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ABSTRACT In view of smooth trajectory generation for a 3-axis machine tool, many methods have
been presented. Among them, the optimal control based method is increasingly concerned, because it is
considered to be able to make full use of kinematic abilities of machine tools. Under the unified framework of
optimal control, the feedrate can be adjusted flexibly by adding or removing axial constraints and tangential
constraints. But the problem of smooth trajectory generation (PSTG) based on optimal control for a machine
tool is not easily to be solved. In this article, to efficiently solve the PSTG, it is divided into two sub-
problems: the problem of minimum time trajectory planning (PMTTP) and the pseudo problem of smooth
trajectory generation (PPSTG). Since both sub-problems are convex, the existence of unique solutions can be
guaranteed. Then, the PMTTP and the PPSTG are transformed into nonlinear programming (NLP) problems
with radau-pseudo-spectral (RPM) method successively. Due to convexity, the two NLP problems can be
efficiently solved with mature optimization methods. In addition, the RPMmethod allows two sub-problems
to have different Legendre-Gauss-Radau (LGR) points, thereby further saving computational costs. Finally,
three different predefined paths are employed to test the proposed method, and simulation results show the
effectiveness of proposed method.

INDEX TERMS Trajectory planning, numerical solution, pseudo spectral method, optimal control.

I. INTRODUCTION
For computer numerical control (CNC) machining, a smooth
trajectory can greatly reduce the vibration and wear of
machine tools, and avoid the depression of workpiece surface.
In the light of high speed machining, the cycle time must
be shorten as much as possible, keeping smooth machining
trajectory. Hence, the problem of smooth trajectory genera-
tion (PSTG) has been attracting extensive attention of many
researchers.

For example, to improve manufacturing quality with
industrial manipulator, a penalized least squares method is
employed to smooth the planned trajectory [1]. Considering
contour error reduction, a NURBS interpolator with feedrate
scheduling (NIFS) is presented, which consists of two
parts: pre-processing and real-time interpolation [2]. The
NIFS adopted many techniques, such as curve fitting,
mapping NURBS parameter into arc-length, curve feature
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detection and so on. These technologies mainly aim at
improving the smoothness of feedrate profile and processing
efficiency. To implement NURBS interpolation algorithm
on a platform with insufficient computing power, another
real-time NURBS interpolator is designed for micro machine
tool [3]. The interpolator fits the feedrate into a cubic spline
with respect to time, considering the machine dynamics and
chord error. In view of abrupt change of command feedrate,
a smooth feedrate profile can also be generated based on
Neuro-Fuzzy network [4]. It is assumed that the machining
mission must be divided into several parts due to the capacity
of NC system. So the interpolation algorithm must adjust the
feedrate adaptively according to the spindle speed for each
part. However, trajectories planned by the above methods are
not time optimal.

In the field of robotics, a trajectory planning task can be
implemented with many mature optimization methods [5].
It can be formulated as a time-energy optimization problem
which is solved with iterative Linear Quadratic Regulator [6].
Then robots can follow the path based on specific controllers,
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such as optimal observer based controller [7]. For CNC
machining, time optimal trajectory planning can further
improve the machining efficiency. For example, a corner
blend method with B-spline is proposed to smooth linear
paths [8]. With linear programming, time optimal feedrate
is obtained, and then the cycle time is greatly reduced.
Likewise, many other time optimal control methods are
introduced into the trajectory planning for CNC machining
by researchers [9]–[11]. To avoid large deviations from
predefined parameter path, a jerk-limited trajectory planning
scheme with phase plane method is presented [12]. The
scheme can obtain near time-optimal feedrate by transform-
ing jerk constraints into limits for the curvature of the
phase-space velocity. In fact, time optimal control problems
can also be solved with numerical methods, such as control
vector parameterization (CVP) method [13].

In addition, the PSTG for a linear path can be also
transformed into time optimal control problems. For example,
the corner transition for a linear path is formulated as a
time optimal control problem adhering to transition tolerance
and kinematic constraints [14]. Then the time optimal
transition curve is obtained through indirect method based
on Pontryagin’s minimum principle. Later, another fitting
method for linear paths based on optimal control is proposed,
which can obtain time optimal fitted curve and feedrate
profile simultaneously [15].

Hence, there is no doubt that the optimal control method
can play a very important role in CNC machining. Moreover,
the optimal control theory is the most natural framework
for solving the motion planning problems [16]. It is
because that the framework of optimal control has many
advantages. For example, the axial or tangential kinematic
constraints can be flexibly added or removed. Besides,
some performance constraints, such as chord error and
contour error, can be also easily considered simultaneously.
Benefiting from the rapid growth of computational power,
more and more methods can be employed to solve optimal
control problems, such as dynamic programming methods,
direct transcription methods, indirect methods, etc. One
of them is the pseudo spectral method, which has been
successfully applied both in practise and in theory. For
obstacle avoidance, a novel efficient guidance algorithm
is presented for Unmanned Aircraft Systems (UAS) based
on the pseudo spectral method [17]. The algorithm can
generate the optimal trajectory for a aircraft dynamics model
with three degrees of freedom. Pseudo-spectral methods are
also used in robot motion planning. For example, a gauss-
pseudo-spectral (GPM) method is applied to generate an
optimal path for a multi-steering tractor-trailer mobile robot
(MSTTMR) [18]. However, there are few literatures about
pseudo spectral methods applied for trajectory planning of
machine tools.

In this article, the PSTG for CNC machining along
a predefined tool path is formulated as an optimization
problem. For simplicity, a 3-axis machine tool is taken for
example. And then this optimization problem is transformed

FIGURE 1. Structure of the proposed method.

into an optimal control problem by introducing the parameter
of the tool path. In order to ensure machining accuracy,
a convex optimal control scheme is constructed to obtain the
unique solution based on radau-pseudo-spectral method. The
main contribution of this article lies in two aspects. Firstly,
we formulate non-convex PSTG as two convex optimal
control subproblems, i.e. PMTTP and PPSTG, and introduce
the radau-pseudo-spectral method to solve two sub-problems.
Secondly, we derive the discrete form of PMTTP and PPSTG
based on the LGR points. Then corresponding numerical
solution algorithm is developed to efficiently obtain the
solution. Fig. 1 summarizes the structure of our proposed
method. The rest of the paper is organized as follows.
In section II, the PSTG is addressed and formulated as
an optimal control problem. Section III gives a detailed
description of the proposed numerical solution algorithm.
Simulation results are provided to illustrate the proposed
method in section IV. Finally, conclusions are given in
section V.

II. PROBLEM OF SMOOTH TRAJECTORY GENERATION
Let C = [x(s), y(s), z(s)]T be a predefined path, which is
a parametric curve where s ∈ [0, 1]. In order to finish
machining a high-quality pattern in the shortest time, a tool
tip should move along the predefined path according to an
optimal smooth feedrate profile. Certainly, the motion is
constrained by kinematic performances of the machine tool.
Therefore, an optimization framework can be employed to
express the problem of smooth trajectory generation (PSTG),
which is formulated as

min
v,Ah,Jh

T =
∫ tf

0
1 dt

s.t.


0 ≤ v2(t) ≤ F2

B

−ah,B ≤ Ah(t) ≤ ah,B
−Jh,B ≤ Jh(t) ≤ Jh,B

(1)

where h ∈ {x, y, z} is the axis, v(t) is the resultant feedrate,
Ah(t) is the axial acceleration, Jh(t) is the axial jerk, and
FB, ah,B, Jh,B denote the corresponding bounds. Meanwhile,
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some boundary conditions at start and final time must be
satisfied, which can be written as{

v(0) = F0,Ah(0) = ah,0,
v(tf ) = Ftf ,Ah(tf ) = ah,tf .

(2)

However, constraints of the optimization problem com-
posed of (1) and (2) are not explicit functions of time.
Hence, it is difficult to obtain optimal solutions, especially
v(t). In order to simplify solving process, this optimization
problem is transformed into an optimal control problem with
fixed terminal time through introducing path parameter s.
Let ‘‘ ′ ’’ denote derivatives with respect to parameter s, and
‘‘ ˙ ’’ denote derivatives with respect to time t . For example,
assuming f is a function of time, such as feedrate, acceleration
and jerk, there is dfdt =

df
ds

ds
dt = f ′ṡ. Considering (2), the PSTG

can be rewritten as

min
ṡ,s̈,

...
s

T =
∫ 1

0

1
ṡ
ds

s.t.



0 ≤ (x ′2 + y′2 + z′2)ṡ2 ≤ F2
B

−ah,B ≤ h′s̈+ h′′ṡ2 ≤ ah,B
−Jh,B ≤ h′

...
s + 3h′′s̈ṡ+ h′′′ṡ3 ≤ Jh,B

ṡ(0) = ṡ0, s̈(0) = s̈0
ṡ(1) = ṡ1, s̈(1) = s̈1

(3)

where ṡ0 =

√
F2
0

(x ′2+y′2+z′2)|s=0
, s̈0 =

ah,0−h′′ ṡ20
h′ |s=0, ṡ1 =√

F2
tf

(x ′2+y′2+z′2)|s=1
and s̈1 =

ah,1−h′′ ṡ21
h′ |s=0. Let X = [ṡ, s̈]T be

the state vector, and Y =
...
s be the control variable. Then the

system dynamics model is obtained as

Ẋ =
[
0 1
0 0

]
X +

[
0
1

]
Y (4)

The optimal control problem composed of (3) and (4)
can not be efficiently solved, because it has a second order
dynamics model and nonlinear constraints. In order to reduce
the computational cost, new state and control variables are
introduced [19], [20]. Define m(s) = ṡ2, u(s) = s̈ as the new
state variables, and let v(s) =

...
s
ṡ be the new control variable.

According to the chain rule of differential, the new system
dynamics model is expressed as

m′(s) = 2ṡ ·
dṡ
ds
= 2ṡ ·

dṡ
dt
dt
ds
= 2u(s)

u′(s) =
ds̈
ds
=
ds̈
dt
dt
ds
= v(s)

(5)

Replace the state and control variables in (3) with new
ones, the PSTG is reformulated again as

min
m,u,v

T =
∫ 1

0

1
√
m(s)

ds (6a)

s.t. 0 ≤ (x ′2 + y′2 + z′2)m(s) ≤ F2
B (6b)

− ah,B ≤ h′u(s)+ h′′m(s) ≤ ah,B (6c)

− Jh,B ≤
√
m(s)0(s) ≤ Jh,B (6d)

m(0) = m0, u(0) = u0 (6e)

m(1) = m1, u(1) = u1 (6f)

m(s) > 0, s ∈ [0, 1] (6g)

where m0 = ṡ20, m1 = ṡ21, u0 = s̈0, u1 = s̈1, and
0(s) = h′v(s) + 3h′′u(s) + h′′′m(s), h ∈ [x, y, z]. The
feedrate constraint is expressed as (6)b, and (6)c denotes the
axial acceleration constraints. The transformation weakens
the nonlinear path constraints. After conversion, the feedrate
and axial acceleration constraints have become linear ones,
which can greatly improve the efficiency of the solution.
Moreover, the transformed objective function (6)a remains
convex, which will be helpful for the subsequent numerical
solution. The constraint (6)d denotes the real constraint
for each axial jerk, and it will be replaced by a pseudo
constraint in the next section to reduce computational cost.
Generally, the optimal control problem represented by (5) and
(6) is known as the nominal problem of smooth trajectory
generation (NPSTG).

III. PROPOSED METHOD
A. PROBLEM OF CONVEX OPTIMAL CONTROL
Although the PSTG has been formulated as the NPSTG,
it is still difficult to be solved because (6)d is a nonlinear
path constraint, consisting of state and control variables.
Furthermore, the NPSTG has non-convex feasible domain,
which means the solution is not unique. For CNC system,
non-unique solutions will lead to uncertainmachining results.
This is unacceptable in high precision machining. In this
subsection, to overcome the drawback, a convex optimal
control problem with a unique solution is constructed.

Note that the NPSTG is non-convex mainly because of
(6)d. Therefore, if the constraint range of (6)d is relaxed to
[−∞,+∞], the NPSTG will degenerated to the following
problem of minimal time trajectory planning (PMTTP)

min
m,u,v

T =
∫ 1

0

1
√
m(s)

ds (7a)

s.t. m(0) = m0, u(0) = u0,m(1) = m1, u(1) = u1 (7b){
m′(s) = 2u(s)
u′(s) = v(s)

(7c)
0 ≤ (x ′2 + y′2 + z′2)m(s) ≤ F2

B

−ah,B ≤ h′u(s)+ h′′m(s) ≤ ah,B
m(s) > 0, s ∈ [0, 1]

(7d)

The PMTTP is a typical convex optimal control problem,
which can be solvedmore easily than theNPSTG. In addition,
since the problem is convex, a unique solution exists.
Moreover, there are some useful properties for PMTTP.
For example, Zhang et al. [21] gave three properties of
PMTTP for robotic manipulators. Regarding to the PMTTP
for machine tools, Dong et al. [22] elaborated the necessary
condition for optimality which is known as the ‘‘bang-
bang’’ structures of control variables and constraints. Later,
Zhang et al. [23] proved the ‘‘bang-bang’’ structures of
constraints based on the extended maximum principle.
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According to conclusions in the literatures mentioned
above, the solution of PMTTP is maximum among all the
feasible solutions. Although (7) is a little different with
problems in literatures mentioned above, we could still infer
that the first state variable m(s) has the following feature,

m∗(s) ≥ mf (s) (8)

where m∗(s) is the first state of the optimal solution of
PMTTP, and mf (s) denotes the first state of any one feasible
solution. Eq. (8) can be proved by contradiction:

Proof: Consider another feasible solution me(s) of (7),
not satisfying (8). Thus, there are following two cases.

1) Case 1:

me(s) > m∗(s), s ∈ [0, 1].

2) Case 2:{
me(s) > m∗(s), s ∈ [sa, sb] and [sa, sb] ⊆ [0, 1],
me(s) ≤ m∗(s), others.

Then we discuss the two cases one by one.
For case 1: If case 1 holds, 1

me(s)
< 1

m∗(s) can be obtained.
It means that the cost function value can get smaller at me(s)
than at m∗(s). This contradicts that m∗(s) is the optimal
solution.

For case 2: Assume that the solution of (7) is continuous.
If case 2 holds, we can easily construct a feasible solution
which satisfies,

mc(s) =

{
me(s), s ∈ [sa, sb],
m∗(s), others.

We can easily conclude that 1
mc(s)

< 1
m∗(s) , which also

contradicts that m∗(s) is the optimal solution.
Hence, Eq. (8) is proved.
Actually, since (7) is obtained by relaxing the real axial jerk

constraints of the NPSTG, the feasible domain of the NPSTG
is obviously the subset of feasible region of the PMTTP.
Assume that mn(s) is the first state of any one solution of the
NPSTG, there is

m∗(s) ≥ mn(s) (9)

Based on (8), the nonlinear path constraint (6)d can be
relaxed as the following linear one

−Jh,B ≤
√
m∗(s)0(s) ≤ Jh,B (10)

This means (10) is an underestimation of (6)d. Further-
more, (6) can be approximated by following convex optimal
control problem,

min
m,u,v

T =
∫ 1

0

1
√
m(s)

ds

s.t. m(0) = m0, u(0)=u0,m(1)=m1, u(1) = u1 (11a){
m′(s) = 2u(s)
u′(s) = v(s)

(11b)


0 ≤ (x ′2 + y′2 + z′2)m(s) ≤ F2

B

−ah,B ≤ h′u(s)+ h′′m(s) ≤ ah,B
−Jh,B ≤

√
m∗(s)0(s) ≤ Jh,B

m(s) > 0, s ∈ [0, 1]

(11c)

Since real axial jerk constraints are approximated with
(10), this convex optimal control problem (11) is known as the
pseudo problem of smooth trajectory generation (PPSTG).
To illustrate validity of the constraint approximation, the fol-
lowing theorem is given.
Theorem 1: The optimal solution of the PPSTG is the

feasible one of the NPSTG.
Proof: Since all the constraints of the two problem are

the same except axial jerk constraints, to prove the theorem,
we only need to verifywhether the optimal solution of PPSTG
satisfies the (6)d. Define that the optimal solution vector of
PPSTG is Wp = [mp, up, vp]T . Then substitute Wp into the
third constraint of (11)d, there is

−
Jh,B
√
m∗(s)

≤ (h′vp + 3h′′up + h′′′mp) ≤
Jh,B
√
m∗(s)

Define any one solution vector of NPSTG is Wn =

[mn, un, vn]T . Then substituteWn into (6)d, there is

−
Jh,B
√
mn
≤ (h′vn + 3h′′un + h′′′mn) ≤

Jh,B
√
mn

From (9), we have

−
Jh,B
√
mn
≤ −

Jh,B
√
m∗(s)

,
Jh,B
√
mn
≥

Jh,B
√
m∗(s)

Hence, Wp also satisfies the (6)d, and the theorem is
proved.

B. NUMERICAL SOLUTION BASED ON PSEUDO-SPECTRAL
METHOD
How to gain the optimal solution of aforementioned
problems is still a challenging task. At present, there
are serval approaches to solve aforementioned problems,
such as dynamic programming methods, control vector
parameterization methods, and pseudo-spectral methods, etc.
In this section, the radau-pseudo-spectral (RPM) method is
applied to discretize continuous-time optimal control. The
collocation points are obtained from the roots of following
equation,

PK (σ )+ PK−1(σ ) = 0

where PK (σ ) is the kth-degree legendre polynomial. These
collocation points are located in half open interval [−1, 1) or
(−1, 1]. The points lying in the former interval are known as
Legendre-Gauss-Radau (LGR) points, while those lying in
the latter are known as flipped LGR points. Here, the LGR
points are adopted.

Note that the domain of parameter s is [0, 1], whereas the
LGR points lie in the interval [−1, 1). Hence, the domain
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[0, 1] needs to be mapped to [−1, 1] by following
transformation

s =
1
2
σ +

1
2
, σ ∈ [−1, 1] (12)

Define N LGR points as σ1 < σ2 < · · · < σN , with
σ1 = −1 and σN < 1. In addition, the state variables are
also approximated at the terminal point σN+1 = 1 besides
LGR points [24].

In view of (7), let M = [M1,M2, · · · ,MN ,MN+1]T , U =
[U1,U2, · · · ,UN ,UN+1]T be the values of state variables at
LGR points and the terminal point. Therefore, state variables
can be approximated by polynomials below,

m(σ ) ≈
N+1∑
j=1

MjLj(σ )

u(σ ) ≈
N+1∑
j=1

UjLj(σ )
(13a)

Lj(σ ) =
N+1∏
k=1
k 6=j

σ − σk

σj − σk
, j = 1, 2, · · · ,N + 1 (13b)

where Lj(σ ) is a basis function of the N th-degree lagrange
polynomial. Differentiating two series in (13)a and evaluating
the values at σi, there are

m′(σi) ≈
∑N+1

j=1 MjL ′j (σi) =
∑N+1

j=1 DijMj = DM
u′(σi) ≈

∑N+1
j=1 MjL ′j (σi) =

∑N+1
j=1 DijUj = DU

Dij = L ′j (σi)

(14)

where D is a N × N + 1 matrix, known as radau-
pseudo-spectral differentiation matrix. Thus, the system
dynamics model (7)c can be approximated with

DM =
1
2
· 2 · UN

= UN

DU =
1
2
VN

(15)

where UN
= [U1,U2, · · · ,UN ]T , and VN

= [V1,V2, · · · ,
VN ]T are the values of u(σ ) and v(σ ) at LGR points.
Besides the system dynamics model, the cost function,

boundary conditions and path constraints should be approx-
imated, too. Unlike system dynamics model, they are only
evaluated at LGR points. Hence, the cost function can be
written as

T =
∫ 1

0

1
√
m(s)

ds =
1
2

∫ 1

−1

1
√
m(σ )

dσ ≈
N+1∑
j=1

$j
1√
Mj

(16)

where $j is the quadrature coefficient corresponding to σj.
In view of the boundary constraints, we have

M1 = m0, MN+1 = m1, U1 = u0, UN+1 = u1 (17)

Since the path constraints are associated with the prede-
fined curve, values of tool path at LGR points are also needed
to be estimated. Substituting σj ∈ {σ1, σ2, · · · , σN } into (12),

the corresponding sj ∈ {s1, s2, · · · , sN } are obtained. Then
feedrate constraints, axial acceleration constraints, and state
constraints are evaluated as follows

0 ≤ (x ′2(sj)+ y′2(sj)+ z′2(sj))Mj ≤ F2
B

−ah,B ≤ h′(sj)Uj + h′′(sj)Mj ≤ ah,B
Mj > 0

(18)

Until now, the PMTTP has been transformed into a
NLP problem composed of (15), (16), (17), and (18). The
NLP problem can be easily solved with mature methods.
Then the time optimal solution can be obtained, e.g. M
and U. Considering that the numeber of LGR points for
PMTTP and PPSTG may be different, especially when
the self-adaptive pseudo-spectral method is adopted, m∗(s)
should be interpolated according to

m∗(s) = m∗(σ ) ≈
N+1∑
j=1

M∗j Lj(σ ) (19)

where j ∈ {1, · · · ,N + 1} denotes the j-th LGR point when
solve the PMTTP, andM∗j is the corresponding state value.

Since the PPSTG is gained by adding axial jerk constraints
to the PMMTP, we only give the discretization of axial jerk
constraints as follows

−Jh,B ≤
√
m∗(sj)�j ≤ Jh,B (20)

where �j = h′(sj)Vj + 3h′′(sj)Uj + h′′′(sj)Mj, and m∗(s) is
obtained from (19).

To sum up, the PSTG is firstly approximated with two
sub-problems, and then two sub-problems can be solved
with RPM-based method. The detail numerical algorithm is
expressed as follows:

1) Specifying N , construct discrete PMTTP represented
as (15)-(18). Note that the number of discrete meshes
can be determined with adaptive methods.

2) Solve the discrete PMTTP with mature nonlinear
programming methods. Then the maximum state series
M∗j , (j = 1, · · · ,N + 1) is obtained.

3) Continuous m∗(s) is approximated with lagrange inter-
polation polynomial. It is because that PMTTP and
PPSTGmay adopt different number of discretemeshes.

4) Substituting m∗(s) into (19) and (20), obtain final
results by solving the discrete PPSTG formulated as
(15)- (18) and (20).

IV. NUMERICAL EXAMPLES
In this section, three examples are chosen as tool paths to
illustrate the proposed method. Optimal control problems in
example I and example II are solved by GPOPS [25]–[28]
which is a software based on the hp self-adaptive RPM. Please
note that several parameters of the software are set as follows:
‘‘mesh.tolerance’’ is 10−4, ‘‘mesh.iteration’’ is 20, and ‘‘auto-
scale’’ is off. The rest of parameters can be set as default.
To obtain the entire control of solution progress, the optimal
control problems in example III are solved with program
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written by ourselves. For simplicity, all boundary conditions
in simulations are set as zero.

All examples are implemented under a Matlab envionment
installed on a PC with a 64-bit windows 7 operation system.
The PC is equipped with AMD A8-6500 processor and
4GB memory. In addition, since real time interpolation
is not considered in following numerical examples, all
implementations of trajectory generation are off-line.

FIGURE 2. A ellipse pattern.

A. EXAMPLE I: A ELLIPSE PATH
The first predefined tool path is an ellipse curve shown as
Fig.2. And the parametric expression of the ellipse is

C = [50sin(2πs), 25cos(2πs), 0.5]T , s ∈ [0, 1] (21)

For comparison, three kinds of optimal control problem,
i.e., PMTTP, NPSTG and PPSTG, are all solved. Since the
GPOPS can adjust the mesh adaptively, the final grids for
PMTTP, NPSTG and PPSTG are 100, 1054 and 855 under
the same precision requirement. The computation time for
solving the three optimal control problems is 1.347s, 26.21s
and 6.929s. To some extent, we can estimate the difficulty
of solving three optimal control problems from the meshes
and solution time. This further shows that the construction of
convex optimization problem is necessary.

Fig.3 shows the feedrate profiles of PMTTP, NPSTG and
PPSTG for the ellipse path. The feedrate bound is set as
100mm/s. In Fig.3, the feedrate profile of PMTTP is denoted
with dashed line, and it fluctuates near the feedrate limit.
It is because that there are no enough meshes for PMTTP.
However, in our proposed method, solving PMTTP is only
used to obtain the upper bound of the state. Therefore,
a little fluctuation of feedrate profile of PMTTP is acceptable.
Simulation results also verify the inference mentioned above.
The feedrate profile of PPSTG is obtained based on the
solution of PMTTP, which is indicated as the solid line.
And it is completely bounded by feedrate limit and does
not fluctuate at all. The dotted line shows feedrate profile of
NPSTG which also has no fluctuations.

The acceleration profiles of three optimal control problems
for the ellipse path are shown in Fig.4. Acceleration bounds

FIGURE 3. The feedrate profiles of PMTTP, NPSTG and PPSTG for the
ellipse path.

FIGURE 4. The axial acceleration profiles of PMTTP, NPSTG and PPSTG for
the ellipse path.

for X-axis and Y-axis are both set as 500mm/s2 in each
problem. The profiles of PMTTP are denoted as dashed line,
which changes frequently, especially on Y-axis. The profiles
of NPSTG (dotted line) and PPSTG (solid line) become
smoother than that of PMTTP, because jerk constraints play a
role in two optimal control problems. From the plot of Y-axis,
the acceleration planned by PPSTG is more smoother at some
sharp corners than that planned by NPSTG.

Since the jerk constraints are not included in the PMTTP,
only the jerk profiles of NPSTG and PPSTG are drawn
in Fig.5. Jerk limits are set as 5000mm/s3 for two axes.
Although the acceleration profiles are smoothed owing
to the jerk constraints, the jerk itself on each axis has
some fluctuations. From detail pictures, the jerk profiles of
NPSTG show more violent fluctuations than that of PPSTG.
In addition, the machining time of PMTTP, NPSTG and
PPSTG are 2.705s, 2.780s, and 2.812s. The overall planning
time of our proposed method is composed of the planning
time of PMTTP and PPSTG, that is 8.276s. The planning
time of proposed method is saved about 44% than that of
NPSTG, whereas its machining time only extends 1.2%.
Moreover, from the profiles of feedrate, acceleration and
jerk presented in Figs.3-5, the structure of constraints are
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FIGURE 5. The axial jerk profiles of NPSTG and PPSTG for the ellipse path.

FIGURE 6. A trident pattern.

FIGURE 7. The profiles of feedrate, acceleration, jerk (the maximum jerk
equals to 50000mm/s3) for the trident path.

approximately ‘‘bang-bang’’ [21], which means at least one
constraint reaches its bound throughout the motion. This
verifies the reliability of the simulation results.

B. EXAMPLE II: A TRIDENT PATH
The parametric curves are widely used in modern machining
industry, such as B-spline and NURBS curves. In this
subsection, a NURBS curve of the trident shape shown

FIGURE 8. The profiles of feedrate, acceleration, jerk (the maximum jerk
equals to 100000mm/s3) for the trident path.

FIGURE 9. The profiles of feedrate, acceleration, jerk (the maximum jerk
equals to 200000mm/s3) for the trident path.

FIGURE 10. A star pattern.

in Fig.6 is chosen as the tested tool path. The parameters of
the trident contour are given as follows:

Control points:
[
10 20 12 10 8 0 10
0 20 8 20 8 20 0

]
(mm).

Weights:W = [1, 1, 1, 1, 1, 1, 1].

Knot vectors: U = [0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1].

To fully evaluate our proposed method, a different
acceleration bound (2500mm/s2) from that in section IV-A
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TABLE 1. The machining time, planning time, tracking errors and contour errors under low jerk, medium jerk and high jerk bounds for trident contour.

FIGURE 11. Profiles of feedrate and contour error for machining star pattern: (a) Feedrate profiles of
three methods; (b) Contour error for the constant-based method; (c) Contour error for the CVP-based
method; (d) Contour error for the RPM-based method.

is used. For the same reason, three different jerk bounds:
the low jerk (50000mm/s3), the medium jerk (100000mm/s3)
and the high jerk (200000mm/s3), are adopted. The feedrate
limit is set as 200mm/s. The profiles of feedrate, axial
acceleration and axial jerk are shown in Fig.7, when the
jerk bound is set as low jerk. The profiles constrained by
the medium jerk and the high jerk are drawn in Fig.8 and
Fig.9. From Figs.7-9, the constraint structure of approximate
‘‘bang-bang’’ can be observed, especially under the high
jerk constraint. The profiles of feedrate are smooth, while
the profiles of axial acceleration are continuous without
sudden change. Moreover, the profiles of axial jerk are
perfectly bounded. Therefore, we can confirm that the
presented method is effective. In addition, tracking errors and
contour errors are applied to evaluate the performance of the
presented method. In order to generate real time reference
positions for the closed loop controllers, the feedrate profiles

under the low jerk, the medium jerk and the high jerk are
interpolated according to the method of Zhang et al. [29].
A non-specialized PID controller [30] is adopted as the
tracking controller for each axis. In Table.1, more detail
information is listed. As shown in the table, the planning
time increases with the switch from the low jerk to the
high jerk, because the feasible range of the optimal solution
becomes larger. As a result, the machining time becomes
shorter, while the tracking errors and contour errors becomes
larger. Taking the kinematic performances with the low jerk
and the high jerk for example, the processing time with the
high jerk bound is 14.3% less than that with the low jerk
bound, but the contour error is almost doubled. If the high
jerk bound is replaced by themedium jerk bound, two indexes
are 9% and 8% respectively. So the jerk constraints should be
chosen based on the tradeoff between the machining time and
accuracy.

158742 VOLUME 8, 2020



K. Zhao et al.: Smooth Trajectory Generation for Predefined Path With Pseudo Spectral Method

C. EXAMPLE III: A STAR PATH
In order to further test our proposed method, another
NURBS tool path shown in Fig.10 is taken for example. The
parameters of the star contour are given as follows:

Control points:[
8 5 0 4 3 8 13 12 16 11 8
12 8 8 4 0 3 0 4 8 8 12

]
(mm).

Weights:W = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

Knot vectors:

U = [0, 0, 0, 0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 1, 1, 1, 1].

The feedrate of the star path is scheduled with three
different ways: constant based feed, radau-pesudo-spectral
(RPM) based feed, and control vector parameterized (CVP)
based feed [13]. The constant feed (dashed line) is composed
of seven stages, i.e. bell-shape profile. The RPM based
feed (solid line) is planned with our proposed method
in section III. The CVP based feed (dash-dotted line) is
also obtained through solving optimal control problems.
Being different with our method, the CVP based method
transforms optimal control problems into nonlinear program-
ming problems with control vector parameterized method.
Three feedrate profiles are all constrained by feed bound
(100mm/s), acceleration bound (500mm/s2), and jerk bound
(20000mm/s3). For comparison, the discrete meshes of the
RPM basedmethod and the CVP basedmethod are set as 151.

As shown in Fig.11a, the constant based profile takes
shortest cycle time which is 0.626s. It is because that once
the feed bound is reached, the tool tip will cruise at that
speed, neglecting geometric features of the processed path.
That’s why constant based feedrate leads to larger contour
errors shown in Fig.11b than two other methods. The CVP
based method and proposed RPM based method have almost
the same cycle time, i.e. 1.133s and 1.079s. By observing
Figs.11c-11d, contour errors of two optimal control based
methods are of no big difference. But on the whole, the RPM
based mehtod has better performance than the CVP based
method. We attribute the reason to the fact that different
functions are adopted to discretize optimal control problems.
The RPM based method employs the smoother lagrange
polynomial rather than the piecewise constant in the CVP
based method.

The maximum contour error of the RPM based method
is 42.9µm, whereas that of the constant based method is
161.4µm. Although the constant based method saves 42%
cycle time than the RPM based method, its maximum contour
error is 2.8 times larger than that of the RPM based method.

V. CONCLUSION
The problem of smooth trajectory generation (PSTG) for
a 3-axis machining tool can be formulated as an optimal
control problem with free final time. Axial jerk constraints
are adopted to smooth the feedrate profile, which can
lead to a non-convex optimal control problem. In this
article, to improve the computation efficiency, the pseudo

jerk constraints are employed to approximate the real jerk
constraints, and therefore the non-convex optimal control
problem can be replaced with the convex one. Meanwhile,
the PSTG is divided into two sub-problems: PMTTP and
PPSTG. The radau-pseudo-spectral method is introduced to
transform sub-problems into nonlinear linear programming
problems. And we propose corresponding algorithm to solve
PMTTP and PPSTG. Three examples are employed to test
our proposed method. Simulation results show that our
method can generate smooth feedrate profile and continuous
acceleration profiles. Comparing to the constant based feed,
the feedrate generated by the proposed method can reduce the
contour error. And the proposed RPM based method exhibits
a little better performances than the CVP based method.
Moreover, with our method, the approximate ‘‘bang-bang’’
structure of constraints are obtained. So the presented is
effective.
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