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ABSTRACT In this study, we propose Mel-weighted single frequency filtering (SFF) spectrograms for
dialect identification. The spectrum derived using SFF has high spectral resolution for harmonics and
resonances while simultaneously maintaining good time-resolution of some speech excitation features such
as impulse-like events. The SFF spectrum can represent speech characteristics such as burst time and
glottal closure instances better than the short-time Fourier transform (STFT) spectrum. Our hypothesis is
that these intricate representations in the SFF spectrum should help in distinguishing dialects. Therefore,
we built a dialect identification system which uses an unsupervised, bottleneck feature representation
of the Mel-weighted SFF spectrogram (Mel-SFF spectrogram) with sequence-to-sequence deep autoen-
coders. The language invariance of the proposed system was evaluated using two datasets: the UT-Podcast
database (English) and the STYRIALECT database (German). The proposed representations gave a relative
improvement of 9.47% and 4.69% in unweighted average recall (UAR) compared to the best baseline
method on the development and test datasets, respectively, of the UT-Podcast database. The proposed
representations also gave a comparable performance to the best baseline method for the STYRIALECT
database. In addition, the fusion of the autoencoder bottleneck features computed from the Mel-SFF and
Mel-STFT spectrograms improved the overall performance indicating complementary information between
these features. By further analyzing the performance of the proposed representation with different utterance
lengths using the UT-Podcast database, we observed that the proposed representation performed better on
short utterances. The improved performance given by the Mel-weighted SFF spectrogram for recognizing
dialects in both databases supports our hypothesis.

INDEX TERMS Dialect identification, single frequency filtering (SFF) spectrum, Mel-spectrogram,
Mel-filter bank energies, autoencoder.

I. INTRODUCTION
In listening to speech, humans not only analyse the speech
signal’s linguistic content but they also make conclusions
about the speaker’s regional origin, social background and
emotional state. Dialect identification refers to a research area
where the goal is to find the regional origin of the speaker
using the temporal and spectral characteristics of his or her
speech signal. Each dialect group has its own pronunciation
pattern and vocabulary compared to other dialect groups.
These variations in speech due to dialect have been shown
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to decrease the performance of automatic speech recogni-
tion (ASR) systems. An efficient dialect identification system
followed by a dialect-specific pronunciation dictionary and a
dialect-specific languagemodel can improve the performance
of ASR [1]–[3]. In addition, dialect information can be used
in speaker profiling in biometrical applications, it can help
solve dialect related issues in speaker and language iden-
tification, and it can also be used in the development of
dialect-personalized voice assistants.

Dialect identification studies in the literature can be classi-
fied into two groups: text-dependent and text-independent [4].
In the former, the transcription of an utterance for which
the dialect needs to be identified should be known apriori.
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FIGURE 1. Block diagram describing the steps involved in the single frequency filtering (SFF) method [33].

The dialect is determined by finding the closest dialect match
for a word/utterance by either phone modeling or word
modeling. Phone/word sequences are modeled using n-gram
models. For the dialect identification task, different phone
modeling approaches are widely used and they include phone
recognition followed by language modeling (PRLM) and
parallel phone recognition followed by language modeling
(PPRLM) [5]–[8].

Dialect identification studies belonging to the second
class, text-independent dialect identification, model dialec-
tal variations using acoustic features derived from speech
signals [9]–[13]. The acoustic features used in this area
include shifted delta cepstral coefficients (SDCs) [14],
prosody based features, frame-by-frame phone posteriors,
supervectors [15]–[17], and i-vectors obtained from acoustic
features and speech attributes [18]–[21]. In one of the recent
studies in language identification, bottleneck features (BNFs)
derived from a pre-trained deep neural network with i-vector
modeling showed significant improvement over the SDC fea-
tures, and the developedBNF-based system stands out as state
of the art [22], [23]. A shortcoming of this approach is that
the deep neural network had to be trained over a transcribed
corpus which contains only English speech without phonetic
variations in pronunciation [24].

This article studies text-independent dialect identifica-
tion without taking advantage of any pre-trained models
or transcriptions. The proposed system takes advantage of
an autoencoder which is trained using the Mel-weighted
single frequency filtering (Mel-SFF) spectrogram to obtain
BNFs which are used in the classification. A baseline system
with a similar architecture is trained using the Mel-weighted
short-time Fourier transform (Mel-STFT) spectrogram. The
autoencoder architecture used is similar to the one devel-
oped in [25], [26]. This autoencoder model converts a
variable-length feature vector to a fixed-length representation
in an unsupervised manner. This architecture was chosen in
the current study because it was shown in [25] to be the
best performing system in dialect classification compared to
two reference techniques. The spectrum computed by sin-
gle frequency filtering (SFF) has been shown to give good
spectral resolution to indicate harmonics and resonances [27]
and good temporal resolution to model speech excitation
features such as impulse-like events [28]. The SFF spec-
trum has also shown promising performance in determining

burst-onset points related to voice-onset time (VOT) and glot-
tal closure instances compared to the short-time Fourier trans-
form (STFT) spectrum [28]–[30]. Previous studies in dialect
identification have shown the significance of VOT for identi-
fication of accent [31]. Inspired by this, we propose to use the
Mel-weighted SFF spectrogram with autoencoders to derive
fixed-length speech representations for dialect identification.

The organization of the paper is as follows: Section II
describes the SFF method and the computation of the
Mel-weighted SFF spectrogram. Section III provides a
detailed description of the proposed dialect identification
system. The experimental setup is described in Section IV.
Results are presented in Section V. Finally, Section VI
summarizes the study.

II. SFF AND COMPUTATION OF THE MEL-WEIGHTED
SFF SPECTROGRAM
This section describes the steps involved in the SFF
method and in the computation of the Mel-weighted SFF
spectrogram.

A. SFF
The SFF method is used to derive the amplitude envelope of
the speech signal at every sample for a given frequency [32].
The SFF spectrum has been shown to be useful in finding
burst-onset points [29] and glottal closure instants [30], and
it has been demonstrated to exhibit high spectral resolu-
tion for important speech features such as harmonics and
resonances [27].

In SFF, the pre-emphasized speech signal is used for
deriving the amplitude envelope at each frequency by
frequency-shifting the signal and by filtering it using a
single-pole filter as shown in Figure 1. The pole of the filter is
located on the negative real axis close to the unit circle in the
z-plane, i.e., the angle of the pole corresponds to the Nyquist
frequency ( fs2 ). Therefore, the effect of other frequency com-
ponents will be reduced giving high spectral resolution. The
steps to derive the SFF spectrum are given below [32].
• Speech signal (s[n]) is pre-emphasized to remove
low-frequency variations. The pre-emphasis is com-
puted as follows

x[n] = s[n]− α ∗ s[n− 1], (1)

where α is set to 0.95 in the present study.
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FIGURE 2. Block diagram describing the steps involved in the computation of the Mel-weighted SFF spectrum. The spectrogram
obtained using this process refers to the Mel-weighted SFF spectrogram.

FIGURE 3. Block diagram of the proposed dialect identification system.

• The pre-emphasized speech signal x[n] is multiplied by
complex sinusoid ejω̂kn as follows

xk [n] = x[n]ejω̂kn, (2)

where ω̂k = π −
2π fk
fs

, fk is the desired frequency and fs
is the sampling frequency.

• Signal xk [n] is passed through a single-pole filter. The
transfer function of the filter is defined as

H (z) =
1

1+ rz−1
, (3)

where r ≈ 1, i.e., the pole is close to the unit circle on
the negative real axis in the z-plane. In this study, r is set
to 0.99.

• The output of the filter is given by

yk [n] = −ryk [n− 1]+ xk [n]. (4)

• The amplitude envelope (vk [n]) of the signal with the
desired frequency fk is given by

vk [n] =
√
y2kr [n]+ y

2
ki[n], (5)

where ykr [n] and yki[n] are the real and imaginary parts
of yk [n].

The amplitude envelope can be computed for several fre-
quencies using a frequency interval (1f ) as follows

fk = k1f , k = 1, 2, . . .K (6)

where K =
( fs2 )
1f . In this study K = 2048 is used,

i.e., 1f =
( fs2 )
2048 . From the amplitude envelope vk [n], the SFF

spectrum of the signal is obtained at each instant of time.

B. COMPUTATION OF THE MEL-WEIGHTED SFF
SPECTROGRAM
This section describes the computation of the Mel-weighted
SFF spectrogram. The procedure, depicted in Figure 2, con-
sists of the extraction of the filter-bank energies obtained
by filtering the SFF spectrum with triangular Mel-spaced
filters followed by logarithm. The resulting Mel-filter bank
energies (MFBE) are referred to as MFBE-SFF or simply as

the Mel-weighted SFF spectrum. For convenience, we refer
to the spectrogram obtained by using this process as the
Mel-weighted SFF spectrogram or Mel-SFF spectrogram.

As explained in Section II-A, SFF provides the spectrum
at each instant of time. Instead of considering the spectrum at
each time instant, computational load is reduced in the current
study by considering the spectrum unchanged in a segment of
T ms. One of the following four approaches can be used in
defining the spectrum using the segment of T ms.
(a) Average SFF spectrum (Savg): In this approach,

the SFF spectrum is computed by averaging the ampli-
tude envelope vk [n] defined in Eq. 5 for every frequency
k over the entire segment.

(b) Minimum SFF spectrum (Smin): In this approach,
the SFF spectrum is selected as the instantaneous spec-
trum of vk [n] which shows the minimum spectral energy
(sum of the squared amplitude envelope values) over the
entire segment.

(c) Maximum SFF spectrum (Smax): In this approach,
the SFF spectrum is selected as the instantaneous spec-
trum of vk [n] which shows themaximum spectral energy
over the entire segment.

(d) Uniform SFF spectrum (Suniform): In this approach,
the SFF spectrum is computed by sampling vk [n] at
regular intervals defined by the segment duration.

The performance of the above four approaches was compared
in this study. As will be reported in Section V, it was observed
that Savg gave the best performance. Therefore, the Mel-
SFF spectrogram computed using Savg was used as a spectral
representation of speech and this representation was further
processed in an unsupervised manner by an autoencoder to
obtain fixed-sized BNFs to be used in dialect identification.

III. PROPOSED SYSTEM
The proposed system has three stages: the Mel-SFF spec-
trogram extraction, obtaining an unsupervised representation
from spectrograms using an autoencoder and classification.
The block diagram shown in Figure 3 describes the pro-
posed system architecture. For convenience, we refer to the
unsupervised representation from the STFT spectrogram as
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FIGURE 4. Block diagram of the proposed fusion dialect identification system.

BNFMel-STFT and the unsupervised representation from the
SFF spectrogram as BNFMel-SFF.
In addition, we also studied a system using feature fusion

where the unsupervised representations (BNFs) derived
from Mel-SFF spectrograms (BNFMel-SFF) were combined
with the unsupervised representations (BNFs) derived from
conventional Mel-STFT spectrograms (BNFMel-STFT). The
fusion system, depicted in Figure 4, is discussed in
Section III-C.

A. MEL-SFF SPECTROGRAM CONFIGURATION
The time-domain speech signal is processed as described
by Eqs. 1-5 in Section II to compute the SFF spectro-
gram. Instead of considering the spectrum at every sam-
ple, averaging of the spectrogram is computed as explained
in Section II-B. We varied the average energy operation
(Savg explained in Section II-B) by considering seven val-
ues of T (6.25 ms, 12.5 ms, 18.75 ms, 25 ms, 31.25 ms,
37.5 ms, 43.75 ms). The best performance was obtained with
T = 37.5 ms. Therefore, this segment duration value is used
throughout this study unless otherwise mentioned. Mel-filter
bank energies are obtained from the spectrum using linearly
spaced 128 filters in the Mel-scale. To eliminate the effect
of background noise, the spectral values are clipped using a
threshold as in [25]. In this study, five thresholds (−30 dB,
−40 dB, −50 dB, −60 dB, and −70 dB) are explored. Spec-
trograms are normalized to be in the range of [−1, 1] to match
with the decoder output function in the autoencoder. The
clipping and normalization operations are conducted in the
same way in computing the proposed Mel-SFF spectrogram
and in computing its reference spectrogram, the conventional
Mel-STFT spectrogram.

B. SEQUENCE-TO-SEQUENCE AUTOENCODERS
Sequence-to-sequence autoencoders compress high-dimen-
sional frame-level representations to low-dimensional
utterance-level latent representations by capturing the rel-
evant information to reproduce the input sequence. The
low-dimensional utterance-level representations capture the
required information compactly, which can be used for
classification. A sequence-to-sequence recurrent neural net-
work (RNN) with an autoencoder framework is used to

convert the Mel-SFF spectrogram to an utterance-level
fixed representation. The autoencoder framework has two
modules, the encoder and the decoder. In both modules,
sequence-to-sequence RNNs are used. Motivated by [26],
we used gated recurrent cell units (GRU) throughout the
study.

The encoder converts the Mel-SFF spectrogram to a
fixed-length representation. A fully-connected layer with a
tanh activation function converts the output of the encoder
to a hidden input format which is considered the BNF. The
BNFs extracted from the trained autoencoder are used for
dialect identification.

The BNFs are passed to the decoder as hidden inputs and
the decoder learns to reproduce the Mel-SFF spectrogram
sample by sample. The estimated output is recurrently passed
to the next time-steps as hidden state input. The autoen-
coder network is trained by minimizing the root mean square
error (RMSE) between the estimated decoder output and the
original Mel-SFF spectrogram. The initial hidden state input
for the first time steps of the RNNs in the encoder and the
initial input in the decoder are set to 0 for all utterances.
The autoencoders of this study are implemented using the
AuDeep toolkit [26], [34].

C. FUSION SYSTEM
In order to investigate whether there is complementary
information between the STFT and SFF spectrograms,
we developed a fusion system. The block diagram of the
fusion system is shown in Figure 4. In this system, the bot-
tleneck features extracted from the autoencoders trained on
the Mel-SFF spectrogram (the proposed BNFMel-SFF system)
and Mel-STFT spectrogram (the baseline BNFMel-STFT sys-
tem) are concatenated to train the classifier. Two separate
autoencoders are trained, each one capturing the underlying
latent space representations from respective input spectro-
grams. The classifier trained using these fused features is used
for dialect identification in a similar manner as the system
described in Section III-D.

D. CLASSIFICATION
The third stage in the proposed system is classifica-
tion. We experimented with three different classifiers:
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Gaussian linear classifier (GLC), multi-class logistic regres-
sion (MCLR) and support vector machine (SVM). GLC is
a generative classifier model and MCLR as well as SVM
are discriminative classifier models. GLC was implemented
based on [35]. For MCLR and SVM, we used the implemen-
tations from [36]. Both MCLR and SVM use the one-vs-rest
strategy to classify dialects.

IV. EXPERIMENTAL SETUP
In this section, the databases used in the study are described.
In addition, the section discusses the baseline systems and the
evaluation metrics adopted in the study.

A. DATABASES
Two speech databases, STYRIALECT and UT-Podcast, are
used in the study. The STYRIALECT database includes the
dialects of Styria in German [25]. The database consists
of 5227 utterances for training and 2570 utterances for devel-
opment. The STYRIALECT test set is not provided with
labels and therefore the results of this database are reported
only for the development set in this study. The sampling
frequency is 16 kHz and the duration of each utterance is 2 s.
The database has three classes (Styrian dialects of German)
with different distributions. More details about the database
can be found in [25].

The UT-Podcast database consists of three major dialects
(US, UK, and AU) of English [37]. This data is collected from
different websites for each dialect and it covers a wide range
of topics. Since the data is collected from online podcasts,
speech is more spontaneous than in STYRIALECT and not
very well structured. Therefore, the collected speech captures
all the dialectal traits (pronunciation, vocabulary, and gram-
matical variations). The speech signals are segmented in such
a way that each utterance is 17 s in duration and contains
46 words on average. The sampling frequency is 8 kHz. The
database is divided into train and test sets as described in [37].
For the experiments in this study, half of the original test set
of the database is used for development and the other half for
testing.

B. BASELINE CONFIGURATIONS
The proposed system is compared to three baseline systems.
The first baseline is the ComParE’19 system, which uses
the BNFs of a sequence-to-sequence autoencoder, which is
trained using the Mel-STFT spectrogram [25]. This system
will be referred to as the BNFMel-STFT system. The second
baseline is an i-vector system which is trained using Mel
frequency cepstral coefficients (MFCCs) [20], [38]. The third
baseline is an i-vector system, which is trained using the
BUT/phonexia bottleneck features [39]. The second and third
system will be referred to as the i-vectorMFCC system and the
i-vectorBUT-BNF system, respectively.

In the BNFMel-STFT system, spectral analysis of speech
is computed with STFT using 80-ms frames with the Hann
window and a shift of 40ms. Mel-bank energies are computed
from the spectrum using 128 channels. Amplitude clipping is

performed on the Mel-STFT spectrogram to reduce the effect
of noise captured in the recordings. Five clipping thresh-
olds, denoted as −40 dB, −50 dB, −60 dB, −70 dB, and
−80 dB, are generated as in [25]. The baseline BNFMel-STFT
system uses a similar autoencoder architecture as the pro-
posed BNFMel-SFF system in order to make a fair compari-
son between the use of the two Mel-weighted spectrograms
in dialet identification. The RNNs in the autoencoder have
two layers with 256 GRUs in each layer and the encoder
network is unidirectional while the decoder network is bidi-
rectional. The network is trained for 16 epochs with a drop
out of 30%. The BNFMel-STFT system is trained in a similar
manner as in the proposed BNFMel-SFF system to obtain
unsupervised representations (BNFs) from the Mel-weighted
spectrograms. These representations (BNFs) are used to train
the classifier, which is then used for the dialect prediction.

The other two baseline systems (the i-vectorMFCC system
and the i-vectorBUT-BNF system) differ only in the fea-
ture representations used for i-vector training. In the for-
mer, i-vectors are extracted from 13 static mean normalized
MFCC features and their shifted delta coefficients. In the
latter, BNFs are extracted from a multi-lingual phone recog-
nizer neural network. For our experiments, we considered a
pre-trained phone recognizer from BUT/phonexia [39] which
was trained using 17 Babel languages. For both systems,
100-dimensional i-vectors are extracted using 256 Gaussian
mixture components and the obtained i-vectors are trans-
formed by awhitening transformation to be used in the dialect
prediction [20], [38].

C. EVALUATION METRICS
The evaluation metrics used are the unweighted average
recall (UAR) and accuracy. UAR gives the unbiased scores
for the classification and therefore it is considered as the
primary evaluation metric for this study. These evaluation
metrics were chosen in order not to create any bias towards
the majority class as the classes are unevenly distributed.

V. RESULTS
In this section, the results obtained in dialect identification
using the proposed system and the baseline systems are
reported separately for the STYRIALECT database and the
UT-Podcast database.

A. RESULTS FOR THE STYRIALECT DATABASE
In this section, different variants of the SFF spectrogram com-
putation methods described in Section II-B are first investi-
gated to find the best approach for the proposed BNFMel-SFF
system in dialect identification. Then, the proposed system
with the best approach is compared to the baseline systems
and to the fusion system. In both parts, SVM is used as a clas-
sifier. Finally, we validate the performance of the proposed
system and the fusion systemwith different classifiers (SVM,
MCLR and GLC) in comparison to the best baseline system
obtained from the former analysis.
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FIGURE 5. Performance (in UAR %) of dialect identification in STYRIALECT using the four spectral operations described in
Section II-B (Savg, Smin, Smax , Suniform) and four clipping thresholds (−40 dB, −50 dB, −60 dB, and −70 dB).

In order to find out which of the four spectrogram compu-
tation approaches described in Section II-B is best, we con-
ducted dialect identification experiments by using all these
approaches and by using four values for the clipping threshold
(−40 dB, −50 dB, −60 dB, and −70 dB). The obtained
results (in UAR%) are plotted in Figure 5. It can be observed
that Savg outperformed the other approaches for all threshold
values. Therefore, the feature extraction from the Mel-SFF
spectrogram was computed in all further experiments of this
study using Savg with a segment duration of 37.5 ms.

The dialect identification results reported in UAR [in %]
and accuracy [in %] are shown in Table 1 for the proposed
BNFMel-SFF method and for the three reference methods by
using the SVM classifier. The first column refers to the sys-
tems under comparison. In addition to the BNFMel-SFF system
and the three reference systems, the table also includes the
fusion system (the lowest row of the first column). The second
column includes the different clipping thresholds. From the
table, it can be observed that theMFCC-based i-vector system
performed better than the BUT/phonexia i-vector system. The
BNFMel-STFT system showed the best performance among all
the systems at the threshold of −70 dB. Among the three
baseline systems, the BNFMel-STFT system gave the best per-
formance in both metrics.

The proposed BNFMel-SFF system showed better perfor-
mance in UAR at the threshold of−40 dB when compared to
the BNFMel-STFT baseline system. In addition, the proposed
system showed comparable performance with BNFMel-STFT
at the threshold levels of −50 dB and −60 dB. Furthermore,
the fusion system outperformed the best baseline configura-
tion at the thresholds of −40 dB by 0.42% in UAR.

Furthermore, we compared the dialect identification per-
formance with the three different classifiers described
in Section III-D using the BNFMel-STFT baseline system,

TABLE 1. Performance in UAR (%) and accuracy of the three baseline
systems, the proposed system and the fusion system using the
development data of STYRIALECT. SVM is used as the classifier. The
utterance length is 2 s.

TABLE 2. Performance in UAR (%) in STYRIALECT with different
classifiers. The utterance length is 2 s.

the proposed BNFMel-SFF system and the fusion system. The
results reported in Table 2 are shown for the best configu-
rations from Table 1, i.e., with the threshold of −70 dB for
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TABLE 3. Performance in UAR (%) in UT-Podcast on the development (dev) and test sets with different classifiers. The utterance length is 17 s.

the BNFMel-STFT system and with the threshold of −40 dB
for the BNFMel-SFF system and for the fusion system. From
these experiments, it can be observed that the SVM classifier
performed better than the other two classifiers. Furthermore,
it can also be observed that the fusion of the BNFs derived
from theMel-STFT andMel-SFF spectrograms improved the
overall performance compared to any of the individual feature
extraction methods.

B. RESULTS FOR THE UT-PODCAST DATABASE
From the results reported for the STYRIALECT database
in Section V-A, it can be observed that the performance
of the i-vectorMFCC and i-vectorBUT-BNF systems is poorer
compared to the other systems. Hence, these two systems
were removed in evaluating the UT-Podcast database. Table 3
presents the UAR results for the three remaining systems sep-
arately for the development and test sets and for the three dif-
ferent classifiers. The configurations of these systems are as
in Sections III-A and IV-B, except that the clipping threshold
is fixed to−40 dB. The autoencoder is trained for 128 epochs
with batch size 4 and 128 GRUs in each layer.

From the table, it can be observed that the BNFMel-SFF
system performed better than the BNFMel-STFT system for
all classifiers. As in the results discussed in Section V-A,
SVM showed higher performance compared to the two other
classifiers. The proposed BNFMel-SFF system gave a relative
improvement of 9.47% and 4.69% in UAR for the devel-
opment and test set, respectively, when compared to the
baseline BNFMel-STFT system. The results above support our
hypothesis: Since the SFF spectrum is extracted in principle
at every sample, the temporal resolution of the spectrogram
is preserved. The hidden BNFs derived from the SFF spec-
trogram showing high spectral and temporal resolution result
in better discrimination of speech sounds across dialects.

Furthermore, from the results reported in Tables 2 and 3,
it can be observed that the fusion of the BNFs derived from
theMel-STFT andMel-SFF spectrograms improved the over-
all performance compared to any of the individual systems.
The improvement achieved with the fusion system for both
databases shows that there is complementary information
between the spectral representations computed by STFT and
SFF.

It is to be noted that the results reported in Table 3 were
obtained by using the speech sounds of UT-Podcast over the
entire length of the utterance (i.e., 17 s). In order to study
the effect of the utterance length for dialect identification,

TABLE 4. Performance in UAR (%) in UT-Podcast using the
development (dev) and test sets with different utterance lengths.

additional experiments were carried out using utterance
lengths of 10 s and 2 s for the UT-Podcast database. The
results reported in Table 4 show that the proposed BNFMel-SFF
system performed consistently for all utterance lengths. Fur-
thermore, it can be observed that the proposed system showed
a clearly larger improvement (15.35% relative) compared
to the STFT-based reference system for shorter utterances
than for longer utterances (4.69% relative). Furthermore,
the fusion system showed an improvement for both utterance
lengths compared to the individual reference systems, again
indicating complementary information between the features.

VI. SUMMARY AND CONCLUSION
This study explored the use of the Mel-weighted single fre-
quency filtering spectrogram for dialect identification using
the STYRIALECT and UT-Podcast databases. Dialects were
identified by training an autoencoder with the Mel-SFF
spectrogram and by feeding the bottleneck features of the
autoencoder to a classifier. The proposed Mel-SFF spectro-
gram gave better performance compared to the i-vector based
baseline systems. Furthermore, the fusion of the unsuper-
vised representations (BNFs) computed from the Mel-SFF
andMel-STFT spectrograms using the sequence-to-sequence
autoencoders yielded the best UAR score (46.9%) for the
STYRIALECT database. In UT-Podcast, the proposed and
fusion systems gave a relative UAR improvement of 4.69%
and 7.71% compared to the Mel-STFT spectrogram-based
baseline system, respectively. Furthermore, the proposed sys-
tem showed better performance especially in short utterances
compared to the baseline system in the experiments with
the UT-Podcast data. Therefore, we conclude that the high
spectral and temporal resolution of the SFF spectrum leads
to an improvement in dialect identification for the studied
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German and English dialects. In addition, we conclude that
the proposed Mel-SFF spectrogram system distinguishes
dialects better from short utterances than its STFT-based ref-
erence system. In the future, we plan to explore the Mel-SFF
spectrogram derived features for dialect identification in
noisy conditions [27], [28], [30] and for larger corpora.
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