
published in [1], there are 2 main branches (industrial and
service robots), which are compositions of lower-level robot
classes. The inspection of the service robot branch reveals
the versatility of the applications that assist humans in, e.g.,
the areas of medicine (home care and telehealthcare [2]),
home (automated vacuum cleaners [3]), education (multi-
agent platform for teaching mobile robotics [4], a survey of
robotics for education [5]) and defence (a security robot for
human-robot interaction [6]). The applications differ in terms
of their constraints and requirements for robotic systems.
For example, robots for medicine are typically targeted to

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

maximise human safety and personnel convenience, whereas
industrial robots optimise production quality and quantity.
In each application, robots conduct various tasks (e.g., per-
sonnel assistance [7], object transportation [8], or therapy [9]
in medicine). Some tasks demand computational power and
storage that exceed those that are delivered with a robot.
Therefore, robotic systems are being supported by cloud
computing [10]. In multi-robot systems, the cloud delivers
common system-wide services for various robots or enables
cooperation of the robots [11]. One example of such a service
is a task store [12], which enables application domain experts
to compose and deploy new tasks to the system.

The recent COVID-19 pandemic highlights a need for
easy and convenient robot task configuration, especially in
unexpected scenarios. Using the task store, robots that are
available in galleries or at universities can be easily config-
ured to helpmedical personnel at hospitals [13]. The tasks can
be requested via multiple human-machine interfaces (Internet

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 161449

https://orcid.org/0000-0001-5326-1034
https://orcid.org/0000-0002-9316-3284
https://orcid.org/0000-0002-3685-3879

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

of Things devices [14] or human-robot interfaces [15], [16])
by various operators (e.g., medical personnel or patients) at
any time during the operation of the robot. Moreover, not
all task requests are consulted between users, and it may
be necessary to interrupt a task with another if the scenario
changes. Therefore, the robots must manage their tasks and
be able to suspend and resume them.

The above problems concern various applications of
robots; hence, robotic systems are complicated and require
a straightforward development method. The model-driven
engineering approach, which is based on the model concept,
facilitates the design procedure of a system and prevents the
influence of cognitive biases [17] on the design of the system
architecture at the initial phase [18].

In our analysis of various robotic systems, a set of typical
use cases was identified, while the robots switch from one
task to another. In the following part of this section, we define
the problem of our work by description of the use cases and
specification of the requirements for a robot system with
modular tasks. The system is enhanced with task scheduling
and cloud computing. At the end of the introduction, we dis-
cuss the contributions, applicability and concept of our work.
In the subsequent Section II, a formal model of a robot control
system that satisfies the requirements and follows the concept
is described. Next, in Section III, we evaluate our approach
via proposition of a verification scenario, implementing the
model in the TaskER (Task schedulER) framework, and con-
figuration and execution of an exemplary system. Further-
more, we describe how the system satisfied the requirements
during the scenario execution. Finally, we discuss related
works in the areas of robot system architectures, task models
and task switching approaches for robots (Section IV), and
we present the conclusions of our study in Section V. In
Appendix A we show cooperation of the system parts in the
proposed task switching procedure and in Appendix B we
describe the analysis of the conducted verification proving
that the exemplary system has the functionality required by
the initial problem definition.

A. USE CASES AND REQUIREMENTS
The use cases of a robot system that are considered in this
study are presented in Tab. 1. There are two classes of actors
who interact with the robot system: developers and users.
Based on an analysis of the use cases (which are described in
the following subsections), the requirements for the system
management of the use cases are formulated.

1) USE CASE – TASKS AS MODULAR EXTENSIONS
There are many possible duties that a robot can perform for
its users. For example, in the area of helping elderly people,
the study [19] identified multiple activities that threaten inde-
pendent living in mobility, self-care and social interaction.
Therefore, robots should be able to manage multiple tasks
and extend the task set even after the system deployment
according to the user’s demands. A similar problem occurs
in the smartphone market, and the solution is the use of an

TABLE 1. Use cases of the desired system.

application store, which collects independent programs that
can be downloaded and launched upon the request of a user.
The application store of the service robot market must contain
various tasks. Furthermore, asmultiple tasks are available and
are uploadable to the robot system on the fly, they must be
independent.

2) USE CASE – EASE OF CONFIGURATION OF THE
SCHEDULING ALGORITHM
Robot systems resolve various problems in many sectors,
such as industry [20], healthcare [21] and entertainment [22].
These sectors optimise robot usage to realise various objec-
tives, e.g., in industry, to maximise production quality and
quantity, and in healthcare, to minimise the time and effort

161450 VOLUME 8, 2020

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

of nurses and medical personnel. In contrast, robots at the
homes of elderly people should optimise the comfort and
safety of these individuals. To realise various objectives,
the robot controller must utilise a configurable scheduling
algorithm that computes scheduling decisions that optimise
the cumulative cost during the robot operation. Furthermore,
the cost function can change with time and can depend on
the specified task (e.g., as the delay in a task of water trans-
portation to an elderly person increases, his/her discomfort
and danger increases). Schedule parameters that are used to
compute the costs and scheduling decisions can have var-
ious forms. Typically, priorities and temporary constraints
are used as schedule parameters; however, they can be of
any form that reflects the main objective of the robot system
(e.g., a scheduling algorithm of a system for helping elderly
people can maximise their comfort as a schedule parameter).

3) USE CASE – COEXISTENCE IN A SHARED ENVIRONMENT
Robots interact with the physical environment and affect it
by their actions, which compose their tasks. Although the
effects of their actions are immediate (turning on a cooker),
the objective of the task will be completed with a delay
(e.g., boiling water on the cooker) [23]. Therefore, the robot
controller must be aware of the potential damage, injury or
loss that can be caused by an interruption of an ongoing task
(e.g., while a new task is initiated, a cooker remains on during
realisation of the new task). Thus, the robot controller must
not only consider the current state of the environment but
also foresee the future effects of the current actions. Unfor-
tunately, it is difficult to design a comprehensive model of
an environment for estimating its state in the future based on
the robot actions. Models of tasks are available that describe
how the environment changes while the task proceeds [24].
However, even though the effects of the robot’s actions are
estimable, the environment can also be changed by other
actors (such as humans, robots, and animals).

Cooperation with humans is a difficult problem, as humans
differ in many aspects, and it is difficult to model their
behaviours and needs. These problems also impact the task
switching for human-robot collaboration. For example, a task
deadline depends on high-level abstract conditions,1 a user
may change his mind regarding the priorities of the requested
tasks, or a user can perform a part of a queued task.

4) SYSTEM REQUIREMENTS
We state the following requirements for a robot controller
to enable the task harmonisation feature and address the
problems that are identified in the above use cases:

R1 – the robot controller must maintain additional activi-
ties to enable advised task switch. It constantly listens
to new task requests, even as the robot proceeds with

1The control system of a robot must know if the user who requested task
‘‘B’’ can pre-empt his/her duties that are related to the task so that the robot
could finish the ongoing task, namely, task ‘‘A’’, or if postponing requested
task ‘‘B’’ is not acceptable.

a task, and potential switching between the ongoing
task and the new task is managed as soon as possible;

R2 – the values of the schedule parameters that are used
to compute scheduling decisions (e.g., priorities) are
dynamically changing even if a task awaits execution,
and if one of the parameters changes, then the schedul-
ing algorithm is initiated. The parameters can be either
task context-dependent or system-wide;

R3 – both the algorithm and the parameters that are used
in the scheduling procedure depend on a system appli-
cation and must be configured based on the system
requirements;

R4 – the tasks that are available in the system are created
independently and differ in terms of knowledgebase
and context;

R5 – developed architecture must raise awareness of the
task developer to foresee possible dangerous situations
caused by a task switch. Additionally, the tasks exe-
cution method needs to enable independent tasks to
oversee changes in the environment and in the system
in order to change task-dependent schedule parame-
ters. Furthermore, the ongoing task needs to be safely
suspended before the controller switches to another
task. As a result of this, a possible robot/environment
damage or other loss due to a task interruption must be
limited; and

R6 – a task plan and the initial conditions of its primitive
actions may change while the task awaits execution or
resumption.

B. CONTRIBUTIONS AND APPLICABILITY
In our study, we introduce TaskER model of a robot control
system that extends the RAPP (Robotic Applications for
Delivering Smart User Empowering Applications) archi-
tecture [12] with the task scheduling feature. Furthermore,
we describe the TaskER framework, which implements this
model. The model is a novel approach to schedule robot’s
tasks and is an answer to the problem of harmonisation the
robot’s tasks, i.e. it shapes a multi-robot system to flexibly
and with reinforced safety, coordinate, organise and combine
tasks assigned to a robot.

1) WORKS UPON WHICH WE RELY
Our system is derived from the RAPP platform and the robot
task harmonisation concept that was published in [25]. The
specification method of the system follows the embodied
agent approach [26], [27], according to which agents are
the main units of a system decomposition. Furthermore, the
agents are composed of subsystems that carry out a functional
part of the system. The embodied agent approach was used
in the description of various robot systems, e.g., a dual-
robot manipulation station [28], a mobile robot with various
modes of locomotion [29], a dual-arm service robot [30] and
a service humanoid robot [31]. The RAPP platform consists
of agents that are distributed between the robot and the cloud
according to the algorithm that was published in [32], [33].

VOLUME 8, 2020 161451

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

FIGURE 1. Cooperation of the agent classes introduced in RAPP (pla, sta,
ca, cla, da) and in our approach (tra, tha) – services consumed and
provided.

There are five classes of agents. The agents of a class have
the same role in the system and have similar functionalities
for fulfilling the role. A graphical visualisation of the services
that are provided and consumed by classes from RAPP and
those introduced in this work is shown in Fig. 1:

1) Core Agent (ca class) – manages the robot hardware,
acts as a low-level controller of the robot and pro-
vides common, fundamental behaviours of the robot
to the task-level controller—da class. Among others,
a ca class commonly delivers motion planning and
execution algorithms (e.g., [34]). Its control software
operates on the robot computer. There is one ca class
for each robot in the system.

2) Platform Agent (pla class) – a computational agent
that operates in the cloud and provides system-wide
services that require high computational power or huge
storage space. There is one pla class agent in the
system.

3) Dynamic Agent (da class) – a computational agent that
manages a specified task. Such a task is composed of
various actions, such as ca class behaviours and plat-
form agent service requests. For example, a da class
implements a human guiding task that is composed of
robot motion action (ca class agent behaviour), and
detection of a human in the pictures sent to pla class
agent. In the RAPP project, only one da class operates
on a robot that completes a task that is requested by
a user. When the task is finished, the robot waits for
further requests.

4) Cloud Agent (cla class) – a computational agent that
may be spawned in the cloud by a da class to delegate
complex task-related computation operations from the
robot and to store large files in the cloud. It is strictly
connected to the task and the da class that spawned it.

There are at most as many cla class as da class agents
because it is not obligatory for a da class to spawn
a cla class agent in the cloud.

5) RAPP Store (sta class) – a computational agent that
operates in the cloud and stores task files. The files of
a specific task are spawned upon user request on the
user’s robot, and when initiated, become a da class
agent.

RAPP agents can be assigned to layers via the three-layer
architecture approach [35]. Hence, the pla class belongs to
the deliberation layer, the da class constitute the sequencer
layer and the ca class is the controller layer of a robot. The
role and design of a cla class depend on a da class that is
supported by it; however, the most intuitive strategy is to use
cla class as a task-context-dependent deliberation layer.

2) CONTRIBUTION TO THE SATISFACTION OF THE STATED
REQUIREMENTS
Two approaches are available for managing task harmoni-
sation: regarding the tasks as constant and uninterruptible
(as in the RAPP approach) or allowing for the system to
interrupt the ongoing tasks. Thus, we extend the classifica-
tion of tasks, robots, and task allocation introduced in [36]
with an additional axis—task harmonisation: constant-task
harmonisation (CT) vs interruptible-task harmonisation (IT).
CT denotes that in case of a new task request during real-
isation of the current task, the decision on task switching
will be postponed until the moment when the ongoing task
finishes, while IT denotes that the decision on task switching
is taken on the reception of a new task request and the robot
can suspend the ongoing task, conduct a set of operations of
the new task and restore the previous task from suspension.

Our work enables systems based on variable architec-
ture (RAPP) to use an algorithm and versatile parameters to
decide upon task switch. The parameters can be defined in
the context of the whole system and can be task context-
dependent. The harmonisation procedure proposed in this
article is formally and precisely defined enabling its adaption
to other architectures.

None of the models or example systems that are pre-
sented in the related work section (Section IV) satisfy all
requirements that are stated in Section I-A4 and describe the
behaviours and structure of a system that can harmonise tasks
via the interruptible-task approach. In this article, we intro-
duce a model of a robot control system that has the following
features:

1) safe suspension and resumption of independent tasks,
2) facile reconfiguration of the scheduling algorithm and

the parameters that are used to compute scheduling
decisions,

3) computation of the schedule parameters that depend
on a specified task context and abstract knowledge
(e.g., an estimated time for completing the task and
an estimated time for suspending the current task) and
reappraisal of the parameters in reaction to changes in
the environment,

161452 VOLUME 8, 2020

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

FIGURE 2. The procedure for handling task requests and for evaluating
dynamically changing schedule parameters. It results in the replacement
or continuation of the ongoing task. The harmoniser part was not
considered in RAPP and the request interface was a part of a ca class
agent, therefore, in our solution we define two additional agent classes
that cover roles of these parts. The presented concept is formalised in our
model and visualised in Fig. 8.

4) facile extension of available tasks,
5) update of a plan of an individual task prior to execution,
6) termination of a queued task if it is no longer beneficial,
7) rescheduling of tasks in reaction to the reappraisal of

the schedule parameters, and
8) online task harmonisation reconfiguration in either the

constant-task or interruptible-task scenario.

Furthermore, we define a formal notation for describing the
model and the systems that are inherited from it. The notation
helps the systems’ developers in various aspects, for example,
in relating analogous entities defined in different approaches,
in diagnosing the system state more efficiently, or in making
the model definition more precise than if it were defined by
ambiguous relations and entities.

Finally, we have implemented the TaskER framework,
which implements themodel and supports the development of
various tasks and scheduling algorithms. The general concept
of the harmonisation procedure that is described formally in
the model is illustrated in Fig. 2.

We distinguish three main parts in the harmonisation pro-
cedure: the request interface, the tasks and the harmoniser.
The request interface defines a structure of task requests.
Each task calculates its schedule parameters used to com-
pute schedule by the harmoniser part, is responsible for its
plan management and execution and share an interface to
manage its mode of operation. The harmoniser part basing
on the schedule parameters received from the tasks manages
their modes of operation as it is defined in the schedule
algorithm. The proposed harmonisation procedure prevents

multiple tasks to execute their actions at once, what would
result in a chaotic behaviour of the robot.

3) WORK CONSTRAINTS AND APPLICABILITY
Our model is based on a component structure and describes
the required components and recommended interactions
between them for handling task suspension and resumption.
Additionally, tasks must be divided into stages, classified as
suspendable, which can be interrupted, and blocking, which
cannot be interrupted. A possible interruption of an ongoing
task that is in a blocking stage is handled in a subsequent
stage.

Our approach harmonises tasks that are conducted by
a robot and not tasks of a whole system that consists of
multiple robots. However, such a system also benefits from
our model because the model and its description enable the
harmonisation of tasks that are delegated to each robot of the
multi-robot system.

Referencing the extended classification of robots, tasks and
task allocations [36], our study considers the following:

1) robots that are single-task, namely, can execute at most
one task at a time,

2) tasks that are single-robot, namely, require exactly one
robot for realisation, and

3) task allocation that is instantaneous-assignment,
namely, corresponds to the system that does not possess
any information that is suitable for planning future task
allocations.

Such a classified system consists of single-task robots that
conduct single-robot tasks. However, the system may con-
tain multiple robots that can complete numerous types of
single-robot tasks, e.g., object transportation, hazard detec-
tion, and object search.

The TaskER model is implemented as a framework built
upon ROS and the model extends the RAPP architecture.
However, the structure and system behaviours that enable task
harmonisation, can be applied to any other system which task
model is definable by FSM at least at the top level. Exemplary
integration of TaskER with tasks modelled with Petri Nets is
presented in this article. The model can be used in a system
with knowledge representation in the PDDL [37] to handle
harmonisation of the sequences that are deployed by the
planning component. Our model allows for da class agents to
compute and send task-related parameters to the scheduling
algorithm to influence the scheduling decision (e.g., the esti-
mated time for completing a task and the estimated time for
suspending the current task). The above assumptions are not
restrictive; they allow for the development of a multi-tasking
robot with interruptible-task harmonisation.

II. MODEL OF A ROBOT SYSTEM WITH A TASK
HARMONISATION FEATURE
The model defines both the structure and behaviour of a
multi-robot system that harmonises the robots’ tasks (sep-
arately for each robot). The model is formally specified

VOLUME 8, 2020 161453

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

with embodied agent approach used in a variety of robotic
systems (industrial [38], social [31], service [30]). Recently,
the approach was expressed in SysML [39] with the use
of diagrams visualising core terms and their relations. The
problem of system decomposition into layers and modelling
communication between the agents composing the system is
resolved in [40]. In this section, the notation that is used to
describe the proposed architecture is introduced. Then, the
overall structure of the system and structures of the classes of
agents that are used in it are defined. Finally, the operation
and cooperation of the agents are described with finite-state
machines (FSMs), UML activity and sequence diagrams.

A. NOTATION AND SYMBOLS
The agents in the embodied agent approach are abstract parts
of a system, which communicate with each other and have
the imperative to use their resources to realise their own
objectives. Thus, the decomposition of a system into agents
is based on the division of the system resources and responsi-
bilities. It should be noted that the symbols in indexes used in
the notation are divided by commas, so multi-letter symbols
should not be confused with multiple single-letter symbols.

We assume that the system controls a set of robots, and
the set is designated as R. The set of all agents of the system
(denoted as A) is decomposed into two sets of agents. The
first set (denoted as sA) consists of agents with system-wide
responsibility (e.g., general services for all robots in the
system, interfaces to other systems, and big data storage
and services). The second set (denoted as RA) consists of
agents that manage robots’ hardware and control the robots
to perform tasks. A set of agents that are associated with
a specified robot is denoted as rA, where r is the robot
name (r ∈ R). To denote a subset of the above sets
(sA, RA, rA) that contains agents of a specified class, we use
hAu, where h ∈ {s, R, r} specifies the symbol of the set, and
u ∈ {ca, da, cla, tha2, tra2, pla, sta} specifies the
class of the agents. The sets and subsets are defined by (1)-(4).

A = sA ∪ RA, (1)
sA = sAtra ∪

sApla ∪
sAsta, (2)

RA = RAca ∪
RAda ∪

RAtha ∪
RAcla ∪

RAtra =
⋃
r∈R

rA, (3)

rA = rAca ∪
rAda ∪

rAtha ∪
rAcla ∪

rAtra. (4)

An agent is designated as waj, where w ∈ (R ∪ {s}), and j
is a unique identifier of the agent (e.g., r1a12). If w ∈ R,
then the agent is associated with a robot, whereas if w =
s, then the agent is a system-wide agent. An agent con-
sists of subsystems of various classes, however, in this
work we omit the subsystem identifier in our notation as
each of the agents described in this article consists of one
subsystem. Management of behaviours of such an agent
is defined by a finite-state machine, which is denoted as
FSM j. Finite-state machines are composed of states, which

2 new classes of agents that were introduced in this article in Section II-B

FIGURE 3. Contextual and corresponding non-contextual notation of an
inter-agent communication, where cα is a control subsystem of aα .

for a specified FSM j, we denote as Ssj , where s is an identifier
of the state. A hierarchical FSM is an FSM that includes at
least one super state that is defined by another FSM. The FSM
that defines a super state Ssj is denoted as FSM j,s. A basic
behaviour Bb

j describes an activity of a single-subsystem
agent j, where b is an identifier of the basic behaviour. A basic
behaviour Bb

j is assigned to a state Ssj if b = s. Termi-
nation conditions are logic functions that are assigned to
basic behaviours and define an event that terminates a basic
behaviour. They are denoted as tcj,b. A transition function
f kj processes data from input buffers and saves it to output
buffers, where k is an identifier of the function. A transition
function f kj is computed in a basic behaviour Bb

j if k = b.
Transition functions may be divided into primitive transi-
tion functions; such a function is denoted as pf pj , where p is
an identifier of the primitive transition function. Transitions
between states that compose an FSM are triggered by logic
functions called initial conditions, which are denoted as icj,o,
where o is an identifier of an initial condition. Subsystems
communicate with each other via communication buffers.
We distinguish input buffers—g

xcj,u—and output buffers—
g
ycj,u—where u is an identifier of the buffer, and g is an
identifier of the agent to which the buffer is connected. Links
between buffers are specified on a structure diagram with
either contextual or non-contextual notation, as presented in
Fig. 3. Subsystems can store data in their internal memory.
The internal memory of a control subsystem is denoted as ccj.

B. STRUCTURES AND BEHAVIOURS OF THE AGENTS
According to the requirements R1-R6, a robot controller may
be requested to begin a task while it proceeds another task
(da class). In contrast to the RAPP approach, our model
allows for multiple da class agents to operate on one robot,
but the model of da class differs from that in the RAPP
project. Therefore, we define a set of da class agents that
operate on a specified robot as rAda, where r is an identifier
of the robot.

To satisfy the requirements of this study, we intro-
duce additional agent classes that were not considered in
the RAPP project—task harmoniser (tha class) and
task requester (tra class). There is one tha class
agent per robot (|rAtha| = 1) in the system, and the agent
schedules rAda agents based on a scheduling algorithm
that is defined in a transition function of the tha class

161454 VOLUME 8, 2020

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

agent. The algorithm can use either task-dependent sched-
ule parameters, which are computed by rAda agents, or task-
independent schedule parameters, which are computed by
the algorithm itself. A tha class agent can be requested at
any time by a tra class agent to launch a da class agent
on the robot with which the tha class agent is associated.
In Fig. 1, we present agent classes and services they provide
and consume.

Agents from the da, tha, cla, pla, and sta classes
consist of a control subsystem only (communicate with other
agents and processes data). However, agents of the ca and
tra classes can collect data from the environment (using
real receptors) and/or affect it (using real effectors). Each of
these abilities requires a suitable, additional set of subsys-
tems; hence, agents of the ca and tra classes may consist
of multiple subsystems of various types that depend on the
agents’ abilities. The method of composition of an agent from
subsystems of different types was considered in [41].

Implementations of our model may consist of multiple
tra class agents that are built with different subsystems and
play the roles of various interfaces (e.g., a home automation
system, a smartphone, or a human-robot interface). From
this perspective, the structure and behaviours of a tra class
agent are not important. However, the interfaces of tra
class agents are. Hence, they are described in the tha class
agent section (Section II-B2) and the tra class agent section
(Section II-B3).

Based on the RAPP architecture and descriptions of tha
class and tra class agents, we state the cardinalities of the
sets of system agents:

|
sAca|=|

sAtha|=|
sAda|=|

RApla|=|
RAsta|=0, (5)

|
sApla| = |

sAsta| = 1, (6)

∀r ∈ R : |rAca| = |rAtha| = 1 ∧ |rAcla| ≤ |rAda|, (7)

∀r ∈ R : |rAtra| = 0 ∨ |rAtra| = 1. (8)

A tra class agent can be associated with either a specified
robot or a whole system. Following (8), each robot can have
one tra class agent associated with it (we denote it as rarr).
Table 2 describes additional sets that are used in our work.

In Fig. 4, we present the general structure of a multi-robot
system that utilises our model. The figure shows a cross-
section in a layer of robot r and presents agent sets, agents of
robot r , buffers of all agents and connections between those
buffers. The general structure showing the agents associated
with the example robot r ∈ R consists: rAda set (including
example rady); raha, which is a tha class agent of robot
r ; raco, which is of ca class; rarr , which is of tra class;
and rAcla, which is a set of cla class agents that are asso-
ciated with the agents of set rAda. The model consists of
system-wide agents that communicate with all robots in the
system: sapl of pla class, sast of sta class, and agents of
set sAtra.
One of the model constraints is the independent man-

agement of tasks that are delegated to a specified robot.

TABLE 2. List of sets that are used in the model and exemplary system,
where r is a robot of the system (r ∈ R), and dy and ha are identifiers of
a da class and a tha class agents respectively.

FIGURE 4. Decomposition of our architecture is derived from RAPP
architecture, but new tra and tha class agents are introduced in our
work (managing request interface and harmoniser roles visualised in
Fig. 2), communication buffers are presented in the non-contextual
notation shown in Fig. 3 and the roles of the inter-agent connections are
presented in Fig. 1.

Therefore, in the next sections, we assume the following
instances of the agent classes and cardinalities of the agent
sets:

|R| = 1⇐⇒ |RAca| = 1 ∧ |RAtha| = 1, (9)

R = {r}, rAca = {raco}, rAtha = {raha}, rAtra = Ø (10)
sAtra = {

satr }, sApla = {sapl}, sAsta = {sast }. (11)

1) DYNAMIC AGENT CLASS
A da class plays a task bearer role and conducts a set of basic
behaviours that are required for performing the task, along

VOLUME 8, 2020 161455

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

with a set of additional behaviours that are defined in our
model to satisfy requirements of our study. In addition to the
basic behaviours, we define a structure of da class agents,
their FSM and communication buffers. We demonstrate the
model of a da class on an example rady, which is associated
with robot r (rady ∈ rAda). We assume that conditions (9)-(11)
are satisfied and that racl supports rady (12):

rAda = {
rady}, rAcla = {racl}, racl ∼ rady, (12)

where ’∼’ denotes the support relation between a cla class
agent and a da class agent.

a: BUFFERS OF da CLASS AGENTS
Each agent ofda class has 10 buffers. The first pair of buffers,
namely, cox cdy,rob and co

y cdy,rob, is used to communicate with
raco to
1) command the robot (coy cdy,rob),
2) receive information about the robot and its environment

(cox cdy,rob).
The second pair, namely, clxcdy,cloud and cl

ycdy,cloud , is used to
communicate with racl , e.g., to request complex computation
services or algorithms that require user data that are stored in
the cloud.

Transitions of FSMdy (Fig. 5a) are triggered based on the
value of ha

x cdy,cmd buffer (13), where data consists of any
constraints or arguments that are required by rady for handling
the command. However, the data field of the buffer is not
obligatory for systems that utilise our model:

ha
x cdy,cmd = [triggerFlag, data] (13)

triggerFlag ∈ {start, susp, term} (14)

If the triggerFlag value consists of an identifier of an initial
condition that is defined in FSMdy, then the initial condition
is triggered (15)-(17).

ha
x cdy,cmd = [start, data]⇒ icdy,start = true (15)
ha
x cdy,cmd = [susp, data]⇒ icdy,susp = true (16)
ha
x cdy,cmd = [term, data]⇒ icdy,term = true (17)

Buffer ha
y cdy,report transmits the report of agent rady, which

contains at least an identifier of the current state of FSMdy
(Fig. 5):

ha
y cdy,report = {fsmState}

fsmState ∈ {initComm, compSP, upTsk, exeTsk,

susp,wait, end} (18)

Additionally, this buffer may be extended with schedule
parameters that are task-dependent, which must be calculated
by rady:

ha
y cdy,report = {fsmState, scheduleParams} (19)

The structure of the scheduleParams field depends on the
scheduling algorithm of the system. Therefore, it is config-
urable and not expressed in our model.

FIGURE 5. Hierarchical finite-state machine governing the operation of
a da class presented on an exemplary agent rady .

A pair of buffers (hax cdy,reqSP and ha
y cdy,reqSP) are used to

deliver argument-dependent schedule parameters that are cal-
culated by rady on request from raha. The input buffer con-
tains an identifier of a schedule parameter (spID) and the
arguments that are required for calculating the parameter
(args), and the output buffer stores the value of the requested
parameter (scheduleParam). The buffers have the following
structures:

ha
x cdy,reqSP = [spID, args] (20)
ha
y cdy,reqSP = [scheduleParam] (21)

An example schedule parameter that is argument-dependent
is the estimated time for completing a task under specified
conditions (e.g., a starting robot pose). The ha

x cdy,reqSP and
ha
y cdy,reqSP buffers are used only in systemswith harmonisation
that is based on argument-dependent schedule parameters.

Finally, a set of buffers, namely, plxcdy,srv and
pl
ycdy,srv, are

used to communicate with the rapl to call system-wide ser-
vices that are supplied by rapl , such as text-to-speech or
speech-to-text.

b: FSM OF da CLASS AGENTS
The lifecycle of a da class is managed by a hierarchical FSM
with three states at the top level—FSMdy (Fig. 5a):

161456 VOLUME 8, 2020

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

FIGURE 6. Integration of the TaskER model with a task modelled with
Petri Nets.

1) Sinitdy – the process of rady is initiated in the robot’s
computer. The internal FSM of this state is presented in
Fig. 5b. Agent rady is allowed to pull data from raco to
compute schedule parameters and obtain the addresses
of the remote services. However, rady does not com-
mand raco to perform the task that is implemented in
rady. This state consists of two internal states:

1.1. SinitCommdy – rady creates communication interfaces
and inititalises the values of its internal memory
ccdy;

1.2. ScompSPdy – rady sets the value of ha
y cdy,report

(18)-(19), and if the system uses task-dependent
schedule parameters, then rady computes these
task-dependent schedule parameters, which are
used by raha to manage the operation of the agents
from set rAda.

2) Scmddy – rady commands raco to complete its task. This
state is represented by a hierarchical FSM (Fig. 5c),
where

2.1. SexeTskdy is specified by an FSM (FSMdy,exeTsk)
that describes the task of rady, and each state of
this FSM represents a stage of the task. The
states of the FSM are denoted as Sstage,kdy , where
k is an identifier of the stage. The stages can be
defined by any task model (Petri Net, Behaviour
tree, DSL, FSM). In case of a task based on Petri
Nets, an exemplary FSMdy,exeTsk has the form
presented in Fig. 6.

2.2. SupTskdy modifies or re-plans task defined by
FSMdy,exeTsk to adapt it to changes in the envi-
ronment that occurred when rady was waiting for
the execution of its task.

2.3. Ssuspdy consists of an internal FSM that is composed

of two states: SgenSuspdy and SexeSuspdy . The first cre-
ates FSMdy,exeSusp for governing the behaviours
of the robot, which is required for suspend-
ing the ongoing task safely. The second state,
namely, SexeSuspdy , is a super state that is defined
by FSMdy,exeSusp. State S

susp
dy is responsible for

conducting a set of actions to

i) set the robot and the environment in safe con-
ditions at the time of the task switching,

ii) enable the resumption of the task that will be
conducted by rady.

3) Swaitdy – rady awaits resumption, sets the value of
ha
y cdy,report and calculates only the schedule parameters.

If |rAda| ≥ 1, then only one agent from set rAda can be in
state Scmddy (other agents can be in other states) and execute
its task. The initial conditions of FSMdy, namely, icdy,start ,
icdy,term, and icdy,susp, are set by raha via inter-agent con-
nection; hence, raha must not allow for more than one agent
from rAda to be in state Scmddy . Only two initial conditions—
icdy,taskFinished and icdy,term—can be set by rady:

1) icdy,taskFinished – the task that is implemented in SexeTskdy
is completed and reaches the final stage (the end state
of FSMdy,exeTsk sets icdy,taskFinished),

2) icdy,term – the task of rady is aborted by a user or is
no longer feasible, while the agent is in state SexeTskdy ,

S
compSP
dy , or Swaitdy .

c: BASIC BEHAVIOURS OF da CLASS AGENTS
The transition function that is calculated during the B

compSP
dy

basic behaviour (f compSPdy) consists of one primitive transition

function (pf compSPdy), which is composed of multiple prim-
itive transition functions, each of which computes a dis-
tinct schedule parameter (e.g., the priority and the estimated
time for completing the task that is implemented in rady).
Equation (22) defines a composition of primitive transition
functions in f compSPdy and triggering events of each of them.

f compSPdy = pf compSPdy =



pf reportdy timer(repRate)

pf sp,1dy I1

pf sp,2dy I2

.

pf sp,pdy Ip,

(22)

where pf reportdy , with the frequency defined in the repRate
field of ccdy, sets the fsmState field of the ha

y cdy,report buffer
(given by (18) or (19)) and p is number of schedule parame-
ters that f compSPdy can compute. If the system schedules tasks
using task-dependent schedule parameters, then p > 0; if
it does not, then p = 0. Each of the primitive transition
functions pf sp,1dy -pf sp,pdy fills part of the scheduleParams field
(19), which the function calculates. By I id we denote a logic
sentence that activates the pf sp,iddy primitive transition func-

tion. I id can be related to the hax cdy,reqSP buffer; hence, pf sp,iddy
will be triggered upon request from raha in consideration
of (20):

I id : hax cdy,reqSP = [id, args] (23)

Moreover, I id can consider the present state of rady
(Scmddy , Swaitdy , or Sinitdy); hence, the computed schedule param-
eters will differ among the states of rady.
A transition function of B

upTsk
dy (namely, f upTskdy) creates

FSMdy,exeTsk . Example approaches are the configuration of
a statically defined template of an FSM and the creation of
an entirely new FSM via planning algorithms.

VOLUME 8, 2020 161457

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

A basic behaviour of a task stage (Bstage,k
dy) consists of

a transition function f stage,kdy and a termination condition
tcdy,stage,k . The transition function is divided into two primi-
tive transition functions:

1) pf stage,kdy – an algorithm that leads to the objective of the
k th stage (e.g., reaching a specified destination),

2) pf compSPdy – computes schedule parameters and updates
ha
y cdy,report during S

exeTsk
dy (22). The parameters are used

by raha to schedule rAda agents.
The trigger events of the primitive transition functions are as
follows:

f stage,kdy =

{
pf stage,kdy timer(taskExeRate)

pf compSPdy timer(SPupRate),
(24)

where k is an identifier of the task stage and timer(X)
is a function that returns true with frequency X . Both
taskExeRate and SPupRate are fields of ccdy. Some stages of
a task may involve operations that may not be interrupted,
e.g., due to an unstable state of the object that is being
manipulated or to an unknown suspension or resumption
transition function for this stage. To prevent such a threat,
we distinguish two types of task stages in our model:

1) suspendable – the task may be suspended in this stage,
and the system can switch to another task with the
ability to resume the current task in the future;

2) blocking – the task may not be suspended in this stage
e.g. due to performing an unstable process or resume
of the task would be impossible.

The suspendable stages of a task that is conducted by rady
compose the set Udy, and the blocking stages compose the set
Ldy. Each of the task stage types has an individual definition
of a termination condition for terminating B

stage,k
dy . The ter-

mination condition of a blocking-type stage is the satisfaction
of the objective condition of the stage, e.g., the robot is at its
destination for a navigation stage (25). A termination condi-
tion of a suspendable stage is the satisfaction of the objective
condition of the stage with the alternative icdy,susp condi-
tion (26). Assume the objective conditions tcdy,stage,k,goal and
tcdy,stage,j,goal of a blocking stage Sstage,kdy and a suspendable

stage Sstage,jdy :

tcdy,stage,k = tcdy,stage,k,goal (25)

tcdy,stage,j = tcdy,stage,j,goal ∨ icdy,susp (26)

Thus, if raha triggers condition icdy,susp during the operation
of B

stage,j
dy , then the basic behaviour is terminated and Sstage,jdy

is switched to Ssuspdy .

The transition function f genSuspdy ofBgenSusp
dy creates an FSM

(namely, FSMdy,exeSusp) that utilises behaviours of the agent
and inter-agent communication to suspend the ongoing task
safely. The transition function f genSuspdy may be defined by the
task developer in the form of a decision tree, which leads to
statically defined suspension strategies (given by FSMs). The
second approach for defining f genSuspdy is to provide a planner

that considers the present state of the world and creates
FSMdy,exeSusp.
The operation of rady in state SexeSuspdy is realised by the

internal FSM of the state, namely, FSMdy,exeSusp, which was
defined in the previous state.
The transition function of the Bwait

dy basic behaviour

(denoted as f waitdy) equals f compSPdy , as presented in (22):

f waitdy = f compSPdy (27)

2) TASK HARMONISER AGENT CLASS
Here, we describe the structure and behaviours of tha class
agents (which correspond to schedulers in operating systems)
on an exemplary agent raha. The agent of this class receives
and processes requests for new tasks from tra class agents
and schedule tasks of the robot r . Agent raha switches the
states of the agents from set rAda to

1) optimise a specified scheduling criterion (e.g., highest
priority first, shortest job first, or shortest remaining
time first);

2) enable the controlled suspension and resumption of the
tasks that are implemented in da class.

a: TASK HARMONISER BUFFERS AND MEMORY
Thememory of raha (namely, ccha) consists of multiple named
fields and they are required to manage dynamic agents. The
scheduling of rAda agents is realised by raha and is based on
modification of the values of ccha fields ccha,exeDA, ccha,irrDA
and ccha,idleDA by assigning identifiers of rAda agents to them.
The first field stores an identifier of an agent rady∈ rAda
that is currently in state Scmddy and conducts the task that is
implemented in it. We refer to an agent that is assigned to this
field as raexeDA. The ccha,irrDA field stores an identifier of an
rady∈ rAda that was chosen by pf scheduleha to replace raexeDA.
We refer to an agent that is assigned to the ccha,irrDA field as
rairrDA. ccha,idleDA is a one-dimensional array of size N that is
filled with identifiers of the agents that belong to set Dr :

Dr =
rAda \

{raexeDA, rairrDA} (28)

|Dr | = N (29)

The management of the operation of an example rady∈rAda
is realised by sending state switch requests via buffer dyy cha,cmd
to ha

x cdy,cmd . The state switch request that is sent to dy
y cha,cmd

has a structure that is similar to that of ha
x cdy,cmd and may

consist of one of the values that is defined in (14). As the
cardinality of rAda may exceed 1, there is a set Bha,cmd that
contains buffers for managing the states of rAda agents:

dy
y cha,cmd ∈ Bha,cmd ⇐⇒

rady ∈ rAda

|Bha,cmd | = |
rAda| (30)

The trxcha,task and
tr
ycha,task buffers are an interface (denoted

as taskIFha,tr) for agent satr of tra class. As the cardinality
of the sum rAtra∪sAtra may exceed 1, there is a set of input

161458 VOLUME 8, 2020

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

FIGURE 7. Finite-state machine that governs the behaviour of raha.

and output buffers that connect raha with all tra class agents
in the system:

{
tr
xcha,task ,

tr
ycha,task} = taskIFha,tr , (31)

taskIFha,tr ∈ Bha,task ⇔ atr ∈ (rAtra∪sAtra), (32)

where Bha,task is a set of task buffers of agent raha for
receiving new task requests and responding to them. More-
over, our model supplies agent raha with two sets of buffers,
namely, Bha,report and Bha,reqSP, for collecting reports and
task-dependent schedule parameters from rAda agents:

dy
x cha,report ∈Bha,report ⇔

rady ∈ rAda, (33){dy
x cha,reqSP,

dy
y cha,reqSP

}
∈Bha,reqSP ⇔

rady ∈ rAda (34)

The buffers of these sets are used to
1) Bha,report – collect the current states of rAda agents and

their schedule parameters (18),(19);
2) Bha,reqSP – request and receive from rady argument-

dependent data for the scheduling algorithm.
There is a pair of buffers, namely, stycha,app and st

xcha,app, for
collecting files of tasks that are stored in sast . Additionally,
raha consists of plxcha,srv and

pl
ycha,srv buffers, which are used

to communicate with sapl to call system-wide services that
are supplied by sapl (e.g., the current list of the tasks that are
available in sast).

Finally, there is an input buffer cox cha,rob, which can be used
by the scheduling algorithm that is implemented in raha to
obtain data regarding the current state of the robot and its
environment.

b: BASIC BEHAVIOURS OF tha CLASS AGENTS
Management of raha behaviours is specified by the FSMwith
two states (Fig. 7) that point to the basic behaviours: Sinitha
to Binit

ha and Sharmha to Bharm
ha . The former basic behaviour

depends on the implementation of raha as it is responsible for
initialising ccha and establishing connections of the buffers
of raha. The latter (Bharm

ha) consists of a composite transition
function, which is decomposed into the following:

1) pf initDAha –which reads data from buffer trxcha,task , assigns
an identifier to the received task (e.g., dy), sets up
rady and adds it to set Dr . Finally, FSMdy managing
operation of rady is initiated, and the initial arguments
are passed from the requester (satr) to rady,

2) pf scheduleha – which defines the scheduling algorithm,
which, with a configurable frequency (defined in the
ccha,sFreq field) and based on the schedule parameters
that are received from buffers Bha,report and Bha,reqSP,
assigns identifiers of the agents from set Dr to the

ccha,irrDA field. The algorithm of this primitive tran-
sition function is configurable because it depends on
a specified system and its objectives; hence, it is left
to be defined by the designer of the robot system. The
function is defined in (35):

pf scheduleha :
{
Bha,report ,Bha,reqSP

}
→

ccha,irrDA (35)

3) pf switchDAha – which reads the value of the ccha,irrDA field
and sets the values of Bha,cmd buffers to either suspend,
start, or terminate agents from rAda. This primitive
transition function sets the ccha,exeDA field. Its algorithm
is presented as Alg. 1.

Algorithm 1 Algorithm of pf switchDAha

Result: Suspension of the task of raexeDA and
starting/resumption of the task of rairrDA

1 //check if raexeDA executes its task
2 if exeDAx cha,report == [cmd, scheduleParams] then
3 exeDA

y cha,cmd = [susp, data];
4 //check if raexeDA has suspended its
task

5 else if exeDAx cha,report == [wait, scheduleParams] then
6 Dr = Dr ∪ {ccha,exeDA};
7 ccha,exeDA = {};
8 //check if there is no agent assigned
to raexeDA and if there is rairrDA

9 if ccha,exeDA == {} ∧ ccha,irrDA 6= {} then
10 ccha,exeDA = ccha,irrDA;
11 ccha,irrDA = {};
12 irrDA

y cha,cmd = [start, data];
13 end
14 //check if a buffer of Bha,report

consists of ’end’ flag and if so,
remove the appropriate agent from rAda

15 if ∃αxcha,report ∈ Bha,report 3
α
xcha,report = {end} then

16 rAda = rAda\raα;
17 end

Each of the primitive transition functions is triggered by
a specified event, and the primitive transition functions are
composed to construct f harmha , which is presented in (36):

f harmha =


pf initDAha ∃x ∈ Bha,task : newData(x),
pf scheduleha timer(ccha,sFreq) ∨ shdlevent ,
pf switchDAha

ccha,irrDA 6= Ø ∨ termevent ,
(36)

shdlevent = (ccha,exeDA = Ø ∧ ccha,irrDA = Ø ∧ Dr 6= Ø)

∨ newData(Bha,report), (37)

termevent = ∃αxcha,report ∈ Bha,report 3
α
xcha,report = {end},

(38)

where newData(x) is true on data changes in buffer x and
timer(x) is triggered with a frequency given by x.

VOLUME 8, 2020 161459

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

3) TASK REQUESTER CLASS AGENTS
Agents of tra class are entities that can request new tasks.
There may be many tra class agents in the system, which
differ in structure. Some may be only processing agents with
a control subsystem only and request new tasks based on
a timer, and others may be equipped with a physical device or
a sensor that initiates the request for a task. As there may be
many robots in the system, agents of Atra (in our example,
satr) must obtain a list of the robots and their addresses
from the pla class (in our example, sapl) by the active-
robots interface (in our example, buffers plyctr,active−robots and
pl
xctr,active−robots).
Each of the tra class and cla class agents has a pair of

buffers for communicatingwith agent sapl to call system-wide
services that are supplied by agent sapl . In our example, the
buffers are plxctr,srv,

pl
yctr,srv and

pl
xccl,srv,

pl
yccl,srv.

C. THE HARMONISATION PROCEDURE
Robot systems that utilise our model can schedule their tasks
and are composed of agents of various classes. Models of
the classes were presented in the previous sections; however,
for a comprehensive description of the system behaviour,
a depiction of the inter-agent interactions is required. Thus,
here, we present the workflow of agents in the face of a typical
task harmonisation problem. The system that is considered in
the scenarios consists of one robot (R = {r}), one tha class
agent (rAtha = {raha}), one ca class (rAca = {raco}) and one
tra class (sAtra = {satr }). As the objective of this study is
to describe the robot task harmonisation model, this section
focuses on the workflow of satr , raha and da class agents and
not the other agents, which are described in [12].

An outline of the task harmonisation procedure in a system
that utilises our model is presented as an activity diagram
Fig. 8. The complex activities that are illustrated in the
rounded rectangles and the interaction among the system
agents in each of them is presented in the form of a sequence
diagram in the Appendix A. The harmonisation procedure
is initiated by one of the following events, as marked in the
activity diagram:

1) event 1 – agent raha receives a new task request from
agent satr – the initial event of pf initDAha is satisfied,

2) event 2 – a trigger repetitively initiates pf scheduleha (36).
3) event 3 – ccha,exeDA and ccha,irrDA are empty, but there is

an idle daclass agent or raha receives new report with
schedule parameters (37).

The procedure is terminated if either activity 1, activity 5,
activity 6, or activity 7 is completed. The procedure consists
of two decision nodes: D1 and D2. The former is realised
by the initial event of pf switchDAha , which checks the output of
pf scheduleha . The latter decision node, namely,D2, is checked in
the conditions of Alg. 1.

III. VERIFICATION
The verification of the model is based on the design, develop-
ment and testing of an exemplary system that is based on the

FIGURE 8. Task harmonisation procedure in the TaskER model based on
the concept visualised in Fig. 2.

model. Therefore, we define the application of the exemplary
system (section III-A), describe the TaskER framework that
implements the agent classes using ROS (section III-B) and
design the system via model configuration (section III-C).
Next, the operation and tests of the exemplary system are
presented (section III-D). This section ends with a discussion
of the system actions and the requirements satisfaction.

A. REQUIREMENTS OF THE EXEMPLARY SYSTEM
The verification of the model and framework is conducted by
implementing the procedure of task harmonisation (Fig. 8) in
a simulated environment using a TIAGo robot. The configu-
ration of the verification system is as follows:

1) task harmonisation is of interruptible-task type,
2) there is one robot in the system (R = {r}), one

tha class agent (RAth = {raha}) and one ca class
(RAca = {raco}),

3) there is one tra class agent—satr ,
4) agents of set rAda provide to agent raha task-dependent

schedule parameters that are defined by the following
structure:

scheduleParams

= [tskType, cost, cps, cTime, endPose]. (39)

The tskType field consists of an identifier of the task
type that the da class manages. In this verification, sast
provides two types of tasks (40).

tskType ∈ {guideHuman, humanFell} (40)

The guideHuman task objective is to approach a speci-
fied human, introduce the task, guide him to a specified
location and say goodbye. The humanFell task is an
emergency call for a robot to approach a specified
human who likely fell and to check his consciousness.

161460 VOLUME 8, 2020

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

We denote by tskTypedy a type of task that is con-
ducted by agent rady. Agents of set rAda that initialised
their report buffers (hay cdy,report 6= Ø for rady) with the

first report (by pf compSPdy for rady) and have a task of
type guideHuman belong to set Gr , and those that ini-
tialised their report buffers and their tasks are of type
humanFell and belong to set Hr :

e = rady ∈ rAda ∧
ha
y cdy,report 6= Ø

rady ∈ Fr : e ∧ tskTypedy = humanFell (41)
rady ∈ Gr : e ∧ tskTypedy = guideHuman (42)

costdy is a task-dependent schedule parameter of rady
that depends on the current state of the robot and its
environment:
4.1. For Gr agents, it represents the comfort of a per-

son who is cooperating with the robot during the
task. The value of the cost parameter changes
with time and is calculated via the following
equation:

cost =
wstand
tstand

+
wsit
tsit

(43)

i) tstand is an estimate of the time for which the
guided person stands, which is measured from
the receipt of the task request until the task
objective is realised;

ii) wstand is the scaling factor for standing posture
that is parametrised according to the person’s
health condition;

iii) tsit is an estimate of the time for which the
guided person sits, which is measured from
the receipt of the task request until the task
objective is realised; and

iv) wsit is the scaling factor for sitting posture
that is parametrised according to the person’s
health condition.

4.2. For Fr agents, the cost parameter represents the
distance to the human that fell in consideration of
the current pose of the robot.

The larger the value of the costdy parameter, the less
urgent the task of rady is. cps is an estimate of the
first derivative of the task cost in consideration of the
current state of the robot and its environment. cTime is
an estimate of the task duration if it were initialised at
the estimation time (considering the current state of the
robot and its environment). endPose is the pose of the
robot when the task is completed.

5) raha schedules rAda agents (using pf scheduleha) based
on algorithm 2. Hence, tasks of the same type com-
pete with one another based on the cost parameter
and the parameters that are requested by pf scheduleha
(via Bha,reqSP buffers). The algorithm always causes
an interruption of a guideHuman task by a human-
Fell task. In line with 23, the algorithm requests
two argument-dependent parameters: cc and ccps. The

former is the estimated cost of the recipient’s task
completion if the task were started from the pose that
is specified in the argument. The ccps parameter is
the cost per secondwhile waiting for the recipient’s task
to begin.

B. IMPLEMENTATION OF THE MODEL AND EXEMPLARY
SYSTEM
The TaskER framework delivers two Python classes, namely,
TaskHarmoniser and DynamicAgent, which imple-
ment the tha and da classes, respectively. The implemen-
tation of the introduced framework and the agents, which are
specific to the exemplary system (raco, sapla, satr , and sast),
is based on the ROS framework.

Agents raha and satr are implemented as separate ROS
nodes and are launched upon system startup. raco is
robot-specific and is implemented as ROS nodes that serve
common TIAGo robot actions (e.g., navigation and manipu-
lation) in the Gazebo simulator.

Upon TaskHarmoniser class initialisation, a ROS node
is launched with a ROS service interface to request new tasks
(implementing pf initDAha) and with a subscriber for ROS topic
messages, which receives the reports from rAda agents. Upon
each task request (via the ROS service), agent raha launches
a new ROS node that implements a suitable da class agent.
Henceforth, the node of the da class agent will publish its
report messages to the ROS topic that is subscribed by the
tha class agent that is discussed above. In addition to the
above interfaces, the TaskHarmoniser class implements
exemplary primitive transition functions namely, pf switchDAha
and pf scheduleha , respectively, as presented in this article (Alg. 1
and Alg. 2).

For each type of tasks in the system, a dedicated script is
implemented with the DynamicAgent Python class. The
task scripts are started by a tha class agent upon task
request from a tra class agent. Upon initialisation of the
DynamicAgent Python class, considering dy as an iden-
tifier of the da class agent that is being initialised:
1) a ROS node is launched;
2) a ROS service of pla class is requested to launch

a ROS node of racl ∈ rAcla (if rady requires support
from cla class);

3) interfaces of rady are created:
3.1. ha

x cdy,cmd as a ROS topic subscriber, which sets
initial conditions icdy,start , icdy,susp, and icdy,term;

3.2. ha
y cdy,report as a ROS topic publisher (which is

associated with dy
x cha,report),

3.3. ha
x cdy,reqSP and ha

y cdy,reqSP as a ROS service (which

are associated with dy
y cha,reqSP and dy

x cha,reqSP,
respectively);

3.4. co
x cdy,rob and

co
y cdy,rob by the robot API class initial-

isation; and
3.5. cl

xcdy,cloud and cl
ycdy,cloud as a ROS service client

that is connected to the ROS service that is shared
by racl supporting rady.

VOLUME 8, 2020 161461

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

Algorithm 2 Algorithm of an Example pf scheduleha That Is
Implemented in the Verification System

Input:
{
Bha,report ,Bha,reqSP,Gr ,Fr , ccha

}
Result:

{
ccha,irrDA

}
1 dac = Ø;
2 //get an identifier of an agent from
Fr set with the lowest cost

3 cHF = argmin
dy:rady∈Fr

costdy ;

4 cGH = argmin
dy:rady∈Gr

costdy;

5 if cHF == Ø ∧ cGH == Ø then
6 return;
7 else
8 if ccha,irrDA == Ø then
9 if cHF 6= Ø then
10 if raexeDA 6∈ Fr then
11 ccha,irrDA = {cHF} ;
12 return;
13 end
14 //set an identifier of

a candidate for a task switch
15 dac = cHF;
16 else
17 if cGH6=Ø ∧ raexeDA 6∈ Fr then
18 dac = cGH;
19 end
20 end
21 if dac 6= Ø then
22 //request the candidate for

argument dependent schedule
parameters, where 1 is the
identifier of a primitive
transition function of f compSPdac

23 dac
y cha,reqSP = {1, endPoseexeDA};

24 {ccdac, ccpsdac} = dac
x cha,reqSP;

25 //request of an estimated
cost of ccha,exeDA task
suspendion and start after
completion of radac task
(ccexeDA) and cost per second
while waiting for resumption
(ccpsexeDA)

26 exeDA
y cha,reqSP = {1, endPosedac};

27 {ccexeDA, ccpsexeDA} = exeDA
x cha,reqSP;

28 cswitch =
costdac + ccexeDA + cpsexeDA ∗ cTimedac;

29 cwait =
costexeDA + ccdac + cpsdac ∗ cTimeexeDA;

30 if cswitch < cwait then
31 ccha,irrDA = {dac}
32 end
33 end
34 end
35 end

The above actions are managed in state SinitCommdy . Next,
agent rady follows FSMdy and the basic behaviours that are
described in Section II-B1.c.

C. CONFIGURATION OF THE DYNAMIC AGENT MODEL
The model of da class (section II-B1) must be configured
for a specified task to satisfy the requirements of the task.
The configuration procedure is presented for an example da
class—rady∈rAda managing a task of type guideHuman. The
procedure is as follows:

1) task objective definition:
1.1. definition of FSMdy,exeTsk , including the task

stages and the initial conditions of the stages;
1.2. classification of the task stages into suspendable

and blocking; and
1.3. specification of basic behaviours that are con-

ducted in the stages and the termination condi-
tions of the basic behaviours;

2) task update
(
f upTskdy

)
, suspension

(
f genSuspdy

)
and sched-

ule parameters calculation
(
f compSPdy

)
definition.

Configuration of the model for the tasks of guideHuman
type resulted in the following: FSMdy,exeTsk as illustrated in
Fig. 9, f upTskdy as presented in Alg. 3, and f compSPdy and f genSuspdy
as follows:

f compSPdy =

{
pf reportdy timer(ccdy,repRate)

pf sp,1dy I1,
(44)

I1 = newData(hax cdy,reqSP), (45)

pf sp,1dy :
{ha
x cdy,reqSP,

co
x cdy,rob,

ccdy
}
→
{
ccdy, ccpsdy

}
, (46)

f genSuspdy =

{
B

exeSusp
dy = Bsave

dy ¬greeted

B
exeSusp
dy = B

apologize
dy greeted,

(47)

where greeted is true if the person being guided was already
greeted by the robot and false if was not. In the first case
of (47), Bsave

dy is assigned to B
exeSusp
dy . The basic behaviour

saves already computed results, which are useful after the task
resumption (e.g., the person’s pose, if it was determined, can
be used as an initial value for the person search algorithm).
The termination condition of Bsave

dy always holds (tcdy,save =

true); hence, after one iteration of B
exeSusp
dy , the transition to

Swaitdy is triggered. In the second case,Bapologise
dy is assigned to

S
exeSusp
dy . This basic behaviour stops the robot, saves important

data (as in theBsave
dy case), and asks the person to stay and not

follow the robot because it received another important task.

D. EXECUTION OF THE EXEMPLARY SYSTEM
We tested the system in a scenario that involved the exe-
cution of the task harmonisation procedure (section II-C)
over 80 times in a changing environment. The scenario for
evaluation of the exemplary system involve:
• suspension of the ongoing task in various stages,
• dynamic changes of the environment state (independent
from the robot actions),

161462 VOLUME 8, 2020

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

Algorithm 3 Algorithm of f upTskdy , Where suspended Is
true If the Task Was Suspended and false If It Was Not
Input: FSMdy,exeTsk
Result: Modification of FSMdy,exeTsk

1 if suspended == true then
2 B

stage,2
dy =B

greet_and_apologise
dy ;

3 else
4 B

stage,2
dy =B

greet
dy ;

5 end

FIGURE 9. The FSM of a human guidance task, where the basic behaviour
of Sstage,1

dy moves the robot to a requested human, the basic behaviour of

S
stage,2
dy interacts with the human to introduce the task and ask him to

follow the robot, the basic behaviour of Sstage,3
dy moves the robot to the

destination and checks if the human follows the robot, and the basic
behaviour of Sstage,4

dy finishes the interaction with the human.

FIGURE 10. Verification environment setup.

• resumption of a suspended task in the case of the envi-
ronment state change,

• abortion of a suspended task on its request,
• unpredictable task requests,

The initial setup of the environment is shown in Fig. 10.
Four people, namely, John, Alice, Peter and Sara, were in the
environment. In this article we describe a period of our tests
in which four tasks were conducted:

1) guide John – a guideHuman-type task that was man-
aged by rad1,

2) guide Alice – a guideHuman-type task that was man-
aged by rad2,

3) Peter fell – a humanFell-type task that was managed by
rad3,

4) Sara fell – a humanFell-type task that was managed by
rad4.

Various tasks (integrated as dynamic agents) can be applied
to our architecture, however, we propose the two types in
order to keep the scenario simpler and clearer, as the model
and the harmonisation procedure is complex itself. The new
tasks can be applied as it was described in Sec. III-C.

In Fig. 10, we represented the initial pose of the robot as
a pentagon and John and Alice as filled and empty circles,
respectively. The path that was traversed by John while he
was waiting for the robot is represented as a dotted line.
The destinations of John and Alice are represented by filled
and empty stars. The poses in which Sara and Peter fell are
represented as dotted and dashed circles. The verification
scenario was recorded, and the video is available [42].

The detailed description of the system behaviour during the
evaluation is described in Appendix B. The Fig. 11 visualises
value changes of the key parameters of schedule algorithm
(Alg. 2) and assignments of rAda agents to rairrDA,raexeDA,
Dr roles.

E. SATISFACTION OF THE REQUIREMENTS IN THE
EXEMPLARY SYSTEM
The satr can request multiple tasks at any time, which are ini-
tialised and ready to be conducted by the robot. The requests
are processed, suitable da class agents are created, and in
each iteration of pf scheduleha , a da class can be assigned to
rairrDA; thus, R1 is satisfied.

Schedule parameters can be computed repetitively (22) by
pf reportdy , which fills the ha

y cdy,report buffer (19). Additionally,
the scheduling algorithm can request argument-dependent
schedule parameters, which are computed by dedicated prim-
itive transition functions of f compSPdy ; thus, requirement R2 is
satisfied.

The procedure scheduling da class agents is divided
into multiple primitive transition functions, which are dis-
tributed among da class agents and raha, which, via func-
tion pf scheduleha , computes a decision regarding switching an
ongoing task with a new task or continuing the current task.
Therefore, the exemplary system may be easily configured to
use other schedule parameters or scheduling algorithms that
are implemented in pf scheduleha . Thus, R3 is satisfied.

Tasks are created independently and stored in the cloud.
A tha class agent of a robot downloads them upon the
request of the robot’s user. The initiated tasks become da
class agents and compute schedule parameters in consider-
ation of expert knowledge and the context of the task. For
example, a general parameter, such as the estimated time
for completing the task, can be calculated with consideration
of the expert knowledge in the da class (such as a speed
limitation due to transportation of a delicate object). Thus,
requirement R4 is satisfied.

Our model divides tasks into stages that can be suspended
and stages that cannot. It also defines the FSM of da class

VOLUME 8, 2020 161463

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

FIGURE 11. Data that were calculated by pf schedule
th during the verification. The analysis of these data is presented in Appendix B.

with dedicated suspension states, which are triggered if the
agent receives a suspension signal and the current stage of
the agent’s task is suspendable. Hence, interruption by a set
of actions and the prevention of a possible inconvenient
behaviour or damage to the system and its environment are
managed by the agent, which possesses expert knowledge
regarding the current task and its progress. For example,
suppose the robot in the verification scenario did not warn
John that the robot switched tasks. In such a case John would
follow the robot unnecessarily. Hence, the suspension state
avoided an inconvenient walk for John while the robot con-
ducted other tasks. Another example of a suspension action
is turning off a cooker if it was turned on during the execu-
tion of the task and the estimated interruption time exceeds
the cooking time of the dish that is being prepared. Hence,
requirement R5 is satisfied.

Due to the frequently triggered pf reportdy function, rady can
react to changes in a dynamic environment and update its
schedule parameters. The changes in the environment also
affect the plans of da class agents. Therefore, our model
foresees the need to update the plan (i.a. in stateSupTskdy) before
the agent executes its task. The most straightforward example
result of B

upTsk
dy can be an extension or reduction of the plan

due to actions by an actor that is co-working with the robot
in the environment. Thus, requirement R6 is satisfied.

IV. RELATED WORK
Our study considers two aspects: structure and behaviour
modelling for robotic systems and the management of
multiple tasks in these systems. Therefore, we compare
our approach to other available approaches for these two
aspects.

1) STRUCTURES AND BEHAVIOUR MODELS FOR ROBOT
SYSTEMS
One of the most popular approaches for modelling robot
control systems is the use of a layered architecture, e.g., the
3T architecture [35], [43]. It is broadly utilised and compared
with the other available approaches, e.g., in SmartMDSD
Toolchain [44], [45]. The authors of [37] designed the middle
layer of the 3T architecture, which was realised with a finite-
state machine (FSM), for the integration of the symbolic
plan that was provided by the knowledge representation with
the geometric planner that instructs the robot. Each descrip-
tion layer of a task (symbolic planning, behaviour sequenc-
ing, or command execution) uses a different context and
is designed to satisfy its objectives and handle exceptions
that are specified in the abstraction-layer dictionary, e.g.,
a symbolic planner that uses logic variables and functions
or a behaviour sequencer that uses primitive behaviours and
transition functions.

Our study considers all three layers that are defined in the
above architectures. ca class is the command execution layer,
the da class and tha class agents constitute the sequencer
layer, and the symbolic planners that are utilised by the
sequencer layer (implemented in either cla class or pla
class) constitute the deliberation layer.

Coordination between the layers is a complex prob-
lem, especially considering the difference in their contexts.
Stenmark et al. proposed the integration of high-level task
description with action execution [46]. However, coordina-
tion of the tasks was not a goal of this work. Our approach
enables the harmonisation of a robot’s tasks by the sequencer
layer, which receives error messages from the commanding
layer and can request new plans from the deliberative layer.

161464 VOLUME 8, 2020

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

2) MULTI-TASK ROBOT SYSTEMS
A task planning problem for human-robot interaction
schemes that are scheduled by a symbolic planner is
described in [47]. The authors of the article focus on social
constraints that should be considered in a task and motion
planning of a human-aware robot. However, the problem of
the suspension and resumption of the tasks is not resolved.
Studies have also been conducted on sequencing robot
behaviours at the controller level (e.g., [48], [49]). Robot-
human communication is yet another problem that is related
to the management of robot tasks. The authors of [50]
describe a model of a system that is capable of interruption
and switching of a conversation domain. However, these
approaches preclude the execution and scheduling of various
independent tasks.

The overall behaviour of the robot in our exemplary sys-
tem can be modelled with a hierarchical FSM (HFSM),
e.g., SMACH library [51] for task-level robot control. How-
ever, understanding the system performance, configuring the
scheduling algorithm and tailoring the suspension/replanning
actions for a specified application would be complicated.
The decomposition of the robot control system into separate
agents of various classes renders the system specification
process more convenient, more transparent and easier. Addi-
tionally, SMACH does not support dynamic HFSMs natively,
which are proposed in our study (behaviour of one state
defines the subsequent one).

The processing of multiple tasks in state-of-the-art robot
systems is realised via high-level deliberation. Reasoning
algorithms compute a multi-objective plan that satisfies tem-
poral constraints [52] and uncertainties in conditional plan-
ning [53]. This approach utilises a semantic planner, which
requires a complex knowledgebase that integrates predicates
of all possible requests from the system user and requires
that the predicates be compatible among the system tasks.
Therefore, the extension of the systemwith additional tasks is
complicated and interferes with the well-tested tasks. Addi-
tionally, if the priority of a task changes, a task is cancelled
or a task’s parameters change, then this approach requires
re-planning of the actions. The available frameworks that
utilise semantic planning ROSPlan [54], SmartTCL [45] do
not provide a mechanism for re-initialising planning in the
face of a task modification.

In state-of-the-art architectures, robot tasks are separated
from the rest components of robot control system. Various
models are used to express the task and they can be divided
to task definition models and task execution models. The
models of former type are commonly used with semantic
planners, which reason basing on the task definition and
the world state. As a result, planners return specification
of the robot behaviour, which is required to complete the
task. Both the task and the behaviour are expressed in the
terms defined in the model, which commonly is a Domain
Specification Language (DSL). The example task defini-
tion approaches are PDDL [55], Golog [56]. The behaviour
computed by a semantic planner can be transformed to

a model, which abstracts from semantic symbols and DSL
terms i.e. to a task execution model. For example, the
behaviour can be decomposed into states which need to
be managed to complete the task, as it is in Hierarchical
Finite-State Machines (HFSM) approach [57]. Additionally,
there are Petri Nets and Behaviour Trees (BTs) [58]. The
latter approach was initially used to define behaviour of
Non-Playable Characters (NPC) in game industry. Propo-
nents of BTs approach state that it is a very efficient way of
creating complex systems that are both modular and reactive.
Some of the task models can be transformed to other mod-
els, e.g. HFSM to BT and vice versa [58]. We use HFSM
approach, because it is a core model of agent behaviour in
the formal specification method we use (Embodied Agent
Approach). However, tasks modelled in other approaches can
be integrated with our architecture, as it is done in Petri Net
case in Fig. 6.

The authors of [59] propose a method to coordinate tasks
specified in Golog language. The approach is compatible
with a formalised method to reason about task plans and
composition of task suspension sequences. The work intro-
duces the concept of promises, which denote asserted or
required conditions used to determine conflicts during task
switching. In contrast, we define formally in our work an
architecture which can be used more broadly, as it is not
restricted to a specific task modelling language. We present
our work with the use of FSMs, as it is a popular behaviour
modelling approach and there are methods to transform it to
other approaches. Therefore, the TaskER architecture can be
assumed as independent from a task model, planning method
and language used for the definition of the algorithm manag-
ing tasks. It integrates concepts of i.a. scheduling algorithm,
task update, schedule parameters calculation and specifies an
architecture which satisfies the requirements stated in this
article introduction. Therefore, the concept of promises
can be used to specify the scheduling algorithm defined in
the TaskER and different planning methods can be used in
the task update concept. Furthermore, as the contexts of
tasks are separated, tasks can be specified with dedicated
models,they can use different planning methods to update
their plans and use various schedule parameters. The latter
can be task-context-dependent in TaskER, so other priority
can be assigned to a door opening task in case of a visitor and
other in the case of an emergency.

Robot systems are part of a larger group: cyber-physical
systems (CPSs). Various articles consider the task harmon-
isation problem in this group [60]–[62]. However, they are
focused mostly on algorithms for optimisation of the task
switching moment or coordination of the tasks that are del-
egated to multiple devices to realise a specified objective.
The authors of [60] present a methodology for describ-
ing, managing and realising objectives of a device com-
munity. This study shows how to describe the objective of
the whole community of devices with simple roles of each
device. The second paper [61] presents an algorithm for
minimising a deadline meeting ratio. The algorithm considers

VOLUME 8, 2020 161465

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

TABLE 3. The comparison of scheduling in typical operating systems and robot systems that use TaskER.

the time that is required by the servicing node for mov-
ing from one place to another. However, the authors do
not demonstrate how to perform the task switch (in a sce-
nario that involves a robot, not all tasks may be interrupted
at any time). The final study [62] considers a dynamic
allocation of computational tasks among distributed CPS
devices.

The authors of [63] investigate the problem of integrating
time- and event-triggered systems in a mixCPS architec-
ture. However, they focus on computation task assign-
ment and packet transmission optimisation to minimise the
application-level delays. The architecture considers delays
of sensor-controller and controller-actuator communications
and the controller processing time.

In contrast to a typical CPS (where many tasks are
processed rhythmically [64] or task activation is statically
defined by rules as in home automation applications), robots
are being unpredictably requested for tasks, and the user of
a robot would like to change his/her requests and preferences
while the robot performs the requested task.

Task queueing and management is an old topic in cyber
research [65], [66] and a hot topic in cyber-physical sys-
tems [67], [68]. The robot task harmonisation problem has
similarities with process scheduling in operating systems
(e.g., sporadic scheduling in real-time systems [69]). Both
consider unit workmanagement: in robotics, a robot performs
multiple tasks, and in an operating system, a CPU conducts
multiple processes. The correlations between scheduling

161466 VOLUME 8, 2020

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

operating system processes and the TaskER model are pre-
sented in Tab. 3.

V. CONCLUSION
The article considers the problem of switching tasks that
are conducted by robots. The structure of the robot con-
troller is variable, and it is composed of multiple agents
that are derived from various agents’ classes. The activi-
ties of the robots that are working in the physical environ-
ment differ, and the assumptions and conditions that should
be considered differ from those in standard computational
systems.

The flexibility of a robot system is crucial in the case of
unexpected difficulties and depends on the system application
assumptions, e.g., a market crash, a factory modernisation,
or a pandemic. Therefore, robot systems must be easily con-
figurable especially at the task level.

One of the challenges that must be overcome for the
realisation of flexibility is the development of multi-task
robot controllers that can harmonise robots tasks. In this
study, we present sample use cases that describe the desired
behaviours of a robot control system that is facedwith the task
harmonisation problem. Then, based on the use cases, we for-
mulate six requirements for a control system that features task
harmonisation. Next, we describe the model of such a system.
The model adapts and extends the known variable struc-
ture for robot control systems, namely, the RAPP architec-
ture, to satisfy the previously specified requirements. Finally,
we implemented the TaskER framework, which enables the
efficient creation of the robot tasks and injects them as
modules into the systems that utilise our model. The algo-
rithm that defines the strategy for task scheduling differs
among robots, applications and environments; hence, the
TaskER framework applies the algorithm as an interchange-
able function.

The model that is described in this article is presented
in mathematical and UML diagram formulations. Thus, the
overall behaviour of a system that follows themodel is strictly
defined. Requested tasks have their contexts and are imple-
mented as separate processes, which facilitates understanding
of the current state of the system and the progress of each task.

Model of a dynamic agent, being an encapsulation of a
task in this architecture, defines constraints and specifies the
tasks to enable harmonisation feature. A huge part of the
task is not constrained by the model proposed in this work.
This is because it is not important from the perspective of
this work goal. The method to define actions realised by the
task is another important problem in robotics and any which
results with a plan representable in FSM can be used. In the
architecture, we define when and by which agent a planning
method will be executed. Various planning methods require
different world models. As our harmonisation method does
not depend on any planning method or world model, any
can be used. Furthermore, our work can be applied even in
systems without deliberation and semantic planning. Each
task (dynamic agent) can use different planning method to

update its actions and constraints or do not use any and have
its actions statically defined.

Moreover, tasks that are managed by da class agents can
1) compute task-dependent parameters that are used for

task scheduling,
2) suspend their operation safely in the case of a task

switch,
3) update their plans prior to the task execution, and
4) block a task switch if it would be dangerous according

to the context and knowledge of the agent.
The conducted tests show that the exemplary system satis-

fies the specified requirements. Moreover, they demonstrate
the benefits for a system that follows the model.

We plan to integrate the TaskER framework with a known
framework for semantic planning (such as ROSPlan [54]) and

to call the planner in both S
upTsk
dy and S

genSusp
dy to generate

FSMdy,exeTsk and FSMdy,exeSusp, respectively. This feature
enables tasks that are implemented in the TaskER framework
to update their plans via deliberation. Furthermore, in future
work, we plan to do the following:
1) propose and verify algorithms for functions pf scheduleha

and f compSPdy for calculating scheduling decisions and
parameters for various tasks, applications and envi-
ronment classes (e.g., using a objective optimisation
algorithm such as [70]),

2) define a guideline and an algorithm for classification of
the task stages into suspendable and blocking,

3) extend the PDDL standard to support our approach
and enable semantic planners to consider the task
scheduling problemwhile composingFSMdy,exeTsk and
FSMdy,exeSusp FSMs,

4) evaluate metrics for task scheduling quality evaluation,
5) provide an adaptation mechanism for the scheduling

algorithm to enable learning of the priorities of tasks
based on the user’s intentions [71], [72],

6) design an ontology for the robot task harmonisation
problem that facilitates the configuration of the sched-
ule parameters (according to robot skill reconfigura-
tion [73]),

7) conduct tests with end users within the INCARE
project [74], and

8) integrate our architecture with one of the formally
defined task models featured with consistent language
for scheduling algorithm specification and planning
method [59].

APPENDIX A
KEY ACTIVITIES IN THE HARMONISATION PROCEDURE
1) LAUNCH NEW DYNAMIC AGENT
The interaction among the agents of the system is presented
in Fig. 12. Agent satr sends a request to raha via buffer
ha
y ctr,task , which is connected to buffer

tr
xcha,task . Consequently,

pf initDAha is triggered (36), which manages the initialisation of
a new dynamic agent, starts an application that implements
the da class model, passes initial data to it and extends

VOLUME 8, 2020 161467

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

FIGURE 12. Sequence diagram of a new task request management and
a da class initialisation.

FIGURE 13. Sequence diagram of triggering a da class agent.

array ccha,idleDA with the name of the new dynamic agent
(e.g., d1). Thus, rad1 is created, and FSMd1 switches to Sinitd1 ,
where the system-specific initialisation actions are conducted
(SinitCommd1). Finally, rad1 switches to state ScompSPd1 , in which
it repetitively calculates the schedule parameters (given by
(22)) and saves them in buffer hay cd1,report .

2) START TASK OF rairrDA
In this case, none of the agents in rAda plays the role of
raha,exeDA, and pf scheduleha assigns the role of rairrDA to an agent
in set Dr . The interaction among the agents in this activity,
with rairrDA = rad1, is illustrated in Fig. 13.

3) SWITCH TASKS
This activity begins only when pf scheduleha , knowing that
raexeDA conducts its task, decides to assign the role of rairrDA
to an agent in set Dr . The sequence of the system agent
interactions in this activity is presented in Fig. 14. According
to (36), the initial event of function pf switchDAha is satisfied
until it does not remove the identifier of rairrDA from the
ccha,irrDA field in line 11 of Alg. 1. Depending on the state
of agent raexeDA, either the condition in line 2 or that in
line 5 of Alg. 1 is satisfied. In the former case, raha sends
a suspension signal to raexeDA, and in the latter, it removes

FIGURE 14. Sequence diagram that presents the cooperation of the
system agents while switching agents rairrDA and raexeDA (during activity
7 shown in Fig. 8), where S

stage,k
d1 ∈FSMd1,exeTsk , rad1 is initially raexeDA

and rad2 becomes rairrDA as a result of the pf schedule
ha output.

raexeDA from the ccha,exeDA field. As this activity is started
only if ccha,exeDA 6= Ø, the first iteration of pf switchDAha will
access the condition in line 2 and send a suspension signal
to raexeDA (exeDAy cha,cmd=[susp,data]). Henceforth, two cases
are considered:

1) If the ongoing stage is suspendable (Sstage,kexeDA ∈UexeDA),
then FSM exeDA,exeTsk is terminated, as presented in
Fig. 5c, and raexeDA is switched to FSM exeDA,susp. Now,
the agent prepares a plan for the task suspension (in
f genSuspexeDA) and realises the plan in FSM exeDA,exeSusp.
Finally, when the task is suspended, the agent switches
to SwaitexeDA and saves a report message to ha

y cexeDA,report
that contains the name of the current state –wait. While
raexeDA follows the above sequence, the algorithm of
pf switchDAha always enters the condition in line 2 of
Alg. 1. When raexeDA enters state SwaitexeDA, the condition
in line 5 is satisfied, and pf switchDAha moves the name
of raexeDA from the ccha,exeDA field to set Dr . Next, the
algorithm enters the condition in line 9 as the ccha,exeDA
field is empty. Consequently, pf switchDAha moves the
name of rairrDA from ccha,irrDA to the ccha,exeDA field
and sends the start signal to rairrDA (irrDAy cha,cmd =
[start,data]).

2) If the ongoing stage is blocking (Sstage,kexeDA ∈LexeDA),
then the suspension signal (hax cexeDA,cmd=[susp,data]) is
ignored; hence, this stage and all subsequent block-
ing stages will be completed. When FSM exeDA,exeTsk
finally enters a suspendable stage, the system activity
will follow the sequence that is described in the first
case.

161468 VOLUME 8, 2020

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

APPENDIX B
VERIFICATION DATA ANALYSIS
In Fig. 11, we present values of the following schedule
parameters, which were used in function pf scheduleha during the
verification period: costdac, costexeDA, ccdac, ccexeDA, ccpsdac,
ccpsexeDA, cswitch, and cwait . The rectangularly highlighted
sections of the figure show the states of ccha,idleDA, ccha,exeDA
and ccha,irrDA in crucial moments of the test period. First,
at time = 2450, rad1 is initialised and executes its task.
Then, between time = 2450 and time = 2509, rad2 is ini-
tialised, which computes its schedule parameters, and even-
tually, at time = 2509, pf scheduleha sets dac = d2 (line 18 of
Alg. 2). After comparing cswitch and cwait (line 29 of Alg. 2),
it assigns the identifier of rad2 to ccha,irrDA. In response to this,
pf switchDAha is triggered and sends a suspension signal to rad1,
which is in S

stage,1
d1 (the robot approaches John). The agent

switches to state S
genSusp
d1 (which, following (47), assigns

Bsave
d1 to B

exeSusp
d1) and subsequently switches to SexeSuspd1 and

Swaitd1 . As rad1 notifies pf switchDAha that the suspension strategy
(FSMd1,exeSusp) has been completed, pf switchDAha sends a start
signal to rad2. Finally, at time = 2513, ccha,exeDA = d2 and
ccha,idleDA = Dr = {d1}.
From time = 2513 to time = 2519, John moves closer

to the destination of the guidance that is managed by rad1;
hence, the cost (costd1 = costdac) decreases. At time = 2519,
the cost of the task switch, namely, cswitch, is less than the
opposite cost of not switching, namely, cwait . This is because
cswitch is the sum of the following costs: suspension of the
task of rad2, completion of the task of rad1 (approaching John
and guiding John to his destination) and completion of the
task of rad2 starting from the John’s destination pose. cwait
is the sum of the following costs: completion the ongoing
task of rad2 and completion of the task of rad1 starting from
the Alice’s destination pose. Therefore, in response to the
environmental setup change (John’s movement), the former is
less than the latter. Until time = 2527, rad2 was suspending
its task; finally, at this time, rad1 can resume its task. rad1
completes stages Sstage,1d1 and Sstage,2d1 .
At time = 2540, while it was in S

stage,3
d1 (guiding John

to his destination), the robot received a request for the Peter
fell task. rad3 is initialised, and as the Peter fell task is of
humanFell type (rad3 ∈ Fr) and the guide John task is
of guideHuman type (rad1 ∈ Gr), the condition in line 10
of Alg. 2 is satisfied, and rad3 is immediately assigned to
ccha,irrDA. At this point, rad1 switches to S

genSusp
d1 , which,

according to (47), assigns B
apologise
d1 to B

exeSusp
d1 . Then, rad1

switches to SexeSuspd1 , and the robot apologises to John, asks
him to stop following it and stores his current pose. Finally,
rad1 switches to Swaitd1 , and pf switchDAha sends a start signal to
rad3 at time = 2570.

Next, while the robot is moving to the Peter fell destina-
tion (the dashed circle in Fig. 10), it receives a request for
the Sara fell task (whose position is marked with a dotted
circle). Comparison of cswitch and cwait at time = 2593
resulted in a task switch; hence, rad3, following FSMd3,

switches to state Swaitd3 , and the robot starts the Sara fell
task.

Next, at time = 2602, rad3 is in Swaitd3 and is calculating
f waitd3 (including pf reportd3). It receives information that Peter is
fine and there is no need to check his health status. Conse-
quently, f waitd3 sends a report to raha based on (19):

ha
y cd3,report = [end, scheduleParams] (48)

As a result, termevent is triggered (36) and pf switchDAha removes
rad3 from set rAda. During the verification, there was no
candidate for ccha,irrDA in the following periods: between the
initialisation of rad1 (time = 2450) and rad2 (time = 2509),
between time = 2523 and time = 2527 (the following line 8
of Alg. 2), between time = 2570 and time = 2593 and
between time = 2602 and time = 2634. Therefore, dac = Ø,
and no values of the considered parameters were calculated
by pf scheduleth .

REFERENCES
[1] M. Ben-Ari and F. Mondada, ‘‘Robots and their applications,’’ in Ele-

ments of Robotics. Cham, Switzerland: Springer, 2018, pp. 1–20, doi:
10.1007/978-3-319-62533-1_1.

[2] T. Dahl and M. Boulos, ‘‘Robots in health and social care: A complemen-
tary technology to home care and telehealthcare?’’ Robotics, vol. 3, no. 1,
pp. 1–21, Dec. 2013.

[3] E. Ruiz, R. Acuna, N. Certad, A. Terrones, and M. E. Cabrera, ‘‘Develop-
ment of a control platform for the mobile robot roomba using ROS and a
kinect sensor,’’ in Proc. Latin Amer. Robot. Symp. Competition, Oct. 2013,
pp. 55–60.

[4] G. Farias, E. Fabregas, E. Peralta, H. Vargas, S. Dormido-Canto, and
S. Dormido, ‘‘Development of an easy-to-use multi-agent platform for
teaching mobile robotics,’’ IEEE Access, vol. 7, pp. 55885–55897, 2019.

[5] J.Malec, ‘‘Some thoughts on robotics for education,’’ inProc. AAAI Spring
Symp. Robot. Edu., 2001, pp. 1–4.

[6] A. Lopez, R. Paredes, D. Quiroz, G. Trovato, and F. Cuellar, ‘‘Robotman:
A security robot for human-robot interaction,’’ in Proc. 18th Int. Conf. Adv.
Robot. (ICAR), Jul. 2017, pp. 7–12.

[7] T. L. Chen and C. C. Kemp, ‘‘A direct physical interface for navigation
and positioning of a robotic nursing assistant,’’ Adv. Robot., vol. 25, no. 5,
pp. 605–627, Jan. 2011.

[8] A. G. Ozkil, Z. Fan, S. Dawids, H. Aanes, J. K. Kristensen, and
K. H. Christensen, ‘‘Service robots for hospitals: A case study of trans-
portation tasks in a hospital,’’ in Proc. IEEE Int. Conf. Autom. Logistics,
Aug. 2009, pp. 289–294.

[9] S. A. Frennert, A. Forsberg, and B. Östlund, ‘‘Elderly People’s perceptions
of a telehealthcare system: Relative advantage, compatibility, complexity
and observability,’’ J. Technol. Hum. Services, vol. 31, no. 3, pp. 218–237,
Jul. 2013.

[10] J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V. Vasilakos,
‘‘Cloud robotics: Current status and open issues,’’ IEEE Access, vol. 4,
pp. 2797–2807, 2016.

[11] W. Chen, Y. Yaguchi, K. Naruse, Y. Watanobe, K. Nakamura, and
J. Ogawa, ‘‘A study of robotic cooperation in cloud robotics: Architecture
and challenges,’’ IEEE Access, vol. 6, pp. 36662–36682, 2018.

[12] C. Zieliński et al., ‘‘Variable structure robot control systems: The rapp
approach,’’ Robot. Auto. Syst., vol. 94, pp. 226–244, 2017.

[13] G.-Z. Yang, B. J. Nelson, R. R. Murphy, H. Choset, H. Christensen,
S. H. Collins, P. Dario, K. Goldberg, K. Ikuta, N. Jacobstein, D. Kragic,
R. H. Taylor, and M. McNutt, ‘‘Combating COVID-19—The role of
robotics in managing public health and infectious diseases,’’ Sci. Robot.,
vol. 5, no. 40, Mar. 2020, Art. no. eabb5589. [Online]. Available: https://
robotics.sciencemag.org/content/5/40/eabb5589

[14] P. P. Ray, ‘‘Internet of robotic things: Concept, technologies, and chal-
lenges,’’ IEEE Access, vol. 4, pp. 9489–9500, 2016.

[15] D. Perzanowski, A. C. Schultz, W. Adams, E. Marsh, and M. Bugajska,
‘‘Building amultimodal human-robot interface,’’ IEEE Intell. Syst., vol. 16,
no. 1, pp. 16–21, Jan. 2001.

VOLUME 8, 2020 161469

http://dx.doi.org/10.1007/978-3-319-62533-1_1

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

[16] I. A. Awada, I. Mocanu, S. Jecan, L. Rusu, A. M. Florea, O. Cramariuc,
and B. Cramariuc, ‘‘Mobile@Old—An assistive platform for maintaining
a healthy lifestyle for elderly people,’’ in Proc. E-Health Bioeng. Conf.
(EHB), Jun. 2017, pp. 591–594.

[17] A. Zalewski, K. Borowa, and A. Ratkowski, ‘‘On cognitive biases in
architecture decision making,’’ in Software Architecture, A. Lopes and
R. de Lemos, Eds. Cham, Switzerland: Springer, 2017, pp. 123–137.

[18] A. Zalewski and S. Kijas, ‘‘Beyond ATAM: Early architecture evaluation
method for large-scale distributed systems,’’ J. Syst. Softw., vol. 86, no. 3,
pp. 683–697, Mar. 2013.

[19] S. Bedaf, G. J. Gelderblom, D. S. Syrdal, H. Lehmann, H. Michel,
D. Hewson, F. Amirabdollahian, K. Dautenhahn, and L. de Witte, ‘‘Which
activities threaten independent living of elderly when becoming prob-
lematic: Inspiration for meaningful service robot functionality,’’ Disab.
Rehabil., Assistive Technol., vol. 9, no. 6, pp. 445–452, Nov. 2014.

[20] J. F. Engelberger, Robotics in Practice: Management and Applications of
Industrial Robots. Springer, 2012.

[21] K. M. Tsui and H. A. Yanco, ‘‘Assistive, rehabilitation, and surgical
robots from the perspective of medical and healthcare professionals,’’ in
Proc. AAAI Workshop Hum. Implications Hum.-Robot Interact., Jul. 2007,
pp. 1–6.

[22] F. Hegel, M. Lohse, A. Swadzba, S. Wachsmuth, K. Rohlfing, and
B. Wrede, ‘‘Classes of applications for social robots: A user study,’’ in
Proc. RO-MAN 16th IEEE Int. Symp. Robot Hum. Interact. Commun.,
Aug. 2007, pp. 938–943.

[23] M. Vukobratovic, Dynamics and Robust Control of Robot-Environment
Interaction, vol. 2. Singapore: World Scientific, 2009.

[24] V. Kumar, E. Todorov, and S. Levine, ‘‘Optimal control with learned local
models: Application to dexterous manipulation,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2016, pp. 378–383.

[25] W. Dudek, M. Wegierek, J. Karwowski, W. Szynkiewicz, and
T. Winiarski, ‘‘Task harmonisation for a single-task robot controller,’’ in
Proc. 12th Int. Workshop Robot Motion Control (RoMoCo), Jul. 2019,
pp. 86–91.

[26] C. Zieliñski and T. Winiarski, ‘‘Motion generation in the MRROC++ robot
programming framework,’’ Int. J. Robot. Res., vol. 29, no. 4, pp. 386–413,
Apr. 2010.

[27] T. Kornuta, C. Zieliński, and T. Winiarski, ‘‘A universal archi-
tectural pattern and specification method for robot control system
design,’’ Bull. Polish Acad. Sci., Tech. Sci., vol. 68, no. 1, pp. 3–29,
Feb. 2020.

[28] C. Zieliński, T. Kornuta, P. Trojanek, T. Winiarski, and M. Walęcki,
‘‘Specification of a multi-agent robot-based reconfigurable fixture control
system,’’ in Robot Motion and Control, K. Kozłowski, Ed. London, U.K.:
Springer, 2012, pp. 171–182.

[29] D. Seredynski, M. Stefanczyk, K. Banachowicz, B. Swistak, V. Kutia, and
T. Winiarski, ‘‘Control system design procedure of a mobile robot with
various modes of locomotion,’’ in Proc. 21st Int. Conf. Methods Models
Autom. Robot. (MMAR), Aug. 2016, pp. 490–495.

[30] D. Seredynski, T. Winiarski, and C. Zielinski, ‘‘FABRIC: Framework for
agent-based robot control systems,’’ in Proc. 12th Int. Workshop Robot
Motion Control (RoMoCo), Jul. 2019, pp. 215–222.

[31] W. Dudek, K. Banachowicz, W. Szynkiewicz, and T. Winiarski, ‘‘Dis-
tributed NAO robot navigation system in the hazard detection applica-
tion,’’ in Proc. 21st Int. Conf. Methods Models Autom. Robot. (MMAR),
Aug. 2016, pp. 942–947.

[32] W. Dudek, W. Szynkiewicz, and T. Winiarski, ‘‘Nao robot navigation
system structure development in an agent-based architecture of the RAPP
platform,’’ in Challenges in Automation, Robotics and Measurement
Techniques, R. Szewczyk, C. Zieliński, M. Kaliczyńska, Eds. Cham,
Switzerland: Springer, 2016, pp. 623–633.

[33] W. Dudek, W. Szynkiewicz, and T. Winiarski, ‘‘Cloud computing support
for the multi-agent robot navigation system,’’ J. Autom., Mobile Robot.
Intell. Syst., vol. 11, no. 2, pp. 67–74, Jun. 2017.

[34] K. Tchoń, K. Arent, M. Janiak, and Ł. Juszkiewicz, ‘‘Motion planning for
the mobile platform rex,’’ in Recent Advances in Automation, Robotics and
Measuring Techniques, R. Szewczyk, C. Zieliński, M. Kaliczyńska, Eds.
Cham, Switzerland: Springer, 2014, pp. 497–506.

[35] E. Gat, R. P. Bonnasso, and R. Murphy, ‘‘On three-layer architectures,’’
Artif. Intell. mobile robots, vol. 195, p. 210, Feb. 1998.

[36] B. P. Gerkey and M. J. Matarić, ‘‘A formal analysis and taxonomy of
task allocation in multi-robot systems,’’ Int. J. Robot. Res., vol. 23, no. 9,
pp. 939–954, Sep. 2004.

[37] Z. Kootbally, C. Schlenoff, C. Lawler, T. Kramer, and S. K. Gupta,
‘‘Towards robust assembly with knowledge representation for the planning
domain definition language (PDDL),’’ Robot. Comput.-Integr. Manuf.,
vol. 33, pp. 42–55, Jun. 2015.

[38] C. Zieliński, W. Kasprzak, T. Kornuta, W. Szynkiewicz, P. Trojanek,
M. Walȩcki, T. Winiarski, and T. Zielińska, ‘‘Control and programming
of a multi-robot-based reconfigurable fixture,’’ Ind. Robot, Int. J., vol. 40,
no. 4, pp. 329–336, Jun. 2013.

[39] T. Winiarski, M. Wȩgierek, D. Seredyński, W. Dudek, K. Banachowicz,
and C. Zieliński, ‘‘EARL—Embodied agent-based robot control systems
modelling language,’’ Electronics, vol. 9, no. 2, p. 379, Feb. 2020.

[40] M. Figat and C. Zielinski, ‘‘Robotic system specification methodology
based on hierarchical Petri nets,’’ IEEE Access, vol. 8, pp. 71617–71627,
2020.

[41] T. Kornuta, T. Winiarski, and C. Zieliński, ‘‘Specification of abstract robot
skills in terms of control system behaviours,’’ in Progress in Automa-
tion, Robotics and Measuring Techniques, R. Szewczyk, C. Zieliński, and
M. Kaliczyńska, Eds. Cham, Switzerland: Springer, 2015, pp. 139–152.

[42] W. Dudek. A Video Showing Scheduling of a Robot’s Tasks With
the TaskER Framework. WUT, Institute of Control and Compu-
tation Engineering. Accessed: Aug. 31, 2020. [Online]. Available:
https://vimeo.com/403391725

[43] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, ‘‘The
CLARAty architecture for robotic autonomy,’’ in Proc. IEEE Aerosp.
Conf., Mar. 2001, pp. 1–121.

[44] S. Dennis, L. Alex, L. Matthias, and S. Christian, ‘‘The smartmdsd
toolchain: An integrated mdsd workflow and integrated development envi-
ronment (ide) for robotics software,’’ J. Softw. Eng. Robot., vol. 7, pp. 3–19,
2016, doi: 10.6092/JOSER_2016_07_01_p3.

[45] A. Steck and C. Schlegel, ‘‘Smarttcl: An execution language for con-
ditional reactive task execution in a three layer architecture for ser-
vice robots,’’ in Proc. Int. Workshop Dyn. Lang. RObotic Sensors Syst.
(DYROS/SIMPAR), 2010, pp. 274–277.

[46] M. Stenmark, J. Malec, and A. Stolt, ‘‘From high-level task descrip-
tions to executable robot code,’’ in Intelligent Systems, D. Filev,
J. Jabłkowski, J. Kacprzyk, M. Krawczak, I. Popchev, L. Rutkowski,
V. Sgurev, E. Sotirova, P. Szynkarczyk, and S. Zadrozny, Eds. Cham,
Switzerland: Springer, 2015, pp. 189–202.

[47] R. Alami, A. Clodic, V. Montreuil, E. A. Sisbot, and R. Chatila, ‘‘Toward
human-aware robot task planning,’’ in Proc. AAAI Spring Symp., Boldly go
Where Hum.-Robot team Has Gone Before, 2006, pp. 39–46.

[48] T. Winiarski, K. Banachowicz, M. Walecki, and J. Bohren, ‘‘Multibehav-
ioral position-force manipulator controller,’’ in Proc. 21st Int. Conf. Meth-
ods Models Autom. Robot. (MMAR), Aug. 2016, pp. 651–656.

[49] M. Stilman, ‘‘Task constrained motion planning in robot joint space,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2007, pp. 3074–3081.

[50] M. Nakano, Y. Hasegawa, K. Nakadai, T. Nakamura, J. Takeuchi, T. Torii,
H. Tsujino, N. Kanda, and H. G. Okuno, ‘‘A two-layer model for behavior
and dialogue planning in conversational service robots,’’ inProc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2005, pp. 3329–3335.

[51] J. Bohren and S. Cousins, ‘‘The SMACH high-level executive [ROS
News],’’ IEEE Robot. Autom. Mag., vol. 17, no. 4, pp. 18–20, Dec. 2010.

[52] S. Amador, S. Okamoto, and R. Zivan, ‘‘Dynamic multi-agent task alloca-
tion with spatial and temporal constraints,’’ in Proc. 28th AAAI Conf. Artif.
Intell., 2014, pp. 1384–1390.

[53] A. Nouman, I. F. Yalciner, E. Erdem, and V. Patoglu, ‘‘Experimental
evaluation of hybrid conditional planning for service robotics,’’ in Proc.
Int. Symp. Experim. Robot., D. Kulić, Y. Nakamura, O. Khatib, and
G. Venture, Eds. Cham, Switzerland: Springer, 2016, pp. 692–702.

[54] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera,
N. Palomeras, N. Hurtos, and M. Carreras, ‘‘Rosplan: Planning in the
robot operating system,’’ in Proc. 21th Int. Conf. Automated Planning
Scheduling, 2015, pp. 333–341.

[55] S. Sievers, G. Röger,M.Wehrle, andM.Katz, ‘‘Theoretical foundations for
structural symmetries of lifted PDDL tasks,’’ in Proc. Int. Conf. Automated
Planning Scheduling, vol. 29, no. 1, 2019, pp. 446–454.

[56] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl,
‘‘GOLOG: A logic programming language for dynamic domains,’’ J. Log.
Program., vol. 31, nos. 1–3, pp. 59–83, Apr. 1997.

[57] C. Zieliński and T. Kornuta, ‘‘Specification of tasks in terms of object-
level relations for a two-handed robot,’’ in Recent Advances in Automa-
tion, Robotics and Measuring Techniques, R. Szewczyk, C. Zieliński, and
M. Kaliczyńska, Eds. Cham, Switzerland: Springer, 2014, pp. 543–552.

161470 VOLUME 8, 2020

http://dx.doi.org/10.6092/JOSER_2016_07_01_p3

W. Dudek, T. Winiarski: Scheduling of a Robot’s Tasks With the TaskER Framework

[58] M. Colledanchise and P. Ögren, Behavior Trees in Robotics and AI: An
Introduction. Boca Raton, FL, USA: CRC Press, 2018.

[59] G. Gierse, T. Niemueller, J. Claßen, and G. Lakemeyer, ‘‘Interruptible task
execution with resumption in golog,’’ in Proc. 22nd Eur. Conf. Artif. Intell.,
2016, pp. 1265–1273.

[60] M. Kim, H. Ahn, and K. P. Kim, ‘‘Process-aware Internet of Things: A con-
ceptual extension of the Internet of Things framework and architecture,’’
TIIS, vol. 10, no. 8, pp. 4008–4022, 2016.

[61] S. Park, J.-H. Kim, and G. Fox, ‘‘Effective real-time scheduling algorithm
for cyber physical systems society,’’ Future Gener. Comput. Syst., vol. 32,
pp. 253–259, Mar. 2014.

[62] H. Mora, J. F. Colom, D. Gil, and A. Jimeno-Morenilla, ‘‘Distributed
computational model for shared processing on cyber-physical system envi-
ronments,’’ Comput. Commun., vol. 111, pp. 68–83, Oct. 2017.

[63] J. Yao, X. Xu, and X. Liu, ‘‘MixCPS: Mixed time/event-triggered architec-
ture of cyber–physical systems,’’ Proc. IEEE, vol. 104, no. 5, pp. 923–937,
May 2016.

[64] J. Kim, K. Lakshmanan, and R. Rajkumar, ‘‘Rhythmic tasks: A new task
model with continually varying periods for cyber-physical systems,’’ in
Proc. IEEE/ACM 3rd Int. Conf. Cyber-Phys. Syst., Apr. 2012, pp. 55–64.

[65] J. Xu and D. L. Parnas, ‘‘Scheduling processes with release times, dead-
lines, precedence and exclusion relations,’’ IEEE Trans. Softw. Eng.,
vol. 16, no. 3, pp. 360–369, Mar. 1990.

[66] E. D. Jensen, C. D. Locke, and H. Tokuda, ‘‘A time-driven scheduling
model for real-time operating systems,’’ in Proc. RTSS, vol. 85, 1985,
pp. 112–122.

[67] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney, ‘‘Task scheduling
for control oriented requirements for cyber-physical systems,’’ in Proc.
Real-Time Syst. Symp., Nov. 2008, pp. 47–56.

[68] M. Ghobaei-Arani, A. Souri, F. Safara, and M. Norouzi, ‘‘An efficient
task scheduling approach using moth-flame optimization algorithm for
cyber-physical system applications in fog computing,’’ Trans. Emerg.
Telecommun. Technol., vol. 31, no. 2, Feb. 2020, Art. no. e3770.

[69] K. Jeffay, ‘‘Scheduling sporadic tasks with shared resources in hard-real-
time systems,’’ in Proc. 13th IEEE Real-Time Syst. Symp., Phoenix, AZ,
USA, Dec. 1992, pp. 89–99.

[70] J. Ota, ‘‘Goal state optimization algorithm considering computational
resource constraints and uncertainty in task execution time,’’ Robot. Auto.
Syst., vol. 57, no. 4, pp. 403–410, Apr. 2009.

[71] C. Sirithunge, A. G. B. P. Jayasekara, and D. P. Chandima, ‘‘Proactive
robots with the perception of nonverbal human behavior: A review,’’ IEEE
Access, vol. 7, pp. 77308–77327, 2019.

[72] T. Winiarski, W. Dudek, M. Stefańczyk, Ł. Zieliński, D. Giełdowski, and
D. Seredyński, ‘‘An intent-based approach for creating assistive robots’
control systems,’’ 2020, arXiv:2005.12106. [Online]. Available: http://
arxiv.org/abs/2005.12106

[73] E. A. Topp, M. Stenmark, A. Ganslandt, A. Svensson, M. Haage, and
J. Malec, ‘‘Ontology-based knowledge representation for increased skill
reusability in industrial robots,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Oct. 2018, pp. 5672–5678.

[74] INCARE Project Web Page. WUT, Institute of Control and Computa-
tion Engineering. [Online]. Available: https://www.robotyka.ia.pw.edu.
pl/projects/incare/

WOJCIECH DUDEK (Student Member, IEEE)
received the M.Sc./Eng. degree in control and
robotics from the Warsaw University of Technol-
ogy (WUT). He is currently a Research and a
Didactics Assistant with the Faculty of Electron-
ics and Information Technology (FEIT), Institute
of Control and Computation Engineering (ICCE),
WUT. He is also a contributor to international
projects, e.g., RAPP (European Commission–FP
7) and INCARE (European Commission AAL

Joint Programme). His research interests include modeling, design, and pro-
gramming of robot controllers, especially in the areas of mobile robots and
their localization, navigation, and harmonization of their tasks. He received
the Young Author Award at the IEEE 12th International Workshop on Robot
Motion and Control for the precursory article of this study.

TOMASZ WINIARSKI (Member, IEEE) received
the M.Sc./Eng. and Ph.D. degrees in control and
robotics from the Warsaw University of Technol-
ogy (WUT), in 2002 and 2009, respectively. He is
currently an Assistant Professor with WUT. He is
also a member of the Robotics Group and the Head
of the Robotics Laboratory, Faculty of Electron-
ics and Information Technology (FEIT), Institute
of Control and Computation Engineering (ICCE).
He is also working on the modeling and design

of robots and on programming methods for robot control systems. He is
also the Head of the WUT Group in AAL–INCARE Project ‘‘Integrated
Solution for Innovative Elderly Care.’’ His research interests include service
and social robots and didactic robotic platforms. His personal experience
concerns the development and modeling of robotic frameworks, manipulator
position–force and impedance control, and safety in robotic research.

VOLUME 8, 2020 161471

