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ABSTRACT LiDAR sensors have the advantage of being able to generate high-resolution imaging quickly
during both day and night; however, their performance is severely limited in adverse weather conditions
such as snow, rain, and dense fog. Consequently, many researchers are actively working to overcome these
limitations by applying sensor fusion with radar and optical cameras to LiDAR. While studies on the
denoising of point clouds acquired by LiDAR in adverse weather have been conducted recently, the results
are still insufficient for application to autonomous vehicles because of speed and accuracy performance
limitations. Therefore, we propose a new intensity-based filter that differs from the existing distance-based
filter, which limits the speed. The proposed method showed overwhelming performance advantages in terms
of both speed and accuracy by removing only snow particles while leaving important environmental features.
The intensity criteria for snow removal were derived based on an analysis of the properties of laser light and

snow particles.

INDEX TERMS Snow noise removal, desnowing, autonomous vehicle, LIDAR point cloud filtering.

I. INTRODUCTION

LiDAR sensors are used in autonomous vehicles primarily to
complement the camera and radar. Therefore, most compa-
nies developing autonomous vehicles use LiDAR in conjunc-
tion with radar and cameras. However, some studies are based
only on cameras and radars and omit LiDAR because of its
poor performance under harsh weather conditions and high
costs relative to other sensors. Recently, because the price
of LiDAR sensors has been dropping, the cost problem has
been solved to some extent; however, the problem of LiDAR’s
vulnerability to environmental changes still exists.

For these reasons, many researchers still actively conduct
research using radar and camera combinations or perform
sensor fusion of two sensors to implement autonomous driv-
ing in adverse weather conditions. Most of these studies
are based on using deep learning algorithms or outlier fil-
ters to remove environmental noise such as snow or rain
from images. Considering that LiDAR is clearly suceptible
to adverse weather conditions, it is not surprising that very
little research has been published on methods to desnow
LiDAR point clouds [1]. Fortunately, as the LiDAR technol-
ogy continues to develop and becomes affordable, interest
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in using LiDAR sensors in autonomous driving applica-
tions is increasing, and research to address the shortcomings
of LiDAR is also becoming more active [2]-[6]. Recently,
research on snow removal has been carried out by applying
deep learning [7] or improving an existing filter [8], [9].
These studies significantly improved the accuracy and speed
of snow removal. In particular, the snow-removal accuracy
has been noticeably improved, but the snow-removal speed is
still limited, which means that the currently developed snow
removal filters are unsuitable for applications in autonomous
vehicles.

Therefore, in this study, we propose a new snow removal
filter that achieves speed and accuracy levels applicable to
real-time autonomous driving. Two types of noise filters cur-
rently exist: a distance-based noise removal algorithm and
a deep learning-based noise removal algorithm. In contrast,
our proposed noise removal algorithm is based on intensity,
which constitutes a new approach that is completely different
from the previous two approaches. Although this approach
represents a new challenge that has not been previously
attempted, the proposed filter achieves surprisingly faster and
more accurate performance than the existing filters.

The remainder of this article is organized as follows.
In Section II, the methods for existing point cloud filters are
analyzed. Our proposed filter and an explanation of how it
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works are introduced in Sections III, IV and V, respectively.
Finally, Section VI concludes the paper.

Il. EXISTING NOISE FILTERS FOR LiDAR POINT CLOUDS
A. CONVENTIONAL NOISE FILTERS

Conventional noise filtering methods involve radius outlier
removal (ROR), statistical outlier removal (SOR), and voxel
grid (VG) filters [10]-[12]. The outlier removal filters can
be applied to LiDAR point clouds; however, when used as
noise filters for 3D LiDAR point clouds, they have some
limitations in terms of speed and accuracy. Brief descriptions
of the various filters are presented below.

1) ROR FILTER

The ROR filter works on a simple technique: it computes
the mean distance of each point to its neighbors within a
certain search radius by using a k-d tree data structure. When
the number of neighbors within a specified radius is below
a given threshold, that point is removed. Thus, the perfor-
mance of this filter depends on the specified radius and the
minimum point threshold. It has the advantage of easy imple-
mentation but is difficult to apply to 3D LiDAR point cloud
filters because it searches for neighbors within a fixed radius.
Specifically, the distance between LiDAR points increases
as the detection range distance increases due to the vertical
and horizontal resolution of LiDAR. Thus, points located at
relatively long distances are more likely to be removed as
outliers due to their spacing.

2) SOR FILTER

The SOR filter is similar to the ROR filter, but it does not
use a fixed radius or a minimum point threshold to determine
the neighbors. Instead, it computes the mean distance of each
point to its neighboring points to considering the k-nearest
neighbors. When those points are greater than the sum of the
mean distance and the standard deviation, they are rejected.
The performance of this filter depends on the number of near-
est points, k, and the number of times the standard deviation
is calculated. The problem with the SOR filter is that its
filtering speed is slow because finding neighbors carries a
high computational cost. Moreover, the greater the distance
is, the higher the probability of a point being removed as an
outlier (similar to the ROR filter).

3) VOXEL GRID FILTER

The VG filter differs from the ROR and SOR filters in that
it does not remove outliers based on the distance between
points but rather downsamples the number of points. All
points inside each voxel’s predefined 3D box in 3D space
are downsampled to an approximated voxel center point. This
filter is sometimes considered to be a noise filter because the
noise disappears. However, all the points are downsampled
—not just the noise; therefore, this filter is only regarded as
a downsampling filter, not a noise filter, because it removes
not only outliers but also inliers based on the geometric
information acquired during filtering.
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B. STATE-OF-THE-ART FILTERS

Recently, new noise filters for 3D point clouds have been
proposed by improving an existing filter or applying deep
learning. These studies achieve faster noise filtering speeds
and higher accuracy compared to the existing conventional
filters. First, we introduce the deep learning-based algo-
rithms and then introduce methods for improving the existing
filters.

1) WeatherNet

WeatherNet is recently introduced denoising algorithm based
on LiLaNet that is representative of approaches using con-
volutional neural networks. It performs pointwise, multiclass
semantic labeling of semidense LiDAR data. WeatherNet can
be optimized for denoising purposes by reducing the depth,
inserting a dropout layer and adding a dilated convolution to
the base block of the network. While WeatherNet achieves
better performance than RangeNet and DROR [7], it is some-
what inappropriate to compare DROR to WeatherNet in dense
fog situations because DROR was developed expressly for
desnowing purposes. In dense fog situations, the performance
of DROR deteriorates because of the differences in sparsity
between snow and fog.

2) FCSOR FILTER

The fast cluster statistical outlier removal (FCSOR) filter is
an extension of the SOR filter [8]. This method consists of a
voxel-subsampling step and an FCSOR step, and it reduces
the computational complexity and running time by reducing
the number of clusters and performing computations partially
in parallel. However, it still does not achieve the performance
levels required for snow removal because it focuses only
on improving the speed by combining existing filters. Thus,
it cannot be regarded as a suitable snow removal filter for 3D
point clouds.

3) DROR FILTER

A dynamic radius outlier removal (DROR) filter was devel-
oped to address the limitations of the ROR and SOR filters,
which are based on a fixed radius and fixed numbers of neigh-
boring points [9]. This enhanced filter reduces distant point
losses by changing the search radius for neighboring points as
the distance to the measured point increases. Consequently,
it improves the accuracy by more than 90 % on point clouds
acquired while driving in falling snow, and it is the most
effective filter for removing snow without also removing
other environmental features.

Similar to the filter proposed here, the DROR filter
substantially outperforms the existing filters in terms of accu-
racy; consequently, it is highly suitable as a snow removal
filter for 3D LiDAR point clouds. However, despite its good
performance, DROR still has limitations that prevent it from
being applied in real-time autonomous vehicles, such as its
slow snow-filtering speed. This filter also has high computa-
tional costs because it is based on distance-based filters such
as the ROR and SOR filters. The results of the various filters
are reported in Section V.
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Ill. THE PROPOSED LIOR FILTER

A. INTENSITY-BASED FILTERS

The proposed filter is a low-intensity outlier removal (LIOR)
filter. As its name suggests, this filter eliminates snow by
deleting points with intensity values below a specified inten-
sity threshold. The idea behind the LIOR filter stems from
the fact that the intensity of snow particles is lower than
the intensities of other points at the same distance. LIOR
differs from the existing SOR, ROR, and DROR filters in
that it does not remove noise based on the distance between
points. To date, many studies have performed classification or
segmentation using LiDAR intensity values [13], [14], but to
the best of our knowledge, this is the first attempt to remove
noise based on intensity values.

Examination of the intensity values in a LIDAR point cloud
acquired on a snowy day clearly reveals the intensity differ-
ences between snow and objects. Thus, we could confirm that
snow particles have a very low intensity value compared to
other nearby non-snow points, as shown in Figs. 1 and 2.
The reason for applying the intensity value range from 0 to
1,000 is to visually distinguish snow from objects. When
the intensity range is applied from 0 to 5,000 (which is the

FIGURE 1. Parking lot image and point cloud. (a) Image taken on a clear
day. (b) Point cloud acquired on a snowy day.

intensity .. ... ...

Low intensity
of road
¥
Low intensity &l
2 £ of snow 1000 .

FIGURE 2. Point cloud acquired from a parking lot (plan view).
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actual measured range), it is difficult to distinguish snow from
objects, as most points are represented by a color close to red.
This is because the intensity value of most points measured
outdoors is lower than 1,000.

Fig. 2 shows that the intensity of the snow particles around
the LiDAR and road surface have low values. Both the snow
particles and the road surface have low intensities; however,
the point spacing of the snow particles is sparse, while the
point cloud density on the road surface is high.

B. PRELIMINARIES

To design the LIOR filter, it is first necessary to select
an intensity threshold to distinguish snow particles from
ordinary objects. To this end, we first calculate the intensity
curve of the OS-1 LiDAR used in the experiment. Given the
intensity curve, the intensity values of the returned LiDAR
light can be estimated at each distance. A snow removal
threshold (covered in section IV) can then be determined
based on the distance intensity values.

The intensity curve shown in (1) [15] reveals that the actual
intensity value depends on the angle of incidence and object
surface reflectivity [15]-[17]. The variables I..f, Dyef, D,
1., @ and R; denote a reference intensity value, a reference
point distance, a measurement distance, an intensity value
corresponding to the measurement distance, the angle of
incidence of the LiDAR light on the snow particle, and the
object reflectance, respectively:

2
I =Ly - D’sz - cos(a). (1)
D

To obtain the intensity curve corresponding to the LiDAR,
the distance and intensity of the reference point were mea-
sured with the OS-1 LiDAR. First, as a reference point for
deriving the intensity curve of the OS-1 LiDAR, an attempt
was made to select a short distance point within 5 m, but the
actual measurement result shows that the intensity deviation
of the points located within 5 m are large, so the point located
at 5.5 m showing a constant intensity value was selected as a
reference point. For this reason, the point with an intensity
value of 4,180, 5.5 m from the LiDAR, was selected as the
reference value.

Additionally, to determine how the actual intensity changes
with distance, it is assumed that the incident angle is 90 ° and
the reflectance is 100 %. By applying these incident angles,
the reflectance and reference point values are determined in
(1), the intensity curve of OS-1 LiDAR is summarized in (2),
and the final result of (2) is shown in Fig. 3. The intensity
curve was cropped from 0 to 5,000, considering the maximum
intensity value of OS-1 LiDAR.

5.57 126,445
D2 D*

I.=4,180- 2)

IV. PRINCIPLE OF LIOR

As explained in Section III, the principle underlying the
LIOR filter involves removing the points with intensity values
lower than a snow intensity threshold as outliers. In practice,
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FIGURE 3. Intensity curve of OS-1 LiDAR.

filtering snow by applying this algorithm removes all snow
particles in real time. However, the intensity values of close
objects can be as low as that of snow particles depending on
the differences in reflectance according to the material and
color of the object’s surface.

As shown in Fig. 4, even though cars are located
immediately in front of the LiDAR sensor (within 3 m),
some important points are lost when snow filtering is applied
because of the low intensity values of some vehicle materials.
To solve this problem, we developed a method to save the
important points while omitting snow particles among the
points classified as outliers that would otherwise be removed
due to their low intensity values. In summary, this consti-
tutes step 2, which reclassifies the non-snow outlier points
removed in step 1 to inliers.

@ . )

threshold intensity. The snow particles are completely removed. However,
some points in the bounding boxes are also removed, even though they
are not snow particles.

A. LIOR FILTER DESCRIPTION
The LIOR filter consists of two steps. The first step identifies
all points with an intensity below the threshold snow intensity
value. The second step selects non-snow points that carry
important environmental information from the outliers iden-
tified in step 1 and reclassifies them as inliers. To briefly
describe the principle of the filter applied in step 2, when
more than a certain number of neighbors exist within a
specified radius among the outliers, the point is saved as an
inlier.

The radius inlier saving (RIS) filter originated from the
idea that the density of neighboring points located around
snow particles is sparse, whereas the points classified as out-
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Algorithm 1 Pseudocode of LIOR

1: forp € Pdo
2: computer the distance of the point d,,
// Determine the intensity
threshold
3: if d, < dy (71.235m) then
4: Iipy < red line in Fig. 9
5: else
6: Iy < 0 (" no-snow area)
7: end if
// Step 1l: remove the snow points
8: if I, > Iy, then
9: point p classified as inlier p;y,
10 else
11: point p classified as outlier p,,;
// Step 2: apply the RIS filter
12: count the number of neighbors 7,
13: if ny > ny, then
14: outlier p,,; reclassified as inlier p;,
15: end if
16: end if
17: end for
(@) (b)
° @095 )
. ’0.6 ° S
e 0.'7. = Object
o 075 ° y o *
&
[ ]
Outlier Inlier

(snow particle) (object point)

FIGURE 5. The RIS filter concept (specified points: 3, search radius: 0.5):
(a) is a case that remained an outlier, and (b) is a case that was saved as
an inlier.

liers, but not snow, have a much higher density of neighboring
points, as shown in Fig. 4. The overall flow of the LIOR
filter is described in the pseudocode in Algorithm 1, while a
visual explanation of the RIS filter applied in step 2 is shown
in Fig. 5.

B. SNOW REMOVAL THRESHOLD

The key goal in this study is to find an appropriate snow
removal threshold, which acts as the criterion for filtering
snow. To derive the snow removal threshold, some basic
knowledge of snow and light is required. First, because the
intensity of light depends on the size, shape, and reflectance
of snow particles, prior studies were conducted on the
characteristics of snow.

Snow particle size was determined based on snow sizes
collected in the Yeongdong region, the snowiest region in
South Korea. Between 2017 and 2018, the maximum radius
of snow particles was approximately 2.8 mm [20]. Thus,
we can infer that the maximum size of a snow particle is
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FIGURE 6. Maximum size of snow particles: The maximum size of a snow
particle is 1.12 cm (considering up to three aggregated crystals).

5.6 mm. However, because this value corresponds to the
size of individual snow crystals, it is difficult to regard it
as representative of the actual size of all snow particles.
Considering that snow crystals often aggregate in groups of
two or three (a triangular shape) to become snow particles,
the adopted maximum size for a snow particle was 1.12 cm.

After determining the size range for snow particles,
the area ratio of the beam area to the snow area at the reference
distance must be calculated. As shown in Fig. 7, at each
distance, the intensity decreases in proportion to the square
of the distance by the inverse square law. Here, because the
area of a snow particle is smaller than the size of the beam,
the exact amount of intensity impacting the snow particle can
be calculated by considering the area ratio at the reference
distance.

The angle of incidence when the light of LiDAR hit the
snow particle was calculated under the assumption that all
snow particles are spherical. That is, it was calculated in the
same way as the method used to obtain the average angle
of incidence when sunlight impacts the earth. As a result,
the angle of incidence « is 45°.

The reflectance of snow particles was calculated by con-
sidering the 865-nm wavelength of OS-1 LiDAR [18], [19]
and a snow particle size of 1.12 cm and is based on prior
research results [20]. The reflectance was calculated based on
experimental results showing that the reflectance decreases
as the size of the snow particle increases. The reflectance
corresponding to a snow particle diameter of 1.12 cm was
0.158. Based on an analysis of the characteristics of snow
and OS-1 LiDAR, the following snow intensity threshold was
ultimately obtained. The variables Iy, AR, and R represent
the snow intensity threshold, area ratio, and snow reflectance,
respectively:

Footprint  1.727cm
Snow size 1.12cm

%@)% \\\ Area ratio 1:0.42

beam divergence -
= 3.14mil (0.18°) d 2d 3d
(reference 5.5m)

FIGURE 7. Area ratio of beam area to snow area.
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FIGURE 8. Changes in the intensity threshold constant according to snow
particle size.

I = 1. - AR - cos(@) - Ry = 0.04691.. 3)

One important aspect is that as the snow particle size
increases, the area ratio increases, while the reflectivity
decreases; the intensity threshold constant is determined by
multiplying these two parameters. Therefore, it is necessary
to determine when the threshold constant multiplied by these
two parameters reaches the maximum value.

As shown in Fig. 8, the two parameters have a trade-off
relationship, but the threshold constant, which is the product
of the two parameters, increases as the size of the snow par-
ticle increases. This means that the snow threshold constant
is largest when the snow particle size reaches the maximum.
Therefore, when the largest constant value is applied to the
LIOR filter, all the snow particles below the maximum size
will also be filtered.

The result of the snow intensity threshold is shown
in Fig. 9. The blue line is the normal intensity curve (/) of
LiDAR light, while the red line is the snow intensity threshold
(isn), which is the criterion for filtering snow. Consequently,
the points under the red line represent the point cloud with
the snow removed.
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FIGURE 9. Snow intensity threshold graph.
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(a) Raw data (road surface)
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FIGURE 10. Comparison before and after applying the LIOR filter.

C. DETERMINING THE SNOW DETECTION RANGE

Finally, in pseudocode line 3 in Algorithm 1, there is the con-
cept of snow range, which is the maximum distance at which
the LiDAR can physically detect snow particles. Because this
parameter is a distance applied in the LIOR filter that affects
the filtering speed, it must be calculated accurately. The point
at which the intensity value falls below 1 in the snow intensity
threshold curve (red line) in Fig. 9 corresponds to the theo-
retical distance at which the LiDAR can theoretically detect
snow particles. Here, the calculated snow detection range (d)
is 71.235 m.

V. PERFORMANCE OF LIOR

A. EXPERIMENTAL DATA COLLECTION

Data collection was performed using Ouster OS-1 64ch
LiDAR, and we used an Nvidia Jetson Xavier to obtain a
point cloud dataset that included falling snow of various
sizes and densities over a one-week period. Additionally,
to create a situation that maximized the noise effect caused
by snow, the experimental sites included not only road sur-
faces but also the roofs of buildings. As a result of applying
a rotation rate, vertical resolution, and horizontal resolu-
tion of 10 Hz, 64 ch, and 1,024 pts, respectively, for the
LiDAR setup, a total of 65,536 points were obtained per
frame [18].

B. IMPLEMENTATION AND RESULT

We assigned the LIOR filter parameter searching radius (ry),
threshold number of neighbors (n:,-), and snow detection
range (dy) values of 0.1 m, 3 pts, and 71.235 m, respectively.
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The results of applying the proposed LIOR filter are pre-
sented in Fig. 10. The two left-hand images are the raw point
cloud images before filtering, while the right-hand images
show the result after snow removal with the LIOR filter.
As shown in Fig. 10a, red noise points on the road surface
correspond to actual snow; most of the red points around the
tree are leaves. After filtering, the snow particles have been
completely removed, as shown in Fig. 10b; even the distant
buildings are clearly visible.

To collect point cloud data that contain considerable
snow noise, similar to extreme environments in heavy snow,
we acquired data from the roof of a building. The raw
point cloud is shown in Fig. 10c, where it can be seen that
substantially more snow noise was detected than in Fig. 10a.
As shown in Fig. 10c, many more snow particles were gener-
ated than in the data obtained from the road surface. However,
the LIOR filter was able to completely remove this noise,
as shown in Fig. 10d.

C. COMPARISONS WITH EXISTING FILTERS

We selected the SOR and DROR filters as comparisons for
the proposed LIOR filter based on the results analyzed in
Section II. The parameters applied to each filter are summa-
rized in Table 1, and the snow removal performance results
of each filter are compared in Fig. 11.

Considering the raw point cloud in the plan view, the snow
particles falling around the LiDAR, parked roadside vehicles,
trees, and buildings are visible. Because the point color was
set to differ with the intensity, the intensity clearly decreases
as the distance increases. The reason for low-intensity points
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FIGURE 11. A comparison of the performance of SOR, DROR, and the proposed LIOR filter (Computing hardware: Intel Core i9-9900KF CPU @ 3.60GHz
with 32 GB of RAM): (a) shows a panoramic view photo taken from the real LiDAR location to aid in understanding the point cloud image.

TABLE 1. Filter parameters.

\ \ Parameters \ Value \
SOR number of neighbors 3

standard deviation 0.2

DROR | searching radius 0.Im
min. number of neighbors 3
radius multiplier 3
azimuth angle 0.16

LIOR searching radius 0.1m
min. number of neighbors 3
snow detection range 71.235m
Intensity threshold constant 0.066

even at short distances is because some objects have a low
incident angle such as roads, vehicles with low reflectivity,
and snow particles.

160208

The SOR filter does not remove only the snow particles;
it also removes all points above a certain distance from the
LiDAR. This result occurs because, as explained as a dis-
advantage of the distance-based filter in Section II, as the
distance from the LiDAR increases, the distance between
the points becomes larger than the specified search radius;
thus, all points located beyond a certain distance are removed
as outliers. To remove snow particles, a smaller search
radius can be applied, but then the circle shown in Fig. 11c
decreases, causing most points to be lost. Similar results
would be obtained if the ROR filter, another distance-based
filter, were applied.

After applying the DROR filter, the snow particles were
almost completely removed. However, the point clouds
far from the LiDAR also suffer substantial losses even
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though they contain important environmental information.
The DROR results are a substantial improvement compared to
the disadvantages of the distance-based ROR and SOR filters,
but the DROR filter remains limited due to the losses in the
surrounding point cloud data and because the filtering speed,
which is a critical disadvantage of distance-based filters, has
not been improved.

Meanwhile, the proposed LIOR filter not only completely
removed snow particles but also showed excellent performance
to perfectly preserve important environmental information
without loss. In particular, it showed excellent performance
of preserving even long-distance points with high probability
of loss such as leaves of trees.

D. EVALUATION
We evaluated the LIOR filter performance by comparing its
speed and accuracy with the DROR filter.

1) SPEED

First, Table 2 shows the filtering speed of each filter. The
proposed LIOR filter is approximately 12 times faster than the
SOR and 8 times faster than the DROR filter. However, this
performance level can be used only in low-speed autonomous
driving; it is unsuitable for high-speed autonomous driving
applications. Therefore, to increase the performance of the
LIOR filter to a level applicable in high-speed autonomous
driving, the LIOR filter was applied only to the ROI
(the road area ahead) to remove the need to process
unnecessary data.

The actual size of the applied crop box is presented
in Table 3 and visualized in Fig. 12. The reason for setting
the x-axis direction to 119 m in the crop box size in Fig. 12b
is that this value considers the minimum distance between the
driver and the front bumper of the vehicle. Although the dis-
tance is only approximately 1 m, the point cloud in this area
is the most densely formed; therefore, removing this section
substantially improves the filtering speed. After applying
the LIOR filter only to the ROI—the area in front and the
road—the filtering speed improves, reaching up to 10 FPS,
which is sufficient for use in actual high-speed autonomous
driving.

Even though the ROI is reduced from the forward data
to the road data, the filtering speed is improved only from
9.31 FPS to 10 FPS. This can be seen as a slight improve-
ment in the filtering speed, but in practice, it means that the
maximum speed cannot exceed 10 FPS because the rotation

TABLE 2. Processing rate performance.

SOR DROR LIOR
Speed (FPS) 0.11 0.16 1.32
TABLE 3. Optimizing the LIOR processing speed.
Size of cropbox (m) Speed (FPS)
LIOR (Full data) 240(x) x 240(y) x 49.7(z) 1.32
LIOR (Forward data) 119(x) x 240(y) x 4.2(z) 9.31
LIOR (Road data) 119(x) x 6(y) X 4.2(z) 10.0
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rate of the lidar sensor is 10 Hz. That is, since the frame rate
of raw data is 10 FPS, the filtering rate cannot exceed 10 FPS.
Therefore, when data are acquired at a speed exceeding 10 hz
through advanced LiDAR in the future, the filtering speed of
the LIOR filter will be much faster.

2) ACCURACY

To evaluate the accuracy of the LIOR filter, we manually
labeled the number of snow particles in 10 scans where the
time stamps of the filtered images of the LIOR and DROR
matched exactly. These hand-labeled data were then used to
compare the performance of the DROR and LIOR filters.
On average, each individual point cloud snapshot contained
a total of 1098.8 snow particles. We evaluated the accuracy
by comparing the number of points filtered by the DROR
and LIOR filters based on these manually labeled snow
points. The number of points filtered by each filter reached
32,097.7 for the DROR and 1,700.9 for the LIOR: the DROR
filter removed approximately 18 times more points than the
LIOR filter.

Fig. 13a shows the result of rendering the point filtered
by the DROR and LIOR filters. The DROR filter deleted
48.9 % of the total point cloud data, which is nearly half the
total point cloud data, which means that it does not distin-
guish between objects and environmental information well.
In contrast, the LIOR filter removed 2.59 % of the points,
a number similar to the labeled snow points. Additionally,
unlike the DROR filter, the LIOR filter showed high accuracy
in removing all snow points from the snow area, missing
only eight points. The average percentage of filtered points
per range is displayed in Fig. 13b. This result shows that the
LIOR filter removes snow particles almost perfectly while
minimizing the loss of environmental information.

To make the comparison easier to understand, we adopted
three metrics to compare the filtering accuracy. The first
metric is the true positive rate, which simply means the ratio
of the number of filtered snow points in the areas where snow
points can effectively be detected by LiDAR (the snow areas)
to the number of manually labeled snow points in those areas.
The second metric is the false positive rate, which is the ratio

(c)Road

(a) Full L (b) Forward

v
s 2
[

FIGURE 12. Size of the cropped point cloud.
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FIGURE 13. The average percentage of filtered points per range (a) and the rendered 3D image of the removed points (b).

of the number of filtered snow points in areas where snow
particles cannot be sensed by LiDAR (the no-snow areas)
compared to the number of manually labeled non-snow points
in those areas. The last metric, false negative rate, is the ratio
of the number of unfiltered snow points in the snow areas to
the number of manually labeled snow points in those areas.
The true positive rate, false positive rate and false negative
rate are calculated by Equations (4), (5) and (6), respectively.
The snow area and no-snow area can be understood
more clearly through Fig. 13.

. filtered snow points in snow areas
True positive rate

total labeled snow points

“

filtered snow points in no-snow areas

False positive rate -
total labeled non-snow points

&)

unfiltered snow points in snow areas

False negative rate -
total labeled snow points

(6)

The areas where no snow particles exist on the point cloud
can be estimated by calculating the distance to the farthest
point among the hand-labeled snow points, which is 24.5 m.
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TABLE 4. Filtering rate comparison: True positive rate closer to 100 %,
false positive and false negative rates closer to 0 % indicate better
performance.

DROR LIOR
True positive rate (%) ~ 100 ~ 100
False positive rate (%) 48.11 0.93
False negative rate (%) =~ ~

This result means that all areas farther than 24.5 m from
the LiDAR location are considered to be no-snow areas. As
shown by the true positive and false negative rates in Table 4,
in the snow area, the DROR and LIOR filters almost com-
pletely removed the labeled snow points. However, as seen
from the false positive rate, the DROR filter has a high rate
of removing object points other than snow points, while the
LIOR filter has a significantly lower value. This indicates that
the LIOR filter does not remove important points that include
environmental information; it mainly removes snow particles.

Thus far, to compare the performance of the LIOR and
DROR filters, we have analyzed the accuracy with only
10 scans with matching time; however, to further verify
the performance of the LIOR filter, a total of 50 additional
scans were analyzed. The result of analyzing additional scans
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confirmed the ability to completely remove snow particles,
as expected, which is shown in Table 5. In addition to snowy
weather, we tested the performance of LIOR filters in rainy
weather, and the filtering results in Table 5 reveal that the
rain removal performance is similar to the snow removal
performance. In addition, as shown in Table 6, the filtering
speed of rain demonstrated excellent performance, and when
ROI was applied, as in the case of snow filtering, it had a
fast filtering speed of up to 10 FPS. This confirmed that the
LIOR filter perfectly removes not only snow points but also
rain points at a very fast rate.

TABLE 5. Verification of the performance accuracy of the LIOR filter with
an additional dataset (50 scans without applying ROI).

Snowy point cloud Rainy point cloud
True positive rate (%) ~ 100 ~ 100
False positive rate (%) 0.85 0.68
False negative rate (%) ~0 ~0

TABLE 6. LIOR processing speed for a rainy point cloud.

Size of cropbox (m) Speed (FPS)
LIOR (Full data) 240(x) x 240(y) x 49.7(z) 1.78
LIOR (Forward data) | 119(x) x 240(y) x 4.2(z) 8.34
LIOR (Road data) 119(x) x 6(y) x 4.2(z) 10.0

VI. CONCLUSION

The proposed LIOR filter removes snow particles based on
the intensity differences between snow particles and objects.
When using this approach, the filtering speed and accuracy
are noticeably improved compared to the existing filters.
In particular, because the LIOR filter was designed to assume
the maximum snow particle size, it is possible to perfectly
filter any snow of any size. Moreover, point clouds collected
by LiDAR in rainy weather conditions can be perfectly fil-
tered. In this sense, this article is important because the pro-
posed approach overcomes the disadvantage of LiDAR—its
suceptibility to environmental changes—while maximizing
the advantages of existing LiDAR sensors.

Although LiDAR sensors have substantial advantages
over radar and optical cameras, many researchers assume
that LiDAR sensor data should be excluded from ultimate
autonomous driving implementations due to its weak ability
to function under environmental noise conditions (e.g., rain,
snow, fog). However, because this study resolves this draw-
back, it can be expected that the utilization of the LiDAR
sensor will increase in the future. Moreover, as the reso-
lution of LiDAR sensors is gradually improved to match
that of image sensors, it is likely that this tendency will
gradually accelerate. Future work includes verifying the
object detection performance of LiDAR through filtered point
clouds and applying the results to real-time autonomous
vehicles.
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