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ABSTRACT The access to and sharing of medical image data is essential to accelerate the research progress
of complex diseases and sudden disease outbreaks. Multicenter image data is collected from different medical
institutions, and the contrast and brightness of the images are significantly different, making it difficult to
use the images directly. Herein, we introduce a standardized method based on magnetic resonance imaging,
referred to as Histogram specification—grid search (HS—GS), which is mainly used to eliminate differences
in image contrast and brightness. A Gaussian probability density function with adjustable parameters is used
to generate the cumulative distribution function, and the transfer function required for the HS mapping is
constructed to obtain standardized image sets based on the controllable parameters. The image sets are used
to perform the GS task of radiomics classification to find the optimal controllable parameter combination and
classification results, and then obtain the optimal standardized image sets. We used HS—GS to test and verify
the predictive ability of the standardized mixed image sets for glioma grading, and compared it with existing
methods. The experiments indicate that the standardized image sets generated by the HS—GS algorithm retain
excellent stability after mixing and also show excellent classification performance. This novel image set
standardization technique has proven to be a promising solution for integration into medical expert systems.

INDEX TERMS Data standardization, histogram specification, grid search, MRI, radiomics.

I. INTRODUCTION

Although pathological examination is considered as the
gold standard for diagnosis, it is often obtained too late [1].
Medical imaging systems can acquire the status of patients’
lesions earlier, which plays a key role in clinical practice [2].
In addition, the imaging system can accurately describe
anatomical and physiological characteristics in a nearly non-
invasive manner, thereby allowing clinicians to better under-
stand complex or rare diseases. Different medical imaging
technologies, such as magnetic resonance imaging (MRI) and
computer tomography (CT), can obtain different types of
medical images. The images typically contain a significant
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amount of information; however, the information obtained
by relying on the clinician’s observation is minimal [3].
In recent years, the analysis of big data in medicine using
artificial intelligence (Al) has received increasing attention,
particularly with research on medical images becoming the
focus of attention [4]-[7]. Compared with other modalities
of medical data, medical images contain rich information
and are widely used. Furthermore, as the medical community
has found that using machine learning methods (radiomics
[8]-[10]) to process medical image data shows great poten-
tial, computer-aided analysis has expanded to cover diseases
of various organs throughout the body, and some studies have
achieved significant results. However, this area is constrained
by the scale of data. By relying only on image data from
a single source for analysis, the understanding of complex
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diseases becomes highly limited. Therefore, it is crucial to
merge data from different medical institutions to form a larger
data volume.

MRI is the most important method for obtaining soft tissue
imaging, and also the main method for early detection of most
complex diseases [11]. Compared with CT, high-field inten-
sity MRI (T = 3.0) can provide higher resolution and contrast
scan images and performs better in tumor detection and diag-
nosis, especially in determining the degree of tumor invasion.
MRI is the main source of big medical data [12]. In fact,
different medical institutions usually use magnetic resonance
equipment provided by different manufacturers, and the
parameters of the equipment configuration are also different;
hence, almost all the collected magnetic resonance data are
unique [13]. Even if data sharing is achieved, the merged
image data will have large internal differences, and these data
can still be regarded as individual “data islands.” Moreover,
these differences will not only affect the clinician’s subjective
judgment of the image but also affect the parameter measure-
ment during data post-processing. The most serious result is
misdiagnosis. Therefore, it is crucial to eliminate the internal
differences of data and realize data standardization [14], [15].
The advantages are not limited to revealing certain features
between medical images but include providing doctors with
richer and more valuable information, helping them identify,
diagnose and treat abnormalities more effectively. Moreover,
it can be used to build a unified standard large-scale medical
image database in order to gain a deeper understanding of
the imaging and pathological features of complex and rare
diseases [16].

Image enhancement technology is generally used to
improve the visual effect of images and improve the image
quality [17]. Compared with the original image, the enhanced
image can describe more image details and obtain previously
hidden or ignored features. In the field of medical imaging,
most enhancement techniques are used for image preprocess-
ing, providing clinicians with clearer images, and also provid-
ing high-quality original images for computer-aided analysis
systems. HS is a classic image enhancement algorithm [18].
Through the transfer function, it can transform the input
original image into an image that better conforms to peo-
ple’s subjective expectations. HS can also be used for image
standardization. First, the clinician manually selects a set of
representative images from the data set and constructs a trans-
fer function based on this set of representative images [19].
All data sets are subjected to histogram matching according
to the transfer function, and the images have a highly similar
histogram distribution. Although this method is simple and
effective, the manual selection of representative images by
clinicians involves significant subjectivity, which can cause
some uncertainty. In addition, there is no guarantee that
the selected representative image is “‘standard,” or that the
transformed image is optimal. Introducing relevant evaluation
indexes to evaluate the quality of reconstructed images is the
most effective solution in this regard [20]. However, there is
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currently no unified theory of image quality measurement to
define and evaluate the effect of image standardization.

In this paper we propose a standardized method for
magnetic resonance images, referred to as HS—GS, which
is mainly used for multi-center magnetic resonance data.
We introduce a Gaussian function with adjustable parame-
ters as the representative image in the HS. On this basis,
the cumulative distribution function (CDF) is calculated to
construct the transfer function in the HS, thus guiding the
histogram mapping. In the next step, HS—GS is applied to
clinical problems involving MRI, namely, MRI-based diag-
nosis of glioma grades. Since the verification mode of result
feedback often requires significant human—computer interac-
tion, we develop a dedicated GS script. The grading results
predicted by radiomics are used as indicators to evaluate the
standardization results of images, and the parameters in the
HS can be adjusted in order to find the best grading results
and best standardized images.

The main contributions of HS—-GS can be briefly sum-
marized as follows: (1) In the HS, the representative image
used to construct the CDF is replaced by the Gaussian
function, thus replacing the clinician’s selection. We have
effectively avoided errors caused by doctors’ subjective judg-
ments, and, simultaneously, added parameters that can be
flexibly adjusted according to specific clinical application
scenarios and data to achieve a quantitative description of
image standardization. (2) Matching GS strategies to reduce
unnecessary human—computer interaction and realize search
automation are provided.

The structure of this manuscript is as follows: Section II
outlines application scenarios along with related literature
and existing methods; Section III describes the principles of
HS-GS data normalization and the automated GS process
for data normalization. The experimental data and design are
described in Section IV. Section V presents the experimental
results along with the discussion. Finally, Section VI reports
the concluding observations.

Il. RELATED WORK

It is challenging for a single medical institution to obtain
large-scale data [21]. When using a computer to analyze large
data for complex or rare diseases, it is often impossible to
find laws or obtain general conclusions. Therefore, the most
effective solution is to integrate data from multiple medi-
cal institutions to form a larger multi-center data set [22].
However, the directly merged multi-center data set has many
challenges. Owing to the differences in image acquisition
equipment, even under the same acquisition protocol, it is
not guaranteed to obtain consistent image characteristics;
therefore, it is difficult to analyze how the image acquisi-
tion parameters affect the generated image [23]. In addition,
inconsistency is also a serious problem when using multi-
center data. Specifically, the data format is not uniform,
the image size is inconsistent, and the contrast and bright-
ness of different images vary significantly. At present, most
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FIGURE 1. HS-BC workflow.

medical image analyses and research have focused on multi-
center issues, emphasizing that the data used should have a
uniform data format and image size, while the differences
in image contrast and brightness are largely ignored. It has
been proven that multi-center MRI research has more statis-
tical significance than a single medical institution. However,
the huge difference in contrast and brightness in many images
is likely to reduce or completely offset the statistical advan-
tages of multi-center data.

The adjustment of image brightness and contrast belongs
to the problem of image enhancement. As a typical spatial
domain calculation method and image enhancement technol-
ogy, HS can effectively solve the problem of image contrast
and brightness difference [17], [24], [25]. Histogram tech-
nology is a relatively old technology. Following continuous
improvement, researchers have developed a series of methods
for solving different problems. From the conventional to the
dynamic HS, the features of the input image can be preserved
intact [18], [26]. On this basis, the precise HS is further
proposed. This method can produce almost strict ordering
of the pixels of the input image and assign it to the desired
grayscale [27]. In addition, the local histogram is normal-
ized, and the global histogram is applied to the segmented
local image blocks to perform image enhancement [28], [29].
However, the local HS is an operation that relies on slid-
ing windows, and the additional generation of the checker-
board effect is still an urgent problem to be solved [30].
In recent years, deep learning techniques have also been
used to solve image enhancement problems. For example,
images under weak lights usually contain more noise and
have extremely low contrast. The LL-RefineNet network
can extract deep-level global features, thereby improving the
original image contrast and optimizing training loss to reduce
mixed noise [31]. The methods listed above focus on the
field of image enhancement. Of course, the standardization of
medical images has gradually been noticed. Being influenced
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by the operation of clinical technicians and ultrasonic testing
equipment, the intensity of ultrasound images often changes,
which affects the quantitative measurement and calculation
of images. A histogram specification mechanism based on
constructed CDF is used, which can retain the distribution
of echo texture in ultrasound images, and does not damage
the reflectivity of the organ [32]. Data standardization has
additional requirements compared to image enhancement,
as the standardization of medical images is different from
the specific enhancement of natural images. The standard-
ization operation emphasizes the batch processing of the
entire data set. It is necessary to ensure that the image has
a consistent gray space and approximate gray distribution.
In addition, the normalized image needs to be competent
for each data analysis task. The main novelty of HS-GS is
that it is a method that can flexibly adjust the degree of data
standardization. It uses a Gaussian function with adjustable
parameters to indirectly control the degree of data standard-
ization, and uses a dedicated GS to find the target solution
distribution and thereafter the desired standardized image.

ill. METHODOLOGY

HS-GS is a global enhancement technology which can per-
form uniform transmission and mapping of the contrast and
brightness of all images in the image data set. This batch oper-
ation can ensure that the contrast and brightness of all images
maintain an approximate dynamic range, thereby achieving
image standardization. Generally, a complete magnetic reso-
nance image is composed of 2D slices, and if the pixel-level
operation is performed, the desired result cannot be obtained.
Therefore, HS—GS performs batch processing in units of 2D
slices (i.e., performs a mapping operation on slices of the
same layer of magnetic resonance). Figure 1 describes the
HS-GS workflow. HS—GS introduces a Gaussian probability
density function with two controllable parameters, constructs
a transfer function through the CDF obtained by calculation,
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and guides the histogram to specify the map by the transfer
function, thereby obtaining a standardized image. Since the
parameters are discrete values that lack constraints, in theory,
we may generate a large number of normalized images where
most of the images do not meet our requirements. Therefore,
we use the generated image to perform the task of radiomics
classification, use the area under the receiver operating char-
acteristic curve (AUC) as the evaluation index for classifica-
tion, filter the combination of controllable parameters with
high AUC scores, and obtain the optimal labeled image.

A. HISTOGRAM SPECIFICATION BASED ON
CONTROLLABLE CONTRAST AND BRIGHTNESS
In this module, HS-GS is used to generate standardized
medical images. Suppose the original image set is X/,
X' = {X1,Xa,...,X,}. Bach image in the dataset is
used as the input. Let the input image be defined as
X = ()1 <i<M,1<j<N},X € X, and be
assumed to have a dynamic range [Xin, Xmax] (i.€. x (i,j) €
[Xmins Xmax])- In addition, the generated image is defined as
Y={Y(Gj )|l <i<M,1<j<N}. The dataset of gener-
ated imagesis Y’ = {Y1, Y2,..., YV, },Y € Y.

Let x = {x1,x2,...,xr} be the ordering of k different
gray levels of the input image X, and satisfy x; < x <

- < Xk, X1 = Xmin> Xk = Xmax -

HS-BC defines histograms to perform the prescribed
operations:

He={hmm=1,...,k} €))

where h, (m) € T, and

scr (m)
Zf:l ser (xg)

scr (m) represents the number of pixels with gray level m
in the image.

As the image histograms are samples of the probabil-

ity distribution function, the cumulative distribution can be
written as

hy (m) = @

Pr={P mym=1,...,k} 3)
Poim) =" () 4)

In addition, based on the image histogram, the average gray
value of the image can be defined as

a=Y" i () )

Concurrently, the standard deviation of the gray values of
the image can be defined as:

k I
u= [Zi_l (i = a)” hy (x,»)} ©)

Unlike the conventional histogram specification operation,
we no longer use the representative image manually selected
by the clinician to construct the transfer function. We use
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the probability density function of the Gaussian distribution
based on the discrete value as the initial function. The CDF
calculated by the initial function is used for the construction
transfer function, and the mean value and standard deviation
of the gray value of the image are introduced. Let y =
{¥1,¥2,...,y} be the order of / different gray levels of the
output image Y, and satisfy y1 < y2 < ... < Y,Y1 = Ymin»
YI = Ymax- The probability density function of the Gaussian
distribution can be written as

_ (m—kja)?
2(k2u)2

1

H =h (m) = We

Here, kja and kyu represent the mean and standard devia-

tion of this Gaussian distribution, respectively, which can in

turn be determined by the mean a and standard deviation u of

the gray values of the input histogram and the corresponding

positive real numbers k; and k». Similarly, the CDF can be
written as

m=1,...,1 (7

Pr={P(m)m=1,...,1} ®)
P(m) =" hi () ©)

After obtaining the CDFs of the input and the output
images using (4) and (9), respectively, we construct the
transfer function required for histogram mapping. The group
mapping rule (GML) in the histogram specification maps the
input grayscale x;, to the output gray scale y,,. Let an integer
function I (x),x = 1,..., L, satisfy 0 < I(1) < ... <
I (1) < Xpay; thus, I (x) is determined by minimizing (10).

argmin |Px [I (m') — P (m")]] (10)

By (10), each gray level of the input image is mapped
to the corresponding gray level in the output image. The
corresponding algorithm is provided in Algorithm 1.

Algorithm 1 Algorithm 1 HS-BC
Input: input image X, parameters ki, k2,
Output: output image Y
1: Initialize expectation a, standard deviation u, image
histogram £, Gaussian distribution H, enhanced image
Y, pixel intensity m.
: Compute the image histogram 4 by (2)
: Compute expectation a by (5)
: Compute standard deviation u by (6)
: Compute the Gaussian distribution H by (7)
Compute the cumulative distribution function
Py (m) of histogram of input image by (4)
7: Compute the cumulative distribution function Py (m’)
of the Gaussian distribution by (9)
8: Compute and determine the integer function 7 (x)
by (10)
9: Perform histogram mapping according to GML

U A W
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TABLE 1. Image acquisition equipment and main parameter statistics.

Num Manufacturer Magnetic Field Model Slice Thickness Slice Interval Resolution Voxel Size

1 SISMENS 3T Verio 5 mm 1.5 mm 320%x224x20 0.6875/0.9213
2 SISMENS 3T Skyra 5 mm 1.75 mm 288x216x20  0.7986/1.0648
3 SISMENS 3T TrioTim 5 mm 1.5 mm 320x224x22  0.6875/0.8594
4 SISMENS 3T Prisma 5 mm 1.75 mm 288x216x20 0.7986/1.0648
5 SISMENS 15T Avanto 5 mm 1.5 mm 320%x256x20 0.7188/0.7304
6 GE 3T Signa HDxt 5 mm 2 mm 320x224x18  0.7500/0.8036
7 GE 3T Discovery MR750 5 mm 1.5 mm 256x256x20 0.7986/1.0648
8 PHILIPS 3T Ingenia 6 mm 1 mm 320%x208x18 0.7187/0.8750

B. GS STRATEGY

We have developed a dedicated GS script for screening opti-
mal parameters and correspondingly generated standardized
image datasets. The GS is based on the clinical application of
standardized images. Specifically, we can define search tasks
and select evaluation indicators according to clinical needs.
In this paper, we define the classification of the imaging group
as the search task. Since multicenter datasets typically have
skewed data, AUC is used instead of Accuracy (ACC) as the
evaluation index. If there are no constraints, the GS traverses
all nodes in the search domain. In fact, the search task is
an optimization problem. Unconstrained traversal only adds
additional computing tasks and has extremely low efficiency.
Therefore, we set the search threshold T, which terminates
the process of AUC lower than T during the search process.
The search process can be described as: (1) Divide the search
grid with kj as the ordinate and &, as the abscissa, initialize
ki, k>, and step size. First, perform a bidirectional search
along the positive and negative directions of k;. When the
AUC is lower than the threshold T, the search process in
this direction is terminated. (2) When the processes on ki
are stopped, the search is performed along the positive and
negative directions of k. Similarly, the search process stops
when the AUC is below the threshold T.

IV. EXPERIMENTS

A. DATASET

The data set used in the experiment contains multi-center
MRI images of gliomas. The data set consists of two parts.
The first part is the public dataset BraTS2017 [33], [34],
which consists of MRI images of 285 patients from 19 medi-
cal institutions, including 210 high-grade (II1, IV) and 75 low-
grade (I, IT) glioma patients. The other part of the data set
is from the Department of Magnetic Resonance of the First
Affiliated Hospital of Zhengzhou University, called GI2019.
GI2019 is a retrospective of 408 cases diagnosed by the
pathology department, including 302 high-grade (III, IV) and
106 low-grade (I, IT) glioma patients. It should be empha-
sized that GI2019 is collected using different models of
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different manufacturers, including five SIEMENS devices
(one 1.5T device, four 3T devices), two GE devices (two
3T devices), and one PHILIPS piece of equipment (one 3T
device). Table 1 lists the MRI equipment used for data acqui-
sition and the main information of the equipment, including
manufacturer, model, magnetic field strength, slice thickness,
and slice interval. The two-part data set includes a total
of 693 patients. BraTS2017 does not contain any privacy
information, and GI2019 also deletes all privacy information
during retrospective data collection. We used axial images of
contrast-enhanced T1 weighted imaging (CET1) for process-
ing and analysis.

B. PREPROCESSING

Prior to data processing, the necessary preprocessing steps
were performed to eliminate differences in the data formats:
(1) FSL (http://www.itksnap.org) was used to perform skull
dissection on the GI2019 patient images. (2) The region of
interest (ROI) in the GI2019 images was defined as the largest
abnormal signal area in the tumor, which was manually delin-
eated by two experienced radiologists, using the ITK-SNAP
(http://www.itksnap.org) for image segmentation [35].
(3) The shortest distance interpolation resampling technique
was used to perform proportional resampling on each data
sample. In addition, each data sample had a uniform size
of 240 x 240 x 155 voxels, with a uniform layer thickness
of 1 mm.

We define the classification of radiomics as the task of GS.
Here we list the radiomics process and the parameters of the
key steps. Fig. 2 shows the process of radiomics built into
GS. The standardized glioma images were used as inputs
to predict the grade of glioma. The ratio of training set
to test set is set to 4:1. In the feature extraction process,
pyradiomics [36] was used to extract 558 features, includ-
ing first-order statistical features, spatial geometric features,
texture features, and wavelet features. The selected feature
dimensionality reduction methods include principal compo-
nent analysis (PCA), kernel principal component analysis
(KPCA). In the feature selection method, the radiological
features are selected by the minimum redundancy maximum
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FIGURE 2. Flow chart of glioma grading by our method.

correlation (MRMR) algorithm, which ranks the features
according to importance based on mutual information. Next,
a recursive feature elimination (RFE) algorithm is used to
select the features by recursively considering fewer and fewer
feature sets. The following classifiers were trained, namely
the decision tree (DT), random forest (RF), bagging (BAG),
binary search tree (BST), naive Bayes (NB), multi-layer
perception (MLP), support vector machine (SVM), logistic
regression (LR), and k-nearest neighbor (KNN) algorithms.
We combined different methods of feature dimensionality
reduction, feature selection and classifier and obtained the
optimal classification results.

C. EXPERIMENTAL STEPS

Multiple experiments were set up to test the effect of HS-BC
on data normalization and the scalability of the proposed
algorithm.

Experiment (1): After GI2019 and BraTS2017 were pro-
cessed using HS-BC to generate the normalized images,
these images were divided into the training and test sets for
radiomics classification tasks. Datasets that were not pro-
cessed using HS—BC were used for comparing the results.

Experiment (2): After GI2019 and BraTS2017 were pro-
cessed using HS—BC to generate the normalized images,
these images were used as training test sets for radiomics
classification tasks. Datasets that were not processed using
HS-BC were used for comparing the results.

Experiment (3): After the GI2019 and BraTS2017 datasets
were processed using HS-BC to generate the normalized
images, these images were all mixed and then divided into
the training and test sets for radiomics classification tasks.
The mixed dataset without HS-BC processing was used to
compare the results.

Experiment (4): We add the comparison method of experi-
ment (3). Radiologist selection and use the classic histogram
specification [19], and we also compare the performance of
deep learning for glioma grading [37], [38].

VOLUME 8, 2020

D. EVALUATION METRICS

In addition to the AUC, we also counted ACC, sensitivity
(Sens), and specificity (Spec) to evaluate the experimental
results. ACC refers to the proximity of the measured value
to the actual value. In medical statistics, Sens and Spec are
common objective evaluation indicators. Sens describes the
ratio of the positive samples identified in all the positive sam-
ples, whereas Spec indicates the proportion of the negative
samples identified in all the negative samples. The calculation
formulas for the above three evaluation indicators are as
follows:

ACC = TP+ 1IN /TP + FN + FP + TN (11)
Sens = TP /TP + FN (12)
Spec = TN /FP + TN (13)

TP, FP, TN, and FN stand for true positive, false positive,
true negative, and false negative, respectively. True positive
indicates that high-grade glioma cases are correctly judged as
high-grade gliomas. False positive indicates that high-grade
glioma cases are wrongly judged as low-grade gliomas. True
negative indicates that low-grade glioma cases are correctly
judged as low-grade gliomas. False negatives indicates that
low-grade glioma cases are wrongly judged as high-grade
gliomas.

V. RESULTS AND DISCUSSION

In order to more intuitively compare the effect of the image
before and after standardization, Fig. 3 shows the orig-
inal image after only preprocessing and the normalized
image after HS—GS processing. The difference in contrast
and brightness of different original images can be clearly
observed in the figure. When processed by the HS—-GS algo-
rithm, these differences are hardly observed at the image
level, and the grayscale of different standardized images can
be kept in a similar dynamic range.
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(b)

FIGURE 3. (a) Original image that has only been preprocessed. (b) Image
generated after HS-BC processing. Here, a; and b, represent the same
slice of the same sample, and 1, 2, ..., 12 represent different samples.

Fig. 4 depicts the GS process of the image collections of
GI2019 and BraTS2017 used in experiment (3). These images
have been processed by the HS—GS algorithm, and the two
data sets have all been mixed together (refer to TABLE 3-3.2).
The search results show the AUC obtained by performing
the radiomics classification task, and only display the AUC
above the search threshold. Each rectangle represents a set
of k1 and k> values, and the color of the gradient indicates
the level of AUC. We initialize T = 0.080, k; = 0.5, and
ky = 0.5. The AUC is divided into columns, and the max-
imum AUC obtained by the current column is displayed in
the corresponding rectangle. We can easily obtain the highest
AUC and the corresponding k1 and kp, which means that we
can also get the best standardized image. In addition, it can be
seen in Fig. 4 that the k| and k; parameters are more sensitive
to the GS with the task of imaging histology classification,
and the smaller step size results in a significant change in
AUC. At the same time, we also found that the maximum
value of AUC (AUCnyx) is also related to the step size.
Setting different steps results in different maximum values
and corresponding k; and k;. Fig. 5 shows the distribution of
AUCax under several groups of steps. Furthermore, Table 2
lists the values of k; and ky corresponding to the step size
and AUCpax. According to the results in Fig. 5 and Table 2,
we found that when the set step size is small, we obtain a
higher AUC,x, because k1 and ky can obtain more accurate
values at small step sizes. Conversely, when the set step size
is larger, AUCn,x decreases accordingly. In particular, when
the step size is set to 1, AUCnax is less than the threshold
and is terminated. Therefore, the best option is to set a
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TABLE 2. The K value corresponding to step sizes.

Step
Size

Step
Size

0.05 0.956 0.60 0.65 0.55
0.10 0.954 0.60 0.70 0.60 0.952 0.60 0.60
0.15 0.953 0.60 0.75 0.65 0.948 0.65 0.65
0.20 0.953 0.60 0.60 0.70 0.951 0.70 0.70
0.25 0.941 0.50 0.75 0.75 0.928 0.75 0.75
0.30 0.952 0.60 0.60 0.80 0.887 0.80 0.80
0.35 0.935 0.70 0.70 0.85 0.869 0.85 0.85
0.40 0.938 0.40 0.80 0.90 0.825 0.90 0.90
0.45 0.891 045 090 095 0.810 0.95 0.95
0.50 0.922 0.50 050 1.00 -- 1.00 1.00

AUCnax k1 ky AUCnax k1 Ky

0.933 0.55 0.55

smaller step size to search. We changed the search step size
to obtain the fuzzy positioning of AUCpax. It can be pre-
dicted that AUC . is located in a rectangle restricted by ki,
ko € [0.4,0.8].

Table 3 lists the results of experiments (1) —(3) and the
comparison of each group. “L] ” indicates that HS-GS
has not been implemented, and ““,/” indicates that the
HS-GS method has been implemented. The results of exper-
iments (1.1-4) show that the data set processed by the
HS-GS method can obtain better classification prediction
ability. For example, in experiment (1.4), the AUC of
BraTS2017 increased from 0.847 to 0.979, while other indi-
cators also improved significantly. In the two groups of exper-
iments (1.1 and 1.3) and experiments (2.1 and 2.3), it can be
confirmed that there are obvious differences between differ-
ent data sets, and these differences produce different graded
prediction results. When different data sets are combined,
these differences can have a significant impact on the results
of the graded prediction. Experiments (2.1-2.2) and (2.3-2.4)
show that when the HS—GS method is used to normalize the
data, the differences between different data sets are reduced
and the classification effect is significantly improved. When
BraTS2017 is used as the training set and GI2019 is used as
the test set, the AUC may reach 0.948. In MRI, the imaging
features of the tumor are mainly reflected in the change of the
specific grayscale of the image, and the change of grayscale
is mainly reflected in the image contrast and brightness.
Generally, before data set A is normalized, the features
extracted by feature engineering cannot fully describe data
set B. When the HS-GS processed data set is used as the
training set and in turn as the test set, there is no significant
difference in classification effect. It is thus verified that the
HS-GS method processing the data set has almost no vari-
ation. Experiments (3.1-2) show that simple preprocessing
of the mixed datasets does not produce ideal results. There-
fore, it is necessary to standardize the image processing after
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FIGURE 4. The grid search process under asynchronous length. The step sizes were set to (a) 0.05 and (b) 0.10.

mixing multi-center data. The AUC of the predicted classifi-
cation of the mixed data after HS—GS processing is 0.956,
which is 26.96% higher than the result of not performing
standardization processing.

The experiments in Table 4 (4.1-2) compare the classi-
fication prediction effect of the traditional method and the
HS-GS method proposed in this paper after the image is stan-
dardized. In the traditional method, the radiologist manually
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selects the representative images and normalizes them with
histogram specification. Compared with traditional meth-
ods, the HS—GS method can clearly obtain better prediction
results. Although the grading prediction results of ‘“Radi-
ologist Selection + HS” are still acceptable, this method
depends largely on the subjective manual selection of the
doctor, and it is impossible to judge whether the result of
image standardization is the best. Experiments (4.3-4) list
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TABLE 3. Comparisons between the results of experiments (1)-(3).

Exp Num Train Set Test Set Status AUC (Std) ACC (Std) Sens (Std) Spec (Std)
1 GI2019 GI2019 m 0.821(0.060)  0.597(0.041) 0.832(0.085) 0.650(0.155)
. 2 GI2019 GI2019 \ 0.964(0.032)  0.929(0.017) 0.966(0.026) 0.856(0.064)
3 BraTS2017  BraTS2017 o 0.847(0.075)  0.796(0.048) 0.801(0.060) 0.790(0.066)
4 BraTS2017  BraTS2017 0.979(0.012)  0.946(0.019) 0.969(0.020) 0.906(0.049)
1 GI2019 BraTS2017 o 0.664(0.093)  0.567(0.082) 0.516(0.125) 0.676(0.119)
5 2 GI2019 BraTS2017 0.910(0.051)  0.869(0.037) 0.897(0.056) 0.814(0.102)
3 BraTS2017  GI2019 m 0.698(0.040)  0.731(0.043) 0.805(0.075) 0.590(0.087)
4 BraTS2017  GI2019 \ 0.948(0.024)  0.900(0.030) 0.933(0.043) 0.836(0.049)
, | G019+ BraTs2017 o 0.753(0.070)  0.742(0.048) 0.805(0.081)  0.623(0.118)
2 GI2019+ BraTS2017 \ 0.956(0.036)  0.913(0.035) 0.931(0.033) 0.873(0.050)
TABLE 4. Diagnostic performance of the proposed and compared methods.
Exp Num Train Set Test Set Method AUC (Std) ACC (Std) Sens (Std) Spec (Std)
1 GI2019+ BraTS2017 E’;‘I’grt Selection 88(0.034)  0.835(0.055)  0.882(0.064)  0.743(0.110)
4 2 GI2019+ BraTS2017 HS-BC 0.956(0.036) 0.913(0.035)  0.931(0.033)  0.873(0.050)
3 GI2019+ BraTS2017 VGG-19 DNN  0.921(0.043) 0.902(0.032)  0.943(0.036)  0.813(0.700)
4 GI2019+ BraTS2017 GoogLeNet 0.939(0.028) 0.896(0.036)  0.930(0.043)  0.820(0.069)

AUC,,,

005 010 015 020 025 030 035 040 045 050 055 060 085 070 075 080 085 080 095 100

Step Size

FIGURE 5. AUCmax statistics under different step sizes.

the results of deep learning models VGG-19 DNN [37] and
GoogleNet [38] for glioma grading. The data used is a mixed
data set processed by the HS—GS method, and the necessary
preprocessing of the data meets the input requirements of the
deep learning model. In order to control the additional vari-
ables, we did not pre-train the network. The current results
show that the standardized images of our proposed HS-GS
method are also suitable for deep learning networks, and the
results of prediction are also acceptable.

Similar to current image enhancement technologies, his-
togram specification improves the visual effect of images
by optimizing image contrast [39]. GS is usually used for
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parameter selection, testing all possible choices to obtain
the best parameters and results. In the field of medical
image standardization, HS—GS provides a new way of think-
ing, transforming “‘optimizing contrast and brightness” into
“controlling contrast and brightness.” Our data standard-
ization system can reduce inefficient interactive decision-
making tasks for doctors.

It should be emphasized that, similar to the public dataset
BraTS2017, the internal dataset GI2019 is also a multi-center
dataset. We verified the performance of HS—GS on different
data sets. The most important thing is whether the image
standardization operation is still effective after mixing dif-
ferent data sets, because multi-center data is often mixed.
The results of the experiment were approved by an experi-
enced radiologist. In fact, HS—GS can be extended to other
magnetic resonance-based medical image scenarios, such as
brain metastases and pituitary tumors, and can be used for
sequences other than the CET1 sequence.

VI. CONCLUSION

A method of image data standardization is proposed, which
is specially used for multicenter medical maps based on
MRI, called HS—GS. The HS-GS algorithm uses a Gaussian
probability density function with adjustable parameters as a
representative image, and the CDF obtained by calculation is
used to construct a histogram specification transfer function
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to generate a standardized image. In order to find the optimal
standardized image, the classification of radiomics is desig-
nated as the GS task, the optimal parameter combination is
found through a dedicated GS, and the optimal standardized
image set is also obtained. The HS—GS algorithm abandons
the method of manually selecting representative images by
clinicians, avoids the uncertainty caused by subjective selec-
tion, and reduces the human—computer interaction in the main
link. We tested and verified the performance of the HS-GS
algorithm in solving clinical practical problems (prediction of
glioma grading), and compared traditional methods with the
latest methods. Overall, it performs well in terms of algorithm
robustness and image quality. This novel image standard-
ization technique has proven to be a promising solution for
medical expert systems.

As a future extension of this work, we will consider adding
more GS tasks and evaluation indicators for the abundant
search tasks. In addition, standardization of other data types,
such as CT images, will also be considered. Generally, as CT
images have a larger image size, for their standardization the
HS-GS algorithm should pay more attention to reducing the
time cost.
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