IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 7, 2020, accepted August 21, 2020, date of publication August 31, 2020, date of current version September 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3020501

On the Complexity and Performance of the
Information Dispersal Algorithm

RICARDO MARCELIN-JIMENEZ"?, JORGE LUIS RAMIREZ-ORTIZ!,
ENRIQUE RODRIGUEZ DE LA COLINA'!, MICHAEL PASCOE-CHALKE 1,

AND JOSE LUIS GONZALEZ-COMPEAN"2

! Department of Electrical Engineering, Universidad Auténoma Metropolitana, CDMX 09340, Mexico

2CINVESTAV, Tamaulipas 87130, Mexico

Corresponding author: Ricardo Marcelin-Jiménez (calu@xanum.uam.mx)

This work was supported by Consejo Nacional de Ciencia y Tecnologia (CONACYT) of Mexico.

ABSTRACT The Information Dispersal Algorithm (IDA) has become a key component in several fault-
tolerant massive storage systems. From a theoretical point of view, it is a linear transformation over a finite
field on the vectors that make up a given file. Direct transformation adds redundancy, splitting the initial file
into a new set of files called dispersals. The inverse transformation recovers the original file from a subset
of dispersals. This piece of research demonstrates the impact of input and output (I/O) operations on direct
and inverse transformations. Different alternatives to control the exchange of elements between RAM and
disk were evaluated, which is the key operation to build a vector in memory and store its entries in a file.
First, the impact of the working finite field was tested; second, the impact of the use of a buffer for exchange
between the RAM and the hard disk, and finally, several instances of the algorithm with which to evaluate
the impact of parallelism were simultaneously deployed. The results demonstrate that the combination of
these factors may have an important effect on the speed of both direct and inverse procedures.

INDEX TERMS IDA, fault tolerance, reliability, massive storage.

I. INTRODUCTION

The information dispersal algorithm (IDA) [1] has drawn the
attention of an increasingly large community of researchers
from academia and industry alike. This may be due not only
to the elegance of its approach, but also to the possibilities it
opens up for communications and storage applications. In this
latter area, in particular, IDA offers the opportunity to build
massive storage systems in which the difference between
raw or gross capacity and effective capacity is reduced, while
supporting the same level of fault tolerance found in other
copy or replica-based systems. Besides, being a parameter-
izable algorithm, it allows for the identification of different
trade-offs between redundant information and the robustness
of the solutions that are built.

On the other hand, to the extent that the algorithm has left
the research laboratory to be incorporated into production
systems, a more detailed study of its associated costs has also
been initiated. However, our research revealed that many of
these studies focus on the computational complexity of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Cristian Zambelli

159284

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

algorithm for some particular working conditions, in which
some kind of fast algorithm can be applied.

In contrast, this study initially addressed the importance
held by the order of the working finite field, but the exper-
iments demonstrated that this offer is only a possibility to
control file reading and writing operations, which have the
greatest impact on the costs involved. This paper presents
the results obtained from a series of experiments in which
the importance of exchange operations on the algorithm’s
performance has been recognized.

The rest of this document is organized as follows:
Section II reviews works focused on IDA and its potential.
Section III presents a description of the theoretical founda-
tions of the algorithm is presented, as well as the analysis
of the complexity of its operations. Section IV describes the
agenda of experiments included in this study and analyzes
the results. Finally, section V brings together the most out-
standing findings and presents a set of conclusions, as well
as future work directions.

Il. RELATED WORK
After the original publication of the IDA, Rabin him-

self proposed extending the scope of his initial work and

VOLUME 8, 2020

https://orcid.org/0000-0002-5355-5830
https://orcid.org/0000-0003-4057-8715
https://orcid.org/0000-0002-2160-4407
https://orcid.org/0000-0001-8755-0504

R. Marcelin-Jiménez et al.: On the Complexity and Performance of the IDA

IEEE Access

suggested some applications for storage [2]. The use of cod-
ing techniques to optimize storage space has gained relevance
in recent years, to the extent that systems of greater capacities
are being built and the gap between raw capacity and effective
capacity is being reduced [3].

Some authors also suggest the possibility of using the
algorithm not only to optimize storage capacity, but also to
lower energy consumption [4]. Another work proposes send-
ing a file through a channel with delay problems, varying the
parameters of the algorithm to send a quantity of redundant
information that depends on the state of the channel [5].

Among the massive storage systems that use IDA or a sim-
ilar approach, Scality [6], a commercial product for massive
storage recently acquired by HPE, could be mentioned. There
is also Cleversafe [7], a storage project recently acquired by
IBM. Furthermore, the organization in charge of developing
CEPH [8] announced the use of coding techniques similar to
IDA to optimize large-scale storage. In turn, RedHat offers a
version of CEPH that incorporates these features. In addition,
the Babel system [9], which uses an IDA implementation of
its own, is also worth mentioning.

In [10]-[12], there is a set of solutions for building efficient
and flexible end-to-end cloud storage. Information integrity
is preserved based on the IDA implementation embedded
in parallel processing patterns. In [13], the authors propose
the construction of a storage system mounted on a Hadoop
platform, incorporating IDA as the coding technique.

With regard to the reduction of the algorithm’s complexity,
a couple of works can be found that emphasize the improve-
ment of the costs associated with arithmetic operations, using
an approach reminiscent of the Fast Fourier Transform (FFT)
[14], [15]. A couple of works that use an information theory
perspective to study a generalization of IDA and the limits of
these types of constructions [16], [17] are also worth mention-
ing. Authors in [18] propose a data recovery algorithm based
on modular arithmetic resembling the IDA method applied
to distributed storage. Results show significant benefits con-
cerning processing time. Authors in [19] use a Reed-Solomon
code which is closely related to IDA in order to improve
data integrity and availability in cloud storage systems. This
solution is also an effective alternative to data replication.
In [20], the authors analyze IDA’s limitations in supporting
secure storage, proposing alternative schemes. Finally, in [21]
the original Rabin’s IDA is further modified to improve com-
putational performance, security, and integrity by combining
the All-Or-Nothing Transform with the Optimized Cauchy
Reed-Solomon code.

Ill. THEORETICAL ASPECTS

Let F be an arbitrary file of size 8|F| (bits). Using IDA, F is
transformed into 7 files, called dispersals, each of which has
a size 8|F'|/m (bits), such that any m of them are sufficient to
recover the original file. Also 1 < m < n. It is evident that
the total amount of information that is produced is 8n|F|/m
(bits). In other words, an excess of information equal to
8|F|(n/m — 1) (bits) is produced. The amount in parentheses

VOLUME 8, 2020

is called the stretching factor or stretching, for short. Let
k = n — m be the fault tolerance or the number of missing
dispersals that can be tolerated. Then, the same value of k can
be achieved with different stretching values. Thus, it would
seem interesting to tolerate a fixed number of faults with the
least stretching possible. Later on, this paper will argue that
as far as the robustness of a storage system based on this
approach is concerned, this option is not necessarily the best.

A. THE LINEAR TRANSFORMATION

In practice, IDA comprises two complementary processes:
dispersion and recovery. Dispersion uses a transformation
matrix A over a finite field made up of n rows and m columns.
Any combination of m out of n rows in A builds a set
of linearly independent vectors. These vectors make up a
square submatrix that is invertible. This property is achieved,
for instance, using the construction of a Vandermonde
matrix [14].

The input file F is also regarded as a succession of vectors
b1, by, ..., by over the same field as A. Each vector has m
coordlnates, i.e. has m dimensions. Using a linear transfor-
mation, which is the core of the dispersion process, each
vector l;i, i=1,...,L,is turned into a new vector ¢; of n
coordinates, according to the following operation,

Ab; = ¢;. 1)

Supposing m coordinates are selected from ¢; in a com-
pletely arbitrary way in order to produce a new vector d;,
this is equivalent to saying that ¢; loses k = n — m of its
coordinates or, alternatively, is obtained from l;,- through the
following linear transformation,

Bb; = d;, @)

in which B is built through choosing m rows of A, exactly from
the same positions of the coordinates of ¢; as contained in 3,:
From the properties of A, we know that the m rows in B are
linearly independent. Therefore, B is invertible. Ultimately,
b; can be rebuilt according to the following operation,

b; = B~'d;. 3)

This transformation is referred to as the inverse algorithm, but
it is better known as the recovery process.

This research investigates the impact of finite fields
GF(2%) and GF(2'%) as working fields. The first case com-
prises the set of 8-bit strings, whereas, the second one com-
prises the set of 16-bit strings. The reason for focusing on
these lengths is that the basic reading and writing operations
in any computer are carried out by using elements with a
length which is a multiple of 8 bits. For GF(2%), a polynomial
generator g(x) = x8 4+ x0 + x5 + x* + 1 was used, whereas,
for GF(2'%) a generator g(x) = 20+ x12 4 3 4+ x4+ 1 was
used, and both are primitive polynomials.

Finally, it is worth mentioning that the elementary arith-
metic operations on the selected working fields were imple-
mented based on two complementary methods called the dis-
crete logarithm and antilogarithm, respectively [22]. With this

159285

IEEE Access

R. Marcelin-Jiménez et al.: On the Complexity and Performance of the IDA

approach, any basic operation can be carried out in constant
time.

B. COMPLEXITY

Focusing first on the case of GF (28), as the working field,
for dispersion, the input file F is understood as a sequence of
vectors. Each vector has m entries or coordinates and each
entry has 8 bits. Therefore, if F has |F| bytes, it can be
decomposed into L; vectors such that

Ly = |F|/m.

Next, each vector is multiplied by matrix A, which has n
rows and m columns. Therefore, for each vector, n times m
products and n times m — 1 additions are calculated, which
means that the following is obtained for the entire file

nmL| = n|F| products,
n(m — 1)L; ~ n|F| additions.

Finally, each vector l;,' is transformed into a new vector ¢;,
with n entries. The first coordinate of ¢; is written in the first
dispersal, the second coordinate in the second dispersal, and
so on, for each of its n coordinates. Since there is a vector c¢;
for each vector l;i and each coordinate of ¢; produces a writing
operation, the total number to be executed is

nLy = n|F|/m writings.

As for the readings, the analysis is reduced to the fact that the
input file is read in 8-bit units, i.e., bytes, and therefore the
total of operations that are carried out is

|F'| readings.

Instead, during recovery, the first step is the construction
of matrix B of size m x m, which has to be inverted. Inversion
has an O(m>) complexity. To make up vector d of m entries,
an 8-bit element is read from each of the surviving dispersals.
Each recovered vector b; comes from a vector d; multiplied
by the inverse of B. Therefore, if theze are L vectors b,, there
will be the same number of vectors d;, each having m entries.
In other words, the total of readings to carry out will be

mL; = |F| readings.

The multiplication of matrix B~! and vector l;i implies, for
each row of the matrix, m individual multiplications and m—1
additions, therefore since there are m rows, n> products and
m(m— 1) additions are obtained. However, knowing that there
are as many vectors d; as L1, there will be a total number of

mzL] = m|F| products,
m(m — 1)Ly ~ m|F| additions.

Finally, each of the original vectors b; with m 8-bit entries
is recovered. Therefore, m writings were performed for each
b;, and there are L; vectors of this type, which accounts for

mL; = |F| writings.

159286

As for GF(219), this time, input file F is also understood
as a sequence of vectors. Each vector has m entries or coordi-
nates, but now each entry has 16 bits. Therefore, if F has |F|
bytes, it can be decomposed into L, vectors such that

= |F|/2m.

From this point forward, the analysis only changes by the
factor Ly, instead of L1, which means that for dispersion the
following overall number of operations are carried out,

nmLy = n|F|/2 products,
n(m — 1)Ly ~ n|F|/2 additions,
nly = n|F|/2m writings,
|F'|/2 readings.

&

As for recovery, there are
m’Ly = m|F| /2 products,
m(m — 1)Ly &~ m|F|/2 additions,
mLy = |F|/2 writings,
mLy = |F|/2 readings.

Q

To summarize, during dispersion, the cost of arithmetic
operations does not depend on m, but only on n. As for I/O
operations, a total of |F'| bytes are read, and n|F|/m bytes are
written, which means that outputs are very sensitive to the
n/m ratio. That is, for a fixed n, the cost is maximum when
m — 1 and becomes marginal when m — n. This decay
comes from factor 1/m.

Instead, during recovery, the cost of the arithmetic opera-
tions depends linearly on m only. Notice that when m — n,
stretching is reduced but it is necessary to process a larger
number of dispersals to recover the original file. Meanwhile,
for I/O operations, a total of |F'| bytes are read and the same
number of bytes are written. Therefore, the I/O operations
have a fixed cost.

IV. EXPERIMENTS AND RESULTS

This paper presents the experiments developed to assess the
direct and inverse algorithms’ performance and the impact of
different factors on their execution times. These experiments
were gathered into subsets called families in order to organize
the results. A family of experiments is defined by all the
possible combinations of parameters n and m, where 1 <
m < 14,2 < n < 15,and 1 < m < n. Each family
of experiments was executed for both GF (28) and GF (216),
thereafter referred to as IDA8 and IDA16, respectively. This
design aims to contrast the effect of the working field order
within each family. Each experiment corresponds to a partic-
ular combination of parameters n and m. Let C; = (m;, n;) be
the j-th individual experiment. Then the set of all combina-
tions is ordered lexicographically, that is, C; = (3,2), C; =
4,2),C3 = (4,3),...,C9 = (15,2),...,Co1 = (15, 14),
as it is described in Table 1. It is also important to point out
that all of the families were carried out under the same envi-
ronment, that is, the same hardware and software were used

VOLUME 8, 2020

R. Marcelin-Jiménez et al.: On the Complexity and Performance of the IDA

IEEE Access

as reported in Table 2. Besides, the HDD was reformatted
for each family of experiments and the file system cache was
emptied at the beginning of each experiment.

TABLE 1. Combination of parameters (n, m) for each experiment C;.

C1:3,2) C19:(8.5) C37:(11,2) Cs5:(12,11) C73:(14,8)
Ca:(4,2) C20:(8,6) C38:(11,3) C56:(13,2) Cr4:(14,9)
C3:(4,3) C21:(8,7) C39:(11,4) C57:(13,3) C75:(14,10)
C4:(52) C22:09,2) Cy0:(11,5) Css:(13,4) Cre:(14,11)
Cs5:(5,3) (C23:09.3) Cy1:(11,6) Cs9:(13,5) Cr7:(14,12)
Ce:(54) C24:094) Cy2:(11,7) Cp:(13,6) C7s:(14,13)
C7:(6,2) C25:09,5) Cy3:(11,8) Cp1:(13,7) Cr9:(15,2)
Cs:(6,3) C26:(9,6) Cy4:(11,9) Cp2:(13,8) Cgo:(15,3)
Cy:(6,4) C27:(9.7) Cy5:(11,10) Cp3:(13,9) Cg1:(15.4)

C10:(6,5) C28:(9,8) Cy6:(12,2) Cea:(13,10) Cg2:(15,5)
0111(7,2) 029:(10,2) 0471(12,3) 0652(13,11) 0832(15,6)
C12:(7,3) C30:(10,3) Cys:(12,4) Cge:(13,12) Cg4q:(15,7)
C13:(74) Cs31:(10,4) Cu9:(12,5) Ce7:(14,2) Cs5:(15,8)
0141(7,5) 032:(10,5) 0501(12,6) 0682(14,3) 0862(15,9)
C15:(7,6) Cs3:(10,6) C51:(12,7) Cgo:(14,4) Cg7:(15,10)
C16:(8,2) C34:(10,7) Cs52:(12,8) Cr0:(14,5) Css:(15,11)
C17:8,3) Cs35:(10,8) C53:(12,9) C71:(14,6) Csg9:(15,12)
C158:(84) C36:(10,9) Cs4:(12,10) C72:(14,7) Cyo:(15,13)
- - - - Co1:(15,14)

TABLE 2. Common experimental conditions.

0.S. Centos 7
Processor Core i7@3.2 GHz

RAM 64 GB

HDD SATA, 8.0 TB, 7200 rpm

A. FAMILY 1

All the corresponding experiments were performed on a
120 MB file. A procedure called pseudo IDA was also devel-
oped. It consists of reading and writing the same amount
of information involved in either the direct or inverse algo-
rithms, but without performing any type of processing. In this
way, the I/O times are measured exclusively. If they are
subtracted from the total times, then the time taken by the
execution of the arithmetic operations can be identified.
A new performance measure called processing speed was
also established. It was defined as the amount of information
received (from either the source file or the surviving disper-
sals) expressed in megabits, divided by the time it takes to
process this information in order to generate the output file(s)
(dispersals or recovered file, respectively).

With regard to the time involved, arithmetic operations are
practically negligible compared to R&W operations which
turn out to be very expensive. In fact, it was discovered that
arithmetic operations do not take more than 2 percent of the
total time. It was also observed that working on 16 bits shows
a small advantage over the 8-bit field, but this benefit vanishes
compared to I/O times. As for the graph corresponding to
the dispersion (direct) algorithm, a sawtooth pattern arises,
which can be explained by the amount of information that is
produced. During dispersion, a file of |F'| bits is read and the

VOLUME 8, 2020

algorithm produces n dispersals of |F'| /m bits each, yielding a
total of n|F'| /m bits to be written back to the disk. This means
that a quantity of redundant information is generated. Mean-
while, for the recovery algorithm, the input is m dispersals
of |F|/m bits each, which totals |F| bits, and the output is
the recovered file, which also has |F| bits. If the R&W oper-
ations have the greatest impact on the performance of both
algorithms, the redundant information that must be written
explains the aforementioned pattern, which only occurs in the
case of the direct algorithm. Based on this analysis and for
the sake of brevity, only the dispersion results will be shown
(Fig. 1).

4 IDA8 Dispersion
IDA16 Dispersion*
3.5
3
S2.5))
s 2
T
a15
1

o
wn

o

o
fury
o
N
o
w
o
N
o
v
o
D
o

70 80 90
Experiment number

FIGURE 1. Family 1, dispersion processing speed.

B. FAMILY 2

From the preceding results, a bottleneck related to the trans-
formations involved in (1) and (3) was found, corresponding
to the dispersion and recovery processes, respectively. In both
cases, before the matrix-vector multiplication is carried out,
it is necessary to assemble an input vector by reading each of
its entries from a file, which is stored in a disk and, finally, this
multiplication produces an output vector the entries of which
must be written into a file, back to the disk. This bottleneck
can be explained as a consequence of the difference between
the speed of arithmetic operations and the speed of the disk
and RAM exchange. Instead of exchanging one single entry
at a time, it was decided to upload/download a chunk of the
file using two intermediate buffers in RAM. A swap buffer
was implemented in order to bring file chunks from the disk
and another one to take file chunks to disk. This way, vector
manipulation is separated into two decoupled steps: vector
assembly/disassembly on RAM and chunk exchange between
buffers and disk. All the corresponding experiments for both
IDAS8 and IDA16 were performed, but this time such an
important improvement on the processing speed was achieved
that a bigger file was used to measure the involved times more
accurately. A 1 GB file was therefore chosen.

Results show that the buffers have an important impact on
the total times of direct and inverse algorithms so that larger
files can be processed in less time, compared to the previous
family of experiments. In this scenario, arithmetic operations
have a comparable duration in relation to I/O operations.
In this set of experiments, the difference between using 8 or

159287

IEEE Access

R. Marcelin-Jiménez et al.: On the Complexity and Performance of the IDA

16 bits as vector entries is more important and it is clear how
IDA16 outperforms IDAS. The processing speed grows by a
factor of 100 (roughly) compared to the speed measured in
the preceding family.

The chunk size has an optimal value that is around 100kB.
This can be explained as a trade-off (as can be conjectured)
between two conflicting operations involved in the disk: read-
ing/writing or carrying information. A very small chunk size
implies poor reading and fast carrying. Meanwhile, a very
large chunk size implies the contrary. It should be mentioned
that the sawtooth patterns are now observed in dispersion as
well as recovery. This is evidence of the weight or importance
of arithmetic operations that are now found in the same
proportion as I/O operations (Fig. 2).

700 TDAS Dispersion

IDA16 Dispersion+
600

Speed (Mb/s)
w H w1
o o o
o o o

N
o
o

100
0

10 20 30 40 50 60 70 80 90
Experiment number

FIGURE 2. Family 2, dispersion processing speed for the optimal chunk
size.

C. FAMILY 3

In this set of cases, all the corresponding experiments were
performed on the same file as the preceding family. Nev-
ertheless, there was a need to evaluate the impact of the
underlying HW which provides a 12-cores CPU and can
implicitly support parallelism. That is, as many concurrent
executions of the algorithm as i times the number of cores
(i = 1,2,4) were launched. This approach was found to
reduce the idle times associated with I/O operations. The
difference in speed between 8 and 16 bits appeared to be
minimal when m was rather small. Also, the processing speed
increased again by a factor of 3 - 5 times, compared to the
results of the preceding set of experiments. Finally, the pro-
cessing speed did not change significantly when the number
of concurrent instances of the algorithm was increased from
12 to 48 threads (Fig. 3).

D. ANALYSIS

In all the cases that were addressed, the cost of inverting
the matrix involved in the recovery process had a negligible
impact on the overall performance of the inverse algorithm.
This can be explained by the fact that despite the complexity
of matrix inversion, which is a cubic function of m, it cannot
be compared with the massive volume of the other arith-
metic operations that, as was seen, hinge on the size of the
source file.

159288

2500

IDA8 Dispersion
IDA16 Dispersion=

2000

)

1500

Mb/s

Speed (|

[l

000

500

0 10 20 30 40 50 60 70 80 90
Experiment number

FIGURE 3. Family 3, dispersion processing speed for 12 threads.

The most expensive case for dispersion occurred for a fixed
value of n and m = 2, which at the same time induced
the (local) minimum value on the cost of recovery and vice
versa. That is, for a fixed value of n and m — n, the cost
of dispersion reached its local minimum, while the recovery
obtained its local maximum. This implies that, from a land-
scape view, the overall most expensive case on dispersion
always happened under the combination (15, 2), whereas the
most expensive case of recovery always happened under the
combination (15, 14). Furthermore, we must consider that
there are alternative ways to address the costs of the algorithm
since this study shows the performance for each value of
n € [3,15] and the corresponding possibilities for m. For
an IDA-based storage system, a value of n as big as 15 does
not seem convenient, as will be argued later. Indeed, a value
of between 5 and 10 can provide all the advantages of the
algorithm without reaching the limit of the costs that has been
demonstrated.

Finally, it seems pertinent to think about what could be
considered a good combination of m and n. For a fixed
k = n — m, it is possible to have different combinations of
n and m but, although m — n would seem a good option
because the stretching is significantly reduced, the probability
that k£ or more faults occur increases with n.

Consider, for example, two instances of IDA with param-
eters (5, 3) and (15, 13), respectively. Both offer the same
tolerance, but the second case also provides a lower cost in
redundancy (their stretching values being 0.666 vs 0.153,
respectively). The second case offers a better stretching, but
the probability that there are two or more failures as a function
of n should be considered. This is obtained by modeling the
probability of faults with a binomial distribution in which p
is the probability that a storage component crashes. Given
n components, the probability that two or more faults occur
must be calculated, but this is the complementary probability
that zero or one failures occur. The result is a function that
grows with the value of n. The conclusion is that although it
seems interesting to increase n, while bounding the number
of failures that can be tolerated (n — m), the downside is that
this criterion can lead to greater risk. It is also important to
consider, as has already been established, that a large value
of n implies longer processing times. Therefore, alternative
m — n, in which n takes a very large value (e.g. > 10) does

VOLUME 8, 2020

R. Marcelin-Jiménez et al.: On the Complexity and Performance of the IDA

IEEE Access

not seem very convenient, since the cost of processing rises
but, above all, the risk in which the storage system is set also
rises, especially when their components age and increase their
probability to fail.

V. CONCLUSION

I/O operations play the most important role in IDA perfor-
mance and can be improved in several ways: i) by defining
a vector’s coordinates in units greater than 8 bits in order to
accelerate data exchange; ii) by building a swap device that
decouples RAM usage from HD (e.g., using a buffer or a solid
state disk); and iii) by using some form of parallelism. A mea-
sure called processing speed was defined in order to compare
the effect of each of these mechanisms in an objective and fair
way. The aggregate effect of all the aforementioned factors is
a speed that increases 500 times on average, from the first
to the last family of experiments. A method to characterize
the cost of I/O exchange and separate it from the cost of
arithmetic operations was built. It was found that there is an
optimal value in the size of the chunk exchanged between disk
and swap buffers that does not depend on the working field,
file size, or parallelism, but seems to be determined by the
HD profile. Findings apply to all algorithms involving linear
transformation (e.g., FFT).

As far as I/O operations are concerned, dispersion costs
strongly depend on the combination of parameters m and n,
which may produce an excess of redundant information to be
stored, whereas recovery always works with the same amount
of data, regardless of these parameters. This explains why this
approach has a deeper effect on dispersion, but nonetheless is
still important for recovery.

The results obtained in the experiments are perfectly
explained through the complexity calculations presented pre-
viously. However, there is a scale factor that can be extremely
relevant, which is determined by the technology that supports
the processing and the exchange of vectors that make up the
input and output files.

It is important to mention that all the elementary arith-
metic operations carried out in this work were based on
discrete logarithm and antilogarithm methods, which grant
each basic operation a fixed execution time. This was a key
requirement for the study. With this approach, two tables were
constructed based on the powers of the generator element
of the working field. The most serious drawback was the
size of its supporting data structures, since the main interest
lies in the atomic strings with a length which is a multiple
of 8 bits. Therefore, for IDA8 each table had 28 entries and
for IDA16, 21 elements. The possibility of working with a
higher order field was not considered due to the involved
complexity of constructing its corresponding tables. Even
though there exist alternative computational methods, which
are commonly used in cryptography, for instance, they are
beyond the initial scope.

Finally, this study provides the designer with criteria to
choose the combination of working conditions that best suits
the needs for a particular application. At the same time, this

VOLUME 8, 2020

piece of research has demonstrated that there is a large area
of opportunity related to I/O operations. Future research will
study the impact of the file system and its influence on the size
of the swap buffer. It is also worth considering the impact of
an alternative disk unit, such as a solid state disk (SSD).

ACKNOWLEDGMENT

The authors wish to express their gratitude to the anonymous
reviewers whose valuable comments helped to improve the
quality of this work.

REFERENCES

[1] M. O. Rabin, “Efficient dispersal of information for security, load balanc-
ing, and fault tolerance,” J. ACM, vol. 36, no. 2, pp. 335-348, Apr. 1989.

[2] M. O. Rabin, “The information dispersal algorithm and its applications,”
in Sequences: Combinatorics, Compression, Security, and Transmission,
vol. 1, 1st ed. New York, NY, USA: Springer, 1990, pp. 406-419.

[3] O. T. Lee, S. D. M. Kumar, and P. Chandran, “Erasure coded storage
systems for cloud storage—Challenges and opportunities,” in Proc. Int.
Conf. Data Sci. Eng. (ICDSE), Cochin, India, Aug. 2016, pp. 23-25.

[4] A. Afianian, S. S. Nobakht, and M. B. Ghaznavi-Ghoushchi, “Energy-
efficient secure distributed storage in mobile cloud computing,” in Proc.
23rd Iranian Conf. Electr. Eng., Tehran, Iran, May 2015, pp. 740-745.

[S] A. Bestavros, “An adaptive information dispersal algorithm for time-

critical reliable communication,” in Network Management and Control,

vol. 2, 1st ed. Boston, MA, USA: Springer, 1994, pp. 423-438.

P. Speciale, ““Scality RING: Scale out file system & Hadoop over CDMI,”

in Proc. 7th Storage Developer Conf., Santa Clara, CA, USA, 2014,

pp. 15-18.

[7]1 A. Cleversafe, ‘“Paradigm shift in digital assest storage,” Clever-
safe Whitepaper, 2008. [Online]. Available: https://www.evaluatorgroup.
com/document/object-storage-cleversafe-dsnet/

[8] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proc. 7th
USENIX Symp. Oper. Syst. Design Implement. (OSDI), Seattle, WA, USA,
2006, pp. 307-320.

[9]1 M. Quezada-Naquid, R. Marcelin-Jiménez, and J. L. Gonzilez-Compedn,
“Babel: The construction of a massive storage system,” Int. J. Web Services
Res., vol. 13, no. 4, pp. 36-53, Oct. 2016.

[10] D. Carrizales, D. D. SAinchez-Gallegos, H. Reyes,
J. L. Gonzédlez-Compedn, M. Morales-Sandoval, J. Carretero, and
A. Galaviz-Mosqueda, “A data preparation approach for cloud storage
based on containerized parallel patterns,” in Proc. Int. Conf. Internet
Distrib. Comput. Syst., Naples, Italy, 2019, pp. 478-490.

[11] M. Santiago-Duran, J. L. Gonzalez-Compean, A. Brinkmann,
H. G. Reyes-Anastacio, J. Carretero, R. Montella, and G. T. Pulido,
“A gearbox model for processing large volumes of data by using pipeline
systems encapsulated into virtual containers,” Future Gener. Comput.
Syst., vol. 106, pp. 304-319, May 2020.

[12] J. L. Gonzalez-Compean, V. Sosa-Sosa, A. Diaz-Perez, J. Carretero, and
J. Yanez-Sierra, “Sacbe: A building block approach for constructing effi-
cient and flexible end-to-end cloud storage,” J. Syst. Softw., vol. 135,
pp. 143-156, Jan. 2018.

[13] J. Ling and X. Jiang, “Distributed storage method based on information
dispersal algorithm,” in Proc. 2nd Int. Symp. Instrum. Meas., Sensor Netw.
Autom. (IMSNA), Toronto, ON, Canada, Dec. 2013, pp. 624-626.

[14] Y.D.Lyuu, “Information dispersal,” in Information Dispersal and Parallel
Computation, 1st ed. Cambridge, U.K.: Cambridge Univ. Press, 2004,
ch. 2, pp. 8-22.

[15] S.-J. Lin and W.-H. Chung, “An efficient (n, k) information dispersal
algorithm based on fermat number transforms,” IEEE Trans. Inf. Forensics
Security, vol. 8, no. 8, pp. 1371-1383, Aug. 2013.

[16] P. Béguin and A. Cresti, “General information dispersal algorithms,”
Theor. Comput. Sci., vol. 209, nos. 1-2, pp. 87-105, Dec. 1998.

[17]1 A. De Santis and B. Masucci, “On information dispersal algorithms,”
in Proc. IEEE Int. Symp. Inf. Theory, Lausanne, Switzerland, Jun. 2002,
p. 410.

[18] M. Deryabin, N. Chervyakov, A. Tchernykh, V. Berezhnoy, A. Djurabaev,
A. Nazarov, and M. Babenko, “Comparative performance analysis
of information dispersal methods,” in Proc. 24th Conf. Open Innov.
Assoc. (FRUCT), Moscow, Russia, Apr. 2019, pp. 67-74.

[6

—

159289

IEEE Access

R. Marcelin-Jiménez et al.: On the Complexity and Performance of the IDA

[19] M. Singh and S. Singh, “A framework for cloud storage system based
on information dispersal algorithm,” Int. J. Recent Technol. Eng., vol. 7,
no. 6C, pp. 145-148, 2019.

[20] L. Yao, J. Lu, J. Liu, D. Wang, and B. Meng, “A secure and efficient
distributed storage scheme SAONT-RS based on an improved AONT and
erasure coding,” IEEE Access, vol. 6, pp. 55126-55138, 2018.

[21] H. Lahkar and C. R. Manjunath, “Towards high security and fault tolerant
dispersed storage system with optimized information dispersal algorithm,”
Int. J. Adv. Res. Comput. Sci., vol. 5, no. 6, pp. 286-291, 2014.

[22] F. J. MacWilliams and N. J. A. Sloane, “Finite fieds,” in The Theory of
Error Correcting Codes, 1st ed. Amsterdam, The Netherlands: Elsevier,
1977, ch. 4, pp. 93-124.

RICARDO MARCELIN-JIMENEZ was born in
Mexico City, Mexico, in 1965. He received
the B.S. degree in electronics engineering
from the Autonomous Metropolitan Universidad-
Iztapalapa (UAM-I), Mexico City, in 1987,
the M.S. degree in computer engineering from
the National Polytechnic Institute (CINVESTAV-
IPN), Mexico, in 1992, and the Ph.D. degree in
computer science from the National Autonomous
University of México (UNAM), Mexico, in 2004.

He is currently a Full Researcher and Professor with the Department of
Electrical Engineering, UAM-I. He is the author of three books, more than
50 articles, and one invention. His research interests include the theory and
practice of distributed computing, especially issues related to coordination
and fault tolerance.

Dr. Marcelin-Jiménez is a Level I member of the CONACYT’s National
Research System (SNI), Mexico.

JORGE LUIS RAMIREZ-ORTIZ was born in
Mexico City, Mexico, in 1973. He received
the B.S. degree in electronics engineering and
the M.S. degree in information technologies
from the Autonomous Metropolitan Universidad-
Iztapalapa (UAM-I), Mexico City, in 2002 and
2011, respectively. Since 2004, he has been work-
ing as a private consultant, involved in the design
and construction of massive storage systems. His
research interests include distributed computing
and software engineering. For both degrees, he received a medal for academic
merit, awarded to the Most Outstanding Student.

159290

ENRIQUE RODRIGUEZ DE LA COLINA was
born in Mexico City, Mexico, in 1968. He
received the B.S. degree in electronics engi-
neering from the Autonomous Metropolitan
Universidad-Iztapalapa (UAM-I), Mexico City,
in 1994, the M.S. degree in computer science
from the Autonomous Metropolitan Universidad-
Azcapotzalco (UAM-A), Mexico City, where he
was awarded the University Merit Medal, in 1998,
the Diploma degree in management skills from
the Autonomous Technological Institute of Mexico (ITAM), in 2001,
and the Ph.D. degree in engineering in photonic communications systems
from the University of Cambridge, U.K., in 2009.

He collaborated as a Postdoctoral Associate Researcher with the Broad-
band Communications Group and Distributed Systems, University of Girona,
Spain. He has been a Professor-Researcher in the area of networks and
telecommunications with the Department of Electrical Engineering, UAM-I,
since August 2010. He is currently a coordinator of the postgraduate
studies in sciences and information technologies at UAM-I. Prior to joining
academia, he worked in the industry for more than 15 years as an engineer,
project manager, and consultant for various telecommunications companies.
His areas of research interest include cognitive radio networks, community
intranetworks, mission-critical wireless communications systems, and high-
capacity networks, including optical, and satellite networks. He is a Level I
member of CONACYT’s National Research System (SNI).

N

MICHAEL PASCOE-CHALKE was born in Mex-
ico City, Mexico, in 1970. He received the B.S.
degree in mechanical-electrical engineering and
the M.S. and Ph.D. (Hons.) degrees in electrical
engineering from the National Autonomous Uni-
versity of Mexico (UNAM), in 1997, 2005, and
2010, respectively.

He is currently an Associate Professor with the
Metropolitan Autonomous University-Iztapalapa
(UAM-I), Mexico City. His research interests
include wireless communications, location systems, and cognitive radio
networks. He is a Level I member of the CONACYT’s National Research
System (SIN).

JOSE LUIS GONZALEZ-COMPEAN was born in
Ciudad Valles, San Luis Potosi, Mexico, in 1973.
He received the Ph.D. degree in computer archi-
tecture from the UPC Universitat Politecnica de
Catalunya, Barcelona, in 2009.

He was a Visiting Professor with the Universi-
dad Carlos III de Madrid, Spain, and a Researcher
with CINVESTAV, Mexico. His line of research
includes cloud-based storage systems, distributed
computing, software construction models, and
infrastructure-agnostic storage and processing solutions for edge cloud envi-
ronments. His research interests include the design of fault-tolerant systems,
adaptability and availability strategies, task scheduling, and storage virtual-
ization.

Dr. Gonzdlez-Compedn is a Level I member of CONACYT’s National
Research System (SNI).

VOLUME 8, 2020

