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ABSTRACT Low-dose CT (LDCT) is of great significance due to the concern about the potential
radiation risk. With the fast development of deep learning, neural networks have become powerful tools
in LDCT enhancement. Current deep neural networks for LDCT reconstruction are often trained with paired
LDCT dataset and normal-dose CT (NDCT) dataset. However, high quality NDCT dataset paired with
LDCT dataset is expensive to acquire or even not available sometimes in reality. In this work, we proposed
an unsupervised model-based deep learning (MBDL) for LDCT reconstruction. The network is trained
based on group-wise maximum a posterior (G-MAP) loss function with LDCT dataset only. The MBDL
is a general framework. It also allows us to combine with supervised training if a small number of paired
NDCT dataset accessible to help optimizing the network parameters, i.e. works in a semi-supervised mode.
During inference, LDCT images are reconstructed end-to-end by the trained network. We verified the
proposed method with simulated projection data from clinical CT images. The proposed method restrained
noise well while restoring anatomical structures and it achieved better results than model-based iterative
reconstruction (MBIR) with significantly less computational cost. The performances of MBDL were further
enhanced by integrating a small paired NDCT dataset for semi-supervised training. The results suggested
that MBDL is an efficient and flexible method for LDCT deep learning based reconstruction in the situations
lacking of enough high quality NDCT data.

INDEX TERMS Low-dose CT, deep learning, unsupervised learning, semi-supervised learning.

I. INTRODUCTION
X-ray CT is a widely used medical imaging modality for
clinical diagnosis while its radiation dose is highly concerned.
High level dose received by patients raises potential radiation
risk, such as an increasing possibility of cancer [1], [2]. In the
past decades, lowering CT dose by adjusting tube-current-
time or tube-voltage have been studied extensively [3]–[5].
However, further reducing scanning dose leads to higher
photon statistical noise and the electronic noise becomes
unneglectable as well. If directly reconstructed with analyti-
cal reconstruction algorithms, the noise in projection data will
be magnified by the high-pass filtration (RL filter or SL filter)
and degrade the image quality. Lowering dose to the lowest
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level while maintaining an acceptable image quality remains
a challenge in CT reconstruction area.

Previously, various researches have been conducted
on low-dose CT (LDCT) optimization. These algorithms
generally can be classified into three categories. The first
category is analytical filtration method. Manually designed
filters or filtration algorithms are adopted to restrain noise for
LDCT in either projection domain or image domain denoted
as pre-processing and post-processing [6]–[9]. Generally,
filterers are implemented with structural-adaptive strategies
thus the information of clinical structures could be preserved
to a large extent [6], [7]. Normal-dose CT (NDCT) images
can also be integrated into filtering process to enhance image
denoising performance [9]. However, manually designed
low-pass process often has limited ability in distinguishing
noise and detail information so that causes image blurring
in practice. The second category is model-based iterative
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reconstruction (MBIR) methods based on Bayesian the-
ory. They model statistical noise, image priors and system
physics into reconstruction thus better reconstruction results
are obtained. For example, introducing manually designed
image priors as constraints to statistical iterative reconstruc-
tion (SIR) for LDCT reconstruction is commonly adopted
to restrain noise and artifacts [10]–[14]. Markov random
field (MRF) reduces image noise by measuring the distribu-
tion of neighboring pixels [14]. Based on compressed sens-
ing (CS) theory, total-variation (TV) minimization makes use
of the sparsity of NDCT images in variation domain and
has an advantage in removing LDCT streak artifacts [12].
Instead of using manually designed priors, dictionary learn-
ing learns a data-adaptive sparsity constraint based on NDCT
dataset [15], [16]. MBIR achieved significant improvements
in LDCT reconstruction. However, iterative process is time
consuming which hinders its usage in real-time applications.
Besides, imprecise image priorsmight introduce new artifacts
in reconstructions.

The third category is deep learning based LDCT recon-
struction or LDCT image processing. Recently, deep learning
methods have been widely conducted in LDCT problems and
achieved significant breakthrough. Various types of convolu-
tional neural networks (CNN) such as residual net [17]–[19],
encoder-decoder [17], [18], [20], U-Net [21] were adopted
in image domain for LDCT image denoising after recon-
struction. The networks were trained with simulated LDCT
and NDCT image pairs using L2-norm loss function. During
inference, they produced images of better quality compared
with MBIR both visually and quantitatively. The deep learn-
ing based denoising methods could also be implemented in
projection domain [22]. Kang et. al. transformed the LDCT
image denoising task to wavelet domain and developed a
wavelet domain denoising network, thus the features of noise
are easier to learn [23]. To overcome the over-smooth effect
of networks, generative adversarial training as well as per-
ceptual loss was integrated to train networks and the texture
information was restored better [24], [25]. In recent works,
deep learning was also adopted into iterative reconstruction
frame to replace parts of iterative process such as the proximal
operator or image priors for LDCT reconstruction [26]–[29],
so that the inference results were reliable and precise with
data fidelity guaranteed in inference. Despite of the powerful
ability of deep learning, one common limitation in these deep
learning approaches is the dependence on large high quality
NDCT dataset paired with LDCT inputs. While in many real
situations, large paired NDCT dataset are expensive or even
impossible to acquire. Considering the training efficiency and
largeNDCT dataset demand, transfer learning has been inves-
tigated for LDCT deep learning in recent years [30]–[33].
Transfer learning makes use of pre-trained models in the
source domain and generalizes them to new applications
in the target domain considering the domain similarity. In
situations lacking of large NDCT dataset, Meng et. al. trained
a LDCT denosing network with 848 paired medium-dose CT
image labels firstly. The pre-trained network combined with

an additional simple CNN network was further fine-tuned
with 200 high-dose CT image labels [32]. Shan et. al. pro-
posed a transfer learning framework for LDCT denosing
based on basic CNN units. The CNN units pre-trained on
Mayo LDCT dataset can be easily transferred toMGHLDCT
dataset covering different LDCT dose–level by combining
the CNN units linearly. During the transfer learning process,
only one slice from each dose-level was used [33]. Transfer
learning reduces the NDCT dataset demand, however most
LDCT transfer learning methods still work in a supervised
manner with ground-truth label needed.

In this work, we proposed a model-based deep learning
(MBDL) method for LDCT reconstruction network train-
ing based on Bayesian theory. It requires no ground-truth
information. The network can be directly trained with LDCT
projection data only. In situations with a small paired
NDCT dataset available, the MBDL can easily integrate the
NDCT dataset and further improve reconstruction perfor-
mance through semi-supervised training.

II. METHODS
In this section, all vectors and matrixes are denoted with bold
symbols and variables are denoted with italics lower-case
symbols.

A. MAXIMUM A POSTERIOR (MAP) ESTIMATION FOR
LDCT
The primary concern of LDCT unsupervised training is to
find an appropriate loss function without NDCT images.
In MBDL, we use the idea of MAP estimation for network
training. In this subsection, we briefly review the basic theory
of MAP estimation for LDCT.

In monoenergetic CT imaging, the relationship between
projection data and attenuation coefficient map can be mod-
eled linearly as Eq. 1.

p = Hsysµ+ N, s.t. µ ∈ f (1)

Here, p = {p1, p2, . . . , pM} ∈ RM denotes the acquired
projection data along all the X-ray paths, Hsys ∈ RM×N the
system matrix measuring the projection integral contribution
from each pixel in the attenuation map, µ ∈ RN the atten-
uation coefficient vector at each pixel in discrete model, N
the zero-mean noise, f the feasible space of natural objects.
X-ray photons pass through scanned objects randomly in
approximate Poisson distribution and the fixed level elec-
tronic noise also influences the acquired signal [34], [35].

The essential idea of MAP estimation is to reconstruct
images with the maximum posterior observing projection
data p [14], [36].

µ̂ = argmax
µ≥0

Prob (µ|p) = argmax
µ≥0

Prob (p|µ)Prob (µ)
Prob (p)

(2)

With negative-log-transformation, the posterior probability is
transformed into an additive format loss function with the
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FIGURE 1. Model-based deep learning reconstruction network and its semi-supervised extension.

constant term Prob (p) ignored:

µ̂ = argmin
µ≥0

ψ (µ, p) ≡ argmin
µ≥0

ϕf (µ,p)+ λϕp (µ) (3)

Here, ψ (µ,p) = −lnProb
(
µ|p

)
denotes the MAP loss

function. ϕf (µ,p) = −lnProb (p|µ) denotes the data fidelity
term based on the distribution of p conditioned on µ

after negative-log-transformation that measures the corre-
spondence between a projection data and a reconstruction
image. λϕp (µ) = −lnProb (µ) denotes the image prior
term based on the prior distribution of µ after negative-log-
transformation that measures the rationality of a reconstruc-
tion. Here λ is a hyper-parameter adjusting the strength of
prior term in implementation. Eq. 3 forms the basic optimiza-
tion problem of MAP estimation.

Although the distribution of N could be complicate, mul-
tiple studies have shown that it is reasonable to treat N as
Gaussian distributed with its variance determined by sig-
nal [8], [37]. If the noise is considered to be Gaussian,
ϕf (µ,p) is a weighted least square:

ϕf (µ) =
(
p−Hsysµ

)T
6−1

(
p−Hsysµ

)
(4)

Here, 6 is diagonal in case of independent noise in p with its
diagonal elements corresponding to the element-wise noise
variances.

The choices for the image priors are flexible, such as
TV, none-local mean (NLM), MRF, low-rank and dictionary
priors [10]–[16]. The estimation results highly depend on the
choices of image priors. Here, for convenience, we adopt
NLM as the image prior in our experiments. The method
can be extended to other priors or a combination of multiple
priors.

NLM is one of the commonly used manually designed
image priors for LDCT reconstruction [10], [13]. It adopts an

adaptive filtering strategy based on the assumption that two
pixels are likely to come from the same type of tissues when
the neighborhood patches of the two pixels are similar. NLM
assigns different penalties on the difference of the two pixels
according to the similarity of their neighborhood patches. The
L1-norm NLM loss function is calculated as:

ϕNLM(µ) =
∑
i

∑
i′∈N (i)

wii′ |µi − µi′ | (5)

Here, N (i) denotes the neighboring pixels of i within a
searching window and wii′ denotes the weight of similarity
computed from:

wii′ =
exp(−||5(µi)−5(µi′ )||22,a/h)∑

j∈N (i)
exp(−||5(µi)−5(µj)||22,a/h)

(6)

Here, 5(·) denotes a patch extractor, || · ||2,a the L2-norm
distance with a Gaussian kernel a weighting the position of
each pixels in a patch and h a normalization parameter. With
adaptive weighting, NLM can preserve structures fairly well
and reduce noise significantly.

B. LDCT RECONSTRUCTION NETWORK ARCHITECTURE
AND NETWORK TRAINING
1) ARCHITECTURE OF RECONSTRUCTION NETWORK
We use a general operator � to denote a reconstruction
process for LDCT, i.e. µ ≡ �(p). In theory, � shall be
the inverse operator of the forward-projection process mod-
elled as Eq. 1.While the function � is complicate, we can
use a deep neural network to approximate �. In this work,
we adopted a three-block network for LDCT reconstruction
in an end-to-end mode with filtered backprojection (FBP)
reconstruction integrated in the network [38], [39].
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The overall network architecture is displayed in the blue
dotted box in Fig. 1. A projection block reduces the noise
in projection domain firstly. It takes noisy projection data as
input and gives an estimation of noise reduced projection.
We take the U-Net (shown in Fig. 3) as the backbone of
this block because it has the advantage in catching both
global features and local image details and it has achieved
significant success in medical imaging processing [21], [40].
Next, a domain-transform block transfers projection domain
data into image domain to form a preliminary reconstruc-
tion image. The domain-transform block is in matrix for-
mat that is equivalent to FBP reconstruction operator for
2D case. For fan-beam CT, the domain-transform block
is consisted of three layers with frozen matrixes: diago-
nal matrix W for weighting, matrix F for filtration and
weighted-back-projection matrixHT

W as shown in Fig. 2. The
reconstruction process of the domain-transform block can be
formulated as:

µ̃ = HT
wFWp̃ (7)

Here, µ̃ denotes the output of the domain-transform block,
p̃ the estimated projection from projection block. The three
matrixes are calculated based on the FBP formula and are
frozen during training. The back-propagating gradients can
pass through the domain-transform block from image block
to projection block in training process:

∂`

∂p̃
=WFTHW

∂`

∂µ̃
(8)

Here, ` denotes a general network loss function.

FIGURE 2. Domain-transform block. Step 1: Element-wise cosine
weighting; step 2: RL filtering alone detector axis; step 3: weighted
back-projection.

Finally, an image block takes the preliminary reconstruc-
tion image from the second block as input and generates
the final reconstruction image. It optimizes the preliminary
reconstruction image to reduce artifacts and further restore
structures. The image block is also consisted of a five-stage
U-Net (same as the projection block) in Fig. 3 except for
the different dimensions in the height and width (H and W
in Fig. 3).

In all, the reconstruction can be denoted as µ̂ ≡

�Recon (p, θRecon) with �Recon denoting the network opera-
tor, θRecon the network parameter set, and µ̂ is the output of
the whole network, i.e. reconstruction image.

2) MODEL-BASED TRAINING OF RECONSTRUCTION
NETWORK
In supervised training, all the LDCT projections have corre-
sponding NDCT image labels (or ground-truth labels). Thus,
a network operator is optimized to minimize the distances
such as L2-norm distance between the reconstruction images
and the labels, i.e. the parameters of the network are tuned to
minimize the distance:

�̂ = argmin
�

∑
i=1:N

D
(
�(pi) ,µi

)
/N⇒ θ̂Recon

= argmin
θRecon

∑
i=1:N

D
(
�Recon (pi, θRecon) ,µi

)
/N (9)

Here, θ̂Recon denotes the optimal network parameter set,
D (•, •) a distance measurement between two images, N the
total number of training pairs in the training set indexed
by i. However, in some situations paired NDCT images
(µi in Eq. 9) are not available. For example, scanning a
patient with both NDCT and LDCT protocols is not allowed
considering the radiation dose in clinical practice. Hence,
a new loss function other than Eq. 9 is needed. Fortunately,
we can use the idea of MAP estimation in II. A. For
each observed LDCT projection data, a network based on
MAP estimation should reconstruct the corresponding image
with the maximum posterior. Thus, we optimize the net-
work parameters to reconstruct images with the maximum
value of group-wise posterior for the whole LDCT training
dataset (G-MAP). As different LDCT cases are mutually
independent, the total posterior is calculated by multi-
plying the posterior of each case in the training dataset.
After negative-log-transformation, the loss function further
becomes additive. Hence, we get:

�̂ = argmax
�

∏
i=1:N

Prob (� (pi) |pi)⇒ θ̂Recon

= argmax
θRecon

∏
i=1:N

Prob (�Recon (pi, θRecon) |pi)

=
−ln argmin

θRecon

∑
i=1:N

9 (�Recon (pi, θRecon) ,pi)/N (10)

Here,9 is the sameMAP loss function as that in Eq. 3. Thus,
a group of the MAP loss function is used to train the net-
work with no label required, i.e. in an unsupervised manner.
We refer this method as MBDL-US. In Fig. 1, the blue arrows
denote forward-propagation (reconstruction process) while
the red arrows denote the gradients back-propagation pro-
cess. It should be noticed that, distinguishing from iterative
reconstruction, the optimization is toward network parame-
ters instead of reconstructed images.

One of the basic principles of deep learning is to extract
knowledge from large dataset and store the knowledge in
model parameters. The knowledge can be formed frommulti-
ple training routes. By introducing this strategy for construct-
ing MBDL loss functions, we can flexibly and easily extend
MBDL to integrate various data information and knowl-
edge including paired LDCT/NDCT data and non-paired
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FIGURE 3. The U-Net architecture of projection block and image block.

LDCT/NDCT (often used in adversarial training). Certainly,
the network performance can be further improved by these
extensions. We extend MBDL to semi-supervised learning
denoted as MBDL-SS as an example.

In some situations, there may be a few NDCT images
available and working as labels for corresponding LDCT pro-
jection reconstruction besides a large LDCT dataset. If with
enough labeled NDCT data, the network can be easily trained
in a supervised route and achieve good performance. How-
ever, when labeled NDCT data is not enough, the network
suffers from poor generalization during inference. By taking
advantage of the large LDCT dataset, the network can gain
more information in unsupervised training and become sta-
ble. Thus the network trained with both the labeled data in
a supervised route and un-labeled data in an unsupervised
route can achieve reliable inference performance. We adopt a
combination of the perceptual loss and the L2-norm loss for
the supervised training. The loss function for the supervised
training is:

`S = min
NP∑
i=1

[
(
||�Recon (pi, θRecon)− µi||

2
2

)
+β||ϒVGG (�Recon (pi, θRecon) , θVGG)

−ϒVGG
(
µi, θVGG

)
||
2
2]/NP (11)

Here, ϒVGG denotes the VGG network. θVGG denotes
the VGG parameters pre-trained on ImageNet, β a hyper-
parameter adjusting the importance of the perceptual loss,
NP the number of paired LDCT/NDCT data with the
subscription ‘‘P’’ denoting ‘‘paired’’. The `S part of the
network is illustrated with the box of green dash line
in Fig. 1. Combining with the unsupervised loss function

`US =
NUP∑
i=1

9 (�Recon (pi, θRecon) ,pi)/NUP for NUP the num-

ber of unpaired LDCT data (the subscription ‘‘UP’’ meaning
‘‘unpaired’’), we acquire an overall MBDL-SS optimization
problem:

θ̂Recon = argmin
θRecon

(1− γ ) `US + γ `S (12)

with γ ∈ (0, 1) being a hyper-parameter adjusting the
weighting of supervised training. Larger γ assigns more
weighting to supervised training. In implementation, with
mini-batch strategy, we can simply carry out the supervised
training route and the unsupervised training route alterna-
tively, thus the supervised training weighting γ is controlled
by supervised training frequency η indirectly. For example,
η = 0.2 means one supervised training step in each five
training steps.

During inference, LDCTprojections are fed to the network,
and reconstruction images are obtained with no iteration
needed.

III. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETTINGS
1) DATASET
We conducted our experiments based on thorax CT data from
AAPM Low Dose CT Grand Challenge. There are 5936 CT
images from 10 patients in total. Each image is of 512× 512
resolution with pixel size 1 mm2. The LDCT projections in
our experiments were simulated fromNDCT images.We first
simulated clean projections of fan-beam scanning from the
NDCT images with forward-projection. The system-matrix
was generated based on ray-tracing method [41]. In the
simulation, both the source-to-center distance and detector-
to-center distance were 600 mm. There were 640 detectors
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with bin size 2.5 mm.We set 720 views uniformly distributed
over 2π . We further generated LDCT projections by adding
Poisson noise with 5×105 incident photons per ray. In LDCT
reconstruction, we reconstructed the images of the same
resolution as the original NDCT images.

2) METHODS FOR COMPARISON
To analyze the advantages and disadvantages of MBDL,
we compared MBDL with three typical LDCT processing
methods: none-local mean filtering after LDCT FBP recon-
struction (FBP-NLM), MBIR and L2-norm supervised deep
learning for LDCT reconstruction (L2-SDL).

a: FBP-NLM
FBP-NLM is a typical LDCT analytical post-processing
method in 2D situations. First, a preliminary reconstruction
image µ̃FBP is acquired using FBP. Then the µ̃FBP is further
processed by NLM filtering to give the final reconstruction
image µ̂:

µ̂i =
∑

i′∈N (i)

wii′µ̃FBPi′ (13)

Here, µ̂i denotes the ith pixel in µ̂, µ̃FBPi′ the i′th pixel in µ̃FBP.
The weighting wii′ is computed as in Eq. 6.

b: MBIR
MBIR is a well-known reconstruction method in the field
which models the system geometry, noise model and image
prior. For each observed LDCT projection data, MBIR
estimates the reconstruction image by optimizing Eq. 3 iter-
atively using various optimization methods. In our experi-
ments, to compare with MBDL, the loss function of MBIR
was set the same as MBDL for each image. We optimized the
loss function with the Nesterov method [42]. The number of
iterations of each image was 120 to produce the best quality
images on average.

c: L2-SDL
Supervised learning with L2-norm loss function is a widely
studied and robust deep learning method for LDCT process-
ing. It generally achieves good mean square error (MSE) dur-
ing inference. For fair comparison, we used the exactly same
end-to-end network architecture as MBDL and trained it with
the loss function defined in Eq. 9, the distance function was
L2-norm: D (a,b)= ||a− b||22. In other words, the ‘‘recon-
struction network’’ (marked by the dashed blue line box
in Fig. 1) was adopted in L2-SDL so that L2-SDL andMBDL
were of exactly the same computational complexity during
inference, though they were of different network parameters
because trained by different loss functions. We would like
to point out that L2-SDL took the most information because
exact labels were used.

3) QUANTITATIVE EVALUATION
To evaluate the reconstruction results of different methods
quantitatively, we adopted root mean square error (RRMSE),

structural similarity index (SSIM) and perceptual loss for
evaluation.

a: RRMSE
The RRMSE index measures the relative L2-norm error
between estimated and reference images. Lower RRMSE
index indicates more accurate reconstruction. RRMSE is cal-
culated as:

RRMSE(µ̂,µ) =
||µ̂− µ||2

||µ||2
(14)

Here, µ̂ denotes the image reconstructed, µ the reference
image.

b: SSIM
The SSIM index measures the structural similarity between
estimated and reference images. It compares both the mean
signal value and the distribution relevance. The SSIM index
is generally calculated based on image patches instead of
the whole image. Higher SSIM index indicates more precise
structures. The SSIM index is calculated as:

SSIM(µ̂,µ) =

(
2 ¯̂µµ̄+ C1

) (
2σµ̂µ + C2

)(
¯̂µ
2
+ µ̄2

+ C1

) (
σ 2
µ̂
+ σ 2

µ + C2

) (15)

Here, ¯̂µ denotes the mean of µ̂, µ̄ the mean of µ, σµ̂µ the
covariance of µ̂ and µ, σ 2

µ̂
the variance of µ̂, σ 2

µ the variance
of µ. C1 and C2 are constants avoiding zero denominator.
In our experiments, the SSIM indexes were calculated based
on 11× 11 image patches with Gaussian distance weighting
of which the standard deviation was 1.5 [43].

c: PERCEPTUAL LOSS
The Perceptual loss is from a VGG network pre-trained on
ImageNet to simulate human vision and extract image fea-
tures for image classification [24]. It calculates the squared
L2-norm distance between the estimated image features and
the reference image features as follows:

Perceptual(µ̂,µ)=||ϒVGG
(
µ̂, θVGG

)
−ϒVGG (µ, θVGG) ||

2
2

(16)

Low perceptual loss also characterizes good preservation of
structural information. Here, the ϒVGG and θVGG are the
same as those in Eq. 11. In this work, we used the features
from the last convolutional layer of VGG-16 network.

In our experiments, the quantitative evaluations were con-
ducted for the whole test set and the mean values were
reported.

B. EXPERIMENTS OF MODEL-BASED UNSUPERVISED
DEEP LEARNING
We trained our LDCT reconstruction network with
MBDL-US as II. B. 2. The basic channels of the projection-
domain and the image-domain U-Nets were set to be 32.
We used the LDCT projection data of 5376 images from nine
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FIGURE 4. Comparison of different LDCT reconstruction methods. (a): Ground-truth, (b): LDCT FBP, (c): LDCT FBP-NLM, (d): LDCT MBIR, (e):
LDCT L2-SDL, (f): LDCT MBDL-US, (g): residual error between (b) and (a), (h): residual error between (c) and (a), (i): residual error between
(d) and (a), (j): residual error between (e) and (a), (k): residual error between (f) and (a). Display-window: Case 1, 2 [−160 HU, 340 HU],
Case 3 [−80 HU, 250 HU].

patients to train the network while the left LDCT projection
data of one patient was used to test the network. The NLM
weighting λwas 0.003 which gave the best results in terms of
RRMSE index and visually. The influences of λ was exam-
ined and discussed in III. C. No NDCT images were used
in the unsupervised training process. NDCT images were
used as the ground-truth images to validate the reconstruction
results during test.

We compared the MBDL-US reconstruction results with
FBP-NLM, MBIR and L2-SDL. Three general cases were
displayed in Fig. 4. It’s obvious that the direct FBP

reconstructions of LDCT suffered from severe streaks.
FBP-NLM reduced the streaks while causing mosaic effect.
MBIR, L2-SDL and MBDL-US all achieved significant
improvements from FBP reconstructionwith streaks removed
and structures restored greatly. The L2-SDL produced results
with clean structures and of least residual errors, which can be
viewed as the up-limit performance because ground-truth was
used in its training process. The MBDL-US reconstructed
structures better compared with MBIR. The edges of MBIR
were slightly blurred as we can see clearly in the correspond-
ing residual maps. Compared with L2-SDL, MBDL-US

159266 VOLUME 8, 2020



K. Liang et al.: Model-Based Unsupervised Deep Learning Method for LDCT Reconstruction

results were slightly noisier with streaks remained. Further
observing the detail structures in the zoom-ins of case 1,
the renal interstitium structures on kidney were contami-
nated by streak artifacts in FBP reconstruction. The MBIR,
L2-SDL and MBDL-US restored most of the renal inter-
stitium structures well. The L2-SDL results was of the lest
noise and artifacts while it lost some texture information
of soft tissue. The textures information of soft tissue was
visually realistic in MBDL-US results. In the zoom-ins of
case 2, the MBDL-US produced clear lumbar vertebrae cross
section structure, while there were small streaks in MBIR
reconstruction due to the high-attenuation of bone. In the
zoom-ins of case 3, the three dark spots denoted by the
brown arrow were severely corrupted by streak artifacts
in the FBP reconstruction. FBP-NLM and MBIR restored
them but they were over blurred. The MBDL-US produced
the most realistic structures of the dark spots.

The LDCT reconstruction results of different methods
were further evaluated quantitatively with RRMSE, SSIM
and perceptual loss. The quantification results were listed
in Table 1. In Table 1, the best results among all methods are
in red, and the best among no-ground-truth methods are in
blue. It can be seen that L2-SDL produced the best results in
terms of RRMSE, SSIM and perceptual loss, which is consis-
tent with previous study. When ground-truth images are not
available, MBDL-US becomes the best choice. It achieved
better results than MBIR but was ∼100 times faster. These
all suggest the great value and advantages of MBDL-US.

TABLE 1. Quantitative comparison of different LDCT reconstruction
methods.

C. THE INFLUENCE OF NLM WEIGHTING
The NLM weighting λ is a hyper parameter in MBDL-US.
To study the influence of λ on reconstruction and choose a
proper value, we adopted an exponential searching strategy.
We conducted the MBDL-US training with λ = 0 and λ
from 2.5 × 10−4 to 1.6 × 10−2 doubling each time. Results
suggested the proper scope for λ was between 2× 10−3 and
4×10−3. Fig. 5 plots the RRMSE and SSIM indexes versus λ
for MBDL-US results. Lowest RRMSE was achieved around
λ = 3×10−3 (4×10−3 for SSIM), hence we set λ = 3×10−3

in all other experiments.
Fig. 6 shows the zoom-ins of the right kidney structure in

the first case of Fig. 4 (denoted by a blue box) reconstructed
by MBDL-US with different λ.The valuable kidney structure
was the clearest with little streaks when λ = 3 × 10−3.
With smaller λ, there were streaks degrading image quality.
With larger λ, the edges and details were over-smoothed.

FIGURE 5. Qualitative comparison of MBDL-US results with different λ.
(a): Ground-truth, (b): LDCT FBP, (c): MBDL-US λ = 0, (d): MBDL-US
λ = 5× 10−4 (e): MBDL-USλ = 3× 10−3 (f): MBDL-US λ = 8× 10−3.
Display-window: [−80 HU, 250 HU].

Interestingly, even setting λ to 0, the network could reduce
some noise. This indicated the auxiliary denoising ability of
WLS learning.

FIGURE 6. Plots of RRMSE and SSIM versus λ for MBDL-US. Best results
were obtained at λ close to 0.003.

D. RESULTS OF DIFFERENT NOISE LEVELS
We further conducted MBDL-US under different noise levels
by adjusting incident photon number. The incident photon
number of each ray was set to be 1× 105, 2× 105, 5× 105,
1 × 106, and 2 × 106. With increasing photon numbers,
projection data become less noisy. In Fig. 7, we displayed the
reconstruction results of the first case in Fig. 4 under photon
numbers 1 × 105 and 2 × 106 for comparison. FBP recon-
struction was of very poor image quality for the high noise
case with photon number being 1× 105. FBP-NLM reduced
streaks, but detail structures were not well restored. Again,
MBIR, L2-SDL and MBDL-US achieved better results than
FBP-NLM. Compared with L2-SDL, the noise level ofMBIR
results was higher, and the low-dose streak artifacts were
not completely removed in MBDL-US results. According to
the residual images, the MBDL-US preserved the vertebra
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FIGURE 7. Comparison of different LDCT reconstruction methods under two typical noise levels. (a): Ground-truth, (b): LDCT FBP, (c): LDCT
FBP-NLM, (d): LDCT MBIR, (e): LDCT L2-SDL, (f): LDCT MBDL-US, (g): residual error between (b) and (a), (h): residual error between (c) and
(a), (i): residual error between (d) and (a), (j): residual error between (e) and (a), (k): residual error between (f) and (a). Display-window:
[−160 HU, 330 HU].

outline slightly better than MBIR. The zoom-ins of left-
kidney shows that MBDL-US gave fairly good renal inter-
stitium structures. The LDCT reconstruction task was easier
for the case of 2× 106 photons. All the methods except FBP
gave images of rather good quality. FBP-NLM result was over
blurred when checking the zoom-ins. The crevice structure
denoted with the brown arrow was restored clearly with
L2-SDL and MBDL-US, while in the MBIR reconstruction,
its upper part was fused and the crevice was shortened.

We calculated the RRMSE and SSIM indexes of the
compared methods for different noise levels. The results
were plotted in Fig. 8. In accord with the quantitative
results of III. B, the L2-SDL achieved the best results in
RRMSE and SSIM while MBDL-US was the most valuable
without ground-truth images. As photon number increased,
the SSIM indexes of different methods become closer. The
gaps between the RRMSE curves of L2-SDL and MBDL-US
suggested the potential improvement space of MBDL-US.

E. ENHANCEMENT BY MODEL-BASED SEMI-SUPERVISED
LEARNING
MBDL-US can be further improved with supervised training,
i.e. MBDL semi-supervised learning (MBDL-SS). In this

section, we examined the performance of MBDL-SS with a
small number of paired NDCT images. In this experiment,
the photon number was 5× 105, the number of training data
was still 5376, and there were 10 NDCT images from hip
paired with LDCT data. In MBDL-SS, the NLM weighting λ
in unsupervised training step was 3×10−3 the same as III. C.
We set the perceptual loss weighting β = 0.5, the supervised
training frequency η = 0.2 that gave the most valuable
clinical structures.

To illustrate the image quality enhancement from
MBDL-SS, we compared perceptual-L2 loss supervised
training based on the 10 image pairs (PL2-SDL-10),
MBDL-US, and MBDL-SS. Two representative cases were
displayed in Fig. 9. It can be observed that PL2-SDL-10
produced visually high quality images. However, due to
the small number of training data, the reconstructed detail
structures were not consistent with ground-truth as denoted
by the brown arrows in Case 1 and Case 2. These results sug-
gested the insufficient generalization ability of PL2-SDL-10.
In Case 2, with narrowed display-window, there were shadow
artifacts left on soft-tissues in the MBDL-US results as
seen in the zoom-in of Case 2. The MBDL-SS further
reduced these artifacts and noise. Moreover, we can see in
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FIGURE 8. Plots of RRMSE and SSIM versus photon number. MBDL-US
gives the close-to-supervised performance in all noise levels and better
than all conventional methods.

the residual images that less high frequency edge loss hap-
pened inMBDL-SS thanMBDL-US. These results suggested
MBDL-SS can improve the reconstructions of MBDL-US
with additional information from labeled data.

The different training methods were further evaluated
quantitatively with RRMSE, SSIM and perceptual loss,
the results were listed in Table 2. In Table 2, MBDL-SS
significantly improved the RRMSE and perceptual loss from
MBDL-US. Due to lacking of training data, PL2-SDL-10
results are of the worst RRMSE and SSIM, though the per-
ceptual loss of PL2-SDL-10 was the best. This was because
both PL2-SDL-10 and MBDL-SS was trained with the per-
ceptual loss, while the PL2-SDL-10 was trained with stronger
impact from the perceptual loss. The perceptual loss was
further generalized to test data. Based on the qualitative and
quantitative examination, MBDL-SS combined the advan-
tage of supervised training and unsupervised training. The
MBDL-US results were further enhanced byMBDL-SS, even
when the number of paired data was small.

In our experiments, the supervised training frequency η
influenced theMBDL-SS results. With a small η, the MBDL-
SS results were similar to MBDL-US.When η was close to 1,

TABLE 2. Quantitative comparison of different training methods.

the MBDL-SS results were similar to PL2-SDL-10. To deter-
mine the best frequency, we conducted grid-searching experi-
ments for η between 0 and 1. Since paired data was of a small
portion, we reduced searching intervals for η between 0 and
0.3. The plots of RRMSE and SSIM indexes versus η for
MBDL-SS was shown in Fig. 10. The best η was around 0.2.

F. ABLATION STUDY FOR NETWORK ARCHITECTURE
The LDCT reconstruction network architecture plays an
important role in both MBDL-US and MBDL-SS. In the
previous subsections, we adopted a three block reconstruction
network as presented in II. B. 1. To further demonstrate the
function of each block, we conducted an ablation study for
the reconstruction network architecture. We define the full
network as dual-domain network (DDN), the reconstruction
network with only projection block and domain-transform
block as projection-domain network (PDN), the reconstruc-
tion network with only domain-transform block and image
block as image-domain network (IDN). In fact, IDN is a
traditional FBP + U-Net network which is widely studied in
this field. The domain-transform block guaranties the recon-
struction process which cannot be removed for ablation study.

We compared the reconstruction results of the three net-
works for both MBDL-US and MBDL-SS. Two representa-
tive cases were displayed in Fig. 11. For MBDL-US, IDN
performed the worst with the smoothed streaks remained.
PDN and DDN gave visually comparable results. In the
zoom-ins of case 1, there were similar light streaks remained
in both PDN and DDN. These indicates projection block
is the core denoising block for MBDL-US. However, for
MBDL-SS, the PDN performed the worst visually with lit-
tle improvements from MBDL-US. The DDN again gave
the best results. In the zoom-ins of case 1, least artifacts
were seen in DDN results. In the zoom-ins of case 2, the
circular vascular cross section denoted by the blue box was
also restored the best with DDN, while both PDN and IDN
deformed the circular structure. From the results in different
columns, we can see that, with supervised training added,
MBDL-SS with DDN significantly improved the results of
MBDL-US with DDN in terms of denoising and structure
restoration. However, the results ofMBDL-USwith PDN and
MBDL-SS with PDN were similar with little improvements.
This indicates the supervised training enhancement is mostly
from the image-domain block.

Quantitative results of RRMSE, SSIM, and perceptual loss
were listed in Table 3. They agreed with visual inspection.
DDN achieved the best RRMSE, SSIM and perceptual loss
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FIGURE 9. Comparison of different training methods. (a): Ground-truth, (b): LDCT FBP, (c): LDCT PL2-SDL-10, (d):
LDCT MBDL-US, (e): LDCT MBDL-SS, (f): residual error between (b) and (a), (g): residual error between (c) and (a),
(h): residual error between (d) and (a), (i): residual error between (e) and (a). Display window: Case 1 [−160 HU,
340 HU], Case 2 [−80 HU, 250 HU].

FIGURE 10. Plots of RRMSE and SSIM versus η for MBDL-SS. Best results
were obtained at η close to 0.2.

in both MBDL-US and MBDL-SS which indicates the effec-
tiveness of the DDN reconstruction network by concatenat-
ing both projection-domain processing and image-domain
processing. The PDN network only achieved slightly worse
quantitative results compared with DDN which indicated the
projection block was the core block removing noise while
the image block could further enhance the performance.

TABLE 3. Quantitative comparison of different network architectures.

In MBDL-SS, the enhancement of image block was more
obvious than that in MBDL-US.

IV. DISCUSSION
In this work, we proposed a new method of training
LDCT reconstruction network based on a G-MAP loss
function. In situations with LDCT data only, MBDL-US
achieved better results both qualitatively and quantitatively
than MBIR with the same MAP loss function, while the
reconstruction time was percentile. It’s worth noting that,
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FIGURE 11. Ablation study with three different network architectures. (a): Ground-truth, (b):
LDCT FBP, (c): MBDL-US with PDN, (d): MBDL-US with IDN, (e): MBDL-US with DDN, (f):
MBDL-SS with PDN, (g): MBDL-SS with IDN, (h): MBDL-SS with DDN. Display window:
[−80 HU, 150 HU].

although MBDL-US and MBIR had the same loss func-
tion, MBDL-US produced slightly better results. This is
because that MBDL-US benefits from the restriction of a
large number of samples, while MBIR treated each sample
independently.

The MBDL is a flexible frame which can integrate differ-
ent training routes. In this work, by combining MBDL-US
with supervised training, i.e. MBDL-SS, we achieved further
improvements. It is also flexible and robust to incorporate
existing deep learning strategies and other knowledge, such
as additional GAN loss in case of unpaired LDCT and NDCT
data available. Besides, the MBDL provides an easy way to
model imaging physics, signal statistics as well as handcraft
prior information, and feeds the knowledge into a deep learn-
ing framework. This gives us a great potential to combine
the advantages of conventional methods and deep learning
methods.

In this work, we only conducted experiments based on
an NLM prior. More well-known and valuable handcraft
image priors can also be integrated. MBDL can also be tai-
lored for other reconstruction problems such as few-view and
limited-view CT reconstructions. We are to further explore
the potential of this MBDL frame for different ill-posed
problems, different imaging modality, and test it in wide
application scenarios.

In addition to the proposed MBDL method, there are
also other deep learning methods applied for LDCT denois-
ing network training without NDCT dataset. For example,
Noise2Noise [44] uses noisy images as labels to train a
denoising network conditioned on that labels and inputs
are pairs of two independent noisy realizations. However,
in clinical CT applications, two independent realizations of
each patient are hard to acquire. Based on Noise2Noise,
several self-supervised denoising methods have also been
explored to avoid the demand for two noisy realizations
of each image [45]–[47]. In Noise2Void, the central pix-
els are predicted from neighboring pixels taking the noisy
central pixel value as label [45]. Under the assumption
of pixel-independent noise, the noise in neighboring patch
inputs is independent with the noise in central pixel labels,
thus the network can be trained in a self-supervised man-
ner as Noise2Noise. Similar blind-spot strategy is also used
in [46]. In Noise2Self, the mapping from neighboring pixels
to central pixel is extended to the concept of J-invariant
functions and the implementation of self-supervised image
denoising becomes more flexible assuming that the noise
is pixel-independent [47]. These self-supervised methods
could be useful for LDCT projection denoising but can
hardly be applied to image-domain LDCT denoising cur-
rently because noise in reconstruction images is spatially
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correlated. Compared with the above methods, MBDL is eas-
ily implementable in wide circumstances and can be extended
to other ill-posed CT applications such as sparse-view CT
and limited-angle CT with problem-specific G-MAP loss
function designs.

In situations of only a small number of NDCT images
paired with LDCT data available, it is also possible to
fine-tune a pre-trained denoising network to obtain reason-
able results, i.e. transfer learning. As most of the parame-
ters pre-trained in source domain are frozen or constrained,
the NDCT dataset demand can be reduced greatly in
fine-tune. In practice, the transfer learning performance heav-
ily relies on the available pre-trained models and the dis-
tance between source and target domains. Compared with
our MBDL-SS, transfer learning acquires additional knowl-
edge from pre-trained models, while MBDL-SS acquires
additional knowledge from the MBDL-US training. The
two sources of knowledge compensate for the limitation
on NDCT data information. We believe these two types of
knowledge can be combined together in future works, thus
the LDCT denoising results can be further improved.
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