IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 4, 2020, accepted August 17, 2020, date of publication August 31, 2020, date of current version September 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3020318

DPSO and Inverse Jacobian-Based Real-Time
Inverse Kinematics With Trajectory Tracking
Using Integral SMC for Teleoperation

HAMZA KHAN ~, SAAD JAMSHED ABBASI ", AND MIN CHEOL LEE", (Member, IEEE)

School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea

Corresponding author: Min Cheol Lee (mclee @pusan.ac.kr)

This work was supported in part by the nuclear research and development program through the National Research Foundation of Korea
(NRF), funded by the Ministry of Science and ICT (MSIT, Korea) under Grant NRF-2019M2C9A 1057807 and Technology Innovation
Program (10073147, Development of Robot Manipulation Technology by Using Artificial Intelligence) funded By the Ministry of Trade,
Industry & Energy (MOTIE, Korea).

ABSTRACT A six-degree-of-freedom robotic manipulator inverse kinematics (IK) for position control is
proposed for the bilateral teleoperation process that is implemented through a joystick for nuclear power plant
dismantling operations. The control strategy of the manipulator includes the use of the joystick to generate the
Cartesian space trajectory followed by the IK to yield the joint space trajectory for implementing position
control. In this paper, a novel technique for the IK is proposed. It involves the use of the particle swarm
optimization (PSO) algorithm with the inverse Jacobian (IJ). The special case of the dual PSO is based on
dividing the PSO algorithm into two such that the trajectory position and orientation are separately optimized
by the algorithms, resulting in a faster convergence. In contrast, the inverse Jacobian aids in generating a
smooth joint trajectory. The integral sliding mode control (ISMC) is proposed for position control because
it does not require information on system dynamics. The ISMC improves the system trajectory tracking
performance by using a switching gain to compensate for system dynamics and perturbations (disturbance
and unmatched uncertainties), ultimately reducing the time delay. The effectiveness of the PSO combined
with the 1J and the robustness of the ISMC in the teleoperation process are confirmed by the experimental

results.

INDEX TERMS Teleoperation, inverse kinematics, robotic manipulator, PSO, inverse Jacobian, ISMC.

I. INTRODUCTION

The capability of robots to operate autonomously and their
competence in performing numerous tasks have attracted the
interest of researchers and industries [1]. The scope of indus-
trial robot applications has been established from conven-
tional handling, assembly, and welding tasks to a wide range
of production activities [2]. Accordingly, robots and their
precise operation have increasingly gained popularity. More-
over, their use to accomplish tasks that are demanding and
dangerous to humans has significantly increased [3]. In indus-
trial applications, the main objective of replacing humans
with robots is to achieve efficiency and accuracy. For nuclear
power generation, the utilization of human-less automation
is required because of the hazardous thermal and radioactive
environment of nuclear power plants (NPPs) [4]. The sec-
ond stage after the shutdown of an NPP is dismantling,

The associate editor coordinating the review of this manuscript and
approving it for publication was Nishant Unnikrishnan.

159622

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

and recently, this phase has become a critical problem. After
the NPP disaster in Fukushima, Japan, NPP dismantling has
gained worldwide attention [5]. As a result, researchers and
various industries have continued to introduce new robot
technologies that are feasible for NPP dismantling in which
robots are mainly used for cutting and cleaning [6]—[8]. For
robotic control, the automotive or bilateral teleoperation pro-
cess may be employed to perform crucial functions in such
scenarios [9], [10].

To accomplish the desired tasks, the robots are guided by
humans through end-effector trajectory planning (position
and orientation), joint trajectory planning, joint motion con-
trol, and joint torque calculation and generation to accurately
track trajectories [11]. For each given task, the direct control
of the manipulator is not possible because there is no guid-
ance or path to be tracked for the task. Accordingly, guidance
starts with planning a trajectory for the manipulator’s end-
effector. This trajectory is then divided into several points.
The inverse kinematics (IK) of the robotic manipulator aids

VOLUME 8, 2020

https://orcid.org/0000-0002-6851-8231
https://orcid.org/0000-0003-4885-3347
https://orcid.org/0000-0003-4472-1267

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

IEEE Access

the robot to find the set of joint angles (joint trajectory) for
each point, aligning the robotic manipulator posture (position
and orientation) with the desired posture. The next step is
focused on the joint motion controller; each joint trajectory
becomes the target set-point of each linked joint motion
controller. Thereafter, to track the joint trajectory, sufficient
joint torque has to be generated [12].

The IK solution has a critical function in robotics. The
kinematics of robots describes the joint displacement rela-
tionship with the end-effector motion [13]. Usually, the end-
effector position considered for the IK solution to introduce
orientation causes complexity. The tasks assigned to the robot
are in the Cartesian space, whereas the control is in the
joint space. Therefore, through the IK, the joint trajectory
is generated for the desired end-effector trajectory. Differ-
ent techniques, including analytical and numerical methods,
have been used for the IK of robotic manipulators. The ana-
lytical method, which consists of geometric and algebraic
approaches [14], [15], is suitable for manipulators with less
degree of freedoms (DOFs). This is because the solution
becomes complex when the DOF is increased. The numerical
method is an iterative method based on the inverse Jacobian,
pseudo-inverse Jacobian, or Jacobian transform [16]-[18].

A. INVERSE KINEMATICS RELATED WORK

To date, different iterative methods have been used with the
IK in various ways to solve robotic problems. The closed
loop inverse kinematics (CLIK) algorithm, which implements
the IK iteratively to obtain the desired pose (position and
orientation) is proposed in [19]. The proposed algorithm is
based on the pseudo-inverse of the Jacobian matrix, J. This
approach was evaluated on a 6-DOF selective compliance
articulated robot arm (SCARA), but the results were not
satisfactory because the solution involved high computational
complexity. A numerical method of IK based on the inverse
Jacobian for a 5-DOF manipulator is proposed in [20]; how-
ever, it is concluded that when the inverse of the Jacobian
is zero, singularity occurs. An iterative method for the IK
using the pseudo-inverse Jacobian for a 7-DOF manipulator is
presented in [16]. However, this Jacobian-based IK solution,
which is an adapted method, requires calculation when both
position and orientation are to be solved.

To overcome the computational complexity and extended
calculation time, researchers have proposed many alterna-
tives. Among these are the heuristic optimization techniques,
which are emerging in robotics. Heuristic techniques include
genetic algorithms [21], ant-bee colony [22], and particle
swarm optimization (PSO) [23]. In these techniques, the solu-
tion is iteratively improved by adopting a set of operations
that mimics a natural process, such as the flocking of birds.
For a non-linear constrained problem, the most promising
solution is the PSO. Despite the different proposed techniques
for IK, constraints are barely considered. Many research
works have implemented the IK using the PSO and evalu-
ated their results for different types of robotic manipulators.
In [23], the PSO was used to statistically analyze the IK

VOLUME 8, 2020

in robotics; it was assessed in its capability of easily handling
the IK of the robotic manipulator without computing the
inverse model. In [24], the PSO was employed to solve the
IK problem of a 4-DOF robotic manipulator based on the full
resampling of particles. The PSO was used for an IK with
high DOF and yielded the desired position and orientation
with inconsiderable error; a self-collision avoidance was also
added to the IK using the PSO [25]. Single-objective and
multi-objective PSOs were proposed for 5-DOF and 7-DOF
robotic manipulator end-effector positions in [26]. The idea
of using the IK with the PSO for a cluttered environment with
obstacles was presented in [27]. In this approach, the par-
ticles are separated into subgroups with specific tasks to
achieve a faster 3-DOF planner robot convergence. In [28],
the IK solution based on the PSO algorithm for a 7-DOF
robot manipulator was proposed; the results were validated
through simulation. An improved PSO (IPSO) for the solu-
tion of IK was presented in [29]; the algorithm was also
simulated. A new PSO paradigm, known as dual particle
swarm optimization (DPSO), which divides the PSO into two
algorithms (PSO-1 and PSO-2), was introduced in [30]. The
two algorithms are used to determine the IK for position and
orientation separately. Accordingly, the solution converges
faster toward the desired posture. After generating the joint
trajectory using the IK, the second exigent task is the design
and implementation of the manipulator motion control.

B. POSITION CONTROL RELATED WORK

Different control algorithms have been proposed and imple-
mented in the robotics field to achieve reliable manipula-
tor performance. Each controller has certain advantages and
disadvantages. In the robotics industry, the proportional—
integral—derivative (PID) controller, starting from the conven-
tional PID control, has a long history [31]-[34]. It is a linear
control and is extremely easy to implement; the problem is,
it cannot control non-linear systems. Consequently, the slid-
ing mode control (SMC), widely known as a robust non-linear
control, was introduced [35]-[37].

The SMC is robust against parametric uncertainties and
system non-linearities, but it has some drawbacks. This con-
trol consists of reaching and sliding phases in which the sys-
tem reaches the sliding surface and remains on it. However,
because of non-linearities, high switching gains are required,
causing the system to shift back and forth on the desired
surface and introduce chatter to the system response [38].
To remove the chatter, a non-linear compensator, known as
sliding perturbation observer (SPO) [39], [40], is introduced.
The SPO uses the partial feedback (position only) of the
system to eliminate the effect on non-linearities from the
system response by estimating the system state and pertur-
bation (non-linearities, uncertainties, and disturbances); this
estimated perturbation is useful in removing the chatter [41].
The integration of the SMC with the SPO (SMCSPO) pro-
duces a robust non-linear controller even in the presence of
non-linearities [42].

159623

IEEE Access

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

The problem with using such a non-linear control is that
it requires certain information regarding the system dynamic
model (in the case of SPO, this is not accurate) to precisely
control and estimate the perturbation. Moreover, it is exigent
to derive a dynamic model for a 5-DOF robot. Consequently,
another non-linear controller, known as integral sliding mode
control (ISMC), has been introduced for the motion control
of manipulators. The advantage of the ISMC is that it does
not require system dynamics [43], [44]. The ISMC switching
gains compensate for the absence of perturbation and system
dynamics; hence, it has an edge over other controllers in terms
of simplicity and robustness.

Another crucial problem is time delay, which is a phe-
nomenon observed in various engineering systems [45]-[47].
Usually, these time delays are in communication (mostly
in the teleoperation process), physical model, and control
process. Currently, in the actual system, time delay is either
inexistent or negligible. However, to observe the controller
performance and stability in the presence of time delay, artifi-
cial communication and control process time-varying delays
are introduced.

In the formulation of a practical control problem, the actual
plant and its mathematical model used for designing the
controller differ. This difference or mismatch emanates from
unknown disturbances, plant parameters, and unmodeled
dynamics, resulting in control process delays and system
instability [48]-[50]. There are two phases in the sliding
mode control: reaching phase (the plant reaches a prede-
fined sliding surface in finite time) and sliding phase (the
plant tends to remain on the sliding surface). In the sliding
phase, the system persists to be invariant to parametric and
nonparametric uncertainties, whereas in the reaching phase,
the system is sensitive to disturbances; therefore, stability is
not guaranteed [43] and may lead to the time delay in the sys-
tem response. Accordingly, a new control technique, namely
integral sliding mode control, introduces a new auxiliary
sliding mode control law (or sliding surface) to compensate
for the bounded disturbances and uncertainties. The ISMC
eliminates the reaching phase of the SMC by immediately
starting the sliding mode; it makes the system response insen-
sitive to disturbances and aids in reducing the control process
or system response delay [45], [49].

In this research, an application of the bilateral teleoperation
process to control the manipulator using a joystick for the
NPP dismantling is presented; a haptic feedback is also inte-
grated to enable the operator to feel the environment. Initially,
the inverse Jacobian method for the IK was implemented in
the presence of joint and workspace constraints. In the present
study, in the robotic manipulator, which is a SCARA-type
robot, the error of the inverse Jacobian in the orientation is
greater than the defined error range because of the kinematic
structure of the robot. To reduce the error, the IK with the
PSO is implemented.

The drawback of the classical PSO is that it is time consum-
ing. This is because numerous particles are required to find an
optimal solution within the defined error range when solving

159624

for both position and orientation simultaneously. Accord-
ingly, the new PSO paradigm, the DPSO, is introduced. The
DPSO uses two PSOs—one for position and another for
orientation. In certain cases, the DPSO drives the solution to
converge toward the desired solution faster than the PSO.

When the PSO-based IK is implemented for a planned
trajectory, the generated joint trajectory has a wider angle
variation (up to 3 rad) between two points in the path. This
is because the PSO attempts to find the solution randomly
without considering the previous solution, making it impos-
sible to implement the position control using the joint tra-
jectory. Considering the defined error range and variation in
the joint trajectory, a novel IK technique for the trajectory is
introduced: the DPSO integrated with the inverse Jacobian
(DPSOL). The first (starting) point in the trajectory is solved
using the DPSO; then, the inverse Jacobian solves for the rest
of the trajectory. The resulting error is less than that of the
inverse Jacobian with a smooth joint trajectory, making the
DPSOIJ compatible for position control implementation in
the manipulator. This is then followed by the ISMC design
and implementation for the virtual manipulator teleoperation
control using a master joystick while considering the time
delay in the system. The simulation and experimental results
of the IK using the DPSOIJ and position control using the
ISMC effectively summarize the performance of the DPSOIJ
and ISMC.

The main contributions of this research may be summa-
rized as follows.

i. The proposed DPSOIJ-based IK is a novel technique
that generates a smooth trajectory with less errors in
the desired posture.

ii. The design and implementation of a stable ISMC to
compensate for the effect of disturbances and time
delay controls the system without considering the sys-
tem dynamics in teleoperation.

The rest of manuscript is organized as follows. Section 2
describes the system design and kinematics of the virtual
manipulator for the NPP dismantling. The proposed IK algo-
rithm is presented in Section 3. Section 4 discusses the math-
ematical design of the control algorithm. Section 5 explains
the experimental setup, and Section 6 presents the simulations
results. Section 7 elaborates on the experimental results, and
Section 8 presents the concluding remarks.

Il. SYSTEM DESIGN AND KINEMATICS MODEL
The robotic manipulator is a 6-DOF SCARA-type robot. The
first link, shown in Figure 1, is composed of a telescopic mast,
which is actually a prismatic joint. The other manipulator
is a 5-DOF robotic arm; it is used for cutting applications
during dismantling with a working tool at the end-effector.
The computer-aided design (CAD) model of the SCARA is
presented in Figure 1.

SolidWorks is employed to generate the virtual proto-
type of the actual system. The axis configuration is shown
in Figure 2. The red lines indicate the axis of rotation

VOLUME 8, 2020

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

IEEE Access

FIGURE 1. CAD model of 6-DOF SCARA type robot.

FIGURE 2. Axis configuration of 6-DOF SCARA robot.

TABLE 1. DH parameters of SCARA robot.

Joint 6 (rad) d (mm) a (mm) a (rad)
1 0 dy * 0 0
2 0, 0 0 ="/
3 05" 750 0 ”/2
4 0, 0 820 0
5 05" 0 0 ”/2
6 0 730 0 0
TABLE 2. Joint space limitations.
d 0," 05" 0, 05" 06
2500~ —2m~2m —2m~2m —3m 3w —3m 3m —2p~2m
10000 4 4 4 4

TABLE 3. Joint information.

Joint Type Mass (kg)
1 Prismatic 345.9
2 Revolute 88
3 Revolute 139.7
4 Revolute 129.4
5 Revolute 20.8
6 Revolute 11.7

(single-headed arrow) and the prismatic joint of the 6-DOF
SCARA robot. For the kinematics, the Denevit—Hartenberg
(DH) parameters of the robot are summarized in Table 1. The
robot joint space limitations are listed in Table 2, and the joint
information on the manipulator is summarized in Table 3.

VOLUME 8, 2020

IIl. INVERSE KINEMATICS (IK)

In this section, the inverse kinematics of the 5-DOF robotic
manipulator is discussed. The prismatic joint is considered
and separately controlled from the robotic arm.

A. INVERSE JACOBIAN

The inverse Jacobian method is an iterative numerical method
for solving the IK. The Jacobian matrix is a first-order partial
derivative matrix of all the links [51]. The iterative form of
the Jacobian method can be written as

Giy1 = 6; +dO = 6; +J " 'dP (1)

where i is the number of iterations to be performed; P =
[PxPyPZVJQ(p]T is the posture matrix containing three position
and three orientation coordinates; J ~! represents the inverse
of the Jacobian matrix. Considering the 5-DOF robotic arm
case, the coordinates for the general forward kinematics can
be expressed as

j" do,
dy do,
ol =] a6 @)
doy 46,
dé, i,
do,

where dx, dy, and dz are the differential motions of the robot
hand in the x, y, and z coordinate axes, respectively; d6y, do),
and d6, are the changes in the end-effector roll, pitch, and
yaw, respectively. Equation (2) can also be represented as

[D] = [J][Ds] 3

where J is a 6 x5 Jacobian matrix. To calculate angle 6, the IK
can be written as

[Dg] = [~ 11[D])
46, dx
dy
do, d
doy | =1 *®)
do,
dby
46 dé)y
3 do,

where J ! should be calculated using J, which is not a square
matrix. Therefore, to solve the inverse Jacobian matrix, a
pseudo-concept is required [52]:

—1
G (WT) =1)
-1
Joxs [JsTx6 (J6x5J5T><6)] =Jigl =1 @)

where ‘15_><16 is the new inverse Jacobian matrix, which
is obtained using the pseudo-inverse concept [53]. The
pseudo-inverse is given as

T =TTy (8)

159625

IEEE Access

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

where
T5te =4 6W6xsTa6) ©)
Finally,
dbsx1 = J5, dPoxi (10)

where the Jacobian matrix at this point is expressed as (11)
and (12), shown at the bottom of the next page.

where o; is the distance between the origin and ith-axis
coordinate; Rﬁ is the orientation matrix from the ith-axis to
Jjth-axis.

B. PARTICLE SWARM OPTIMIZATION (PSO)

The PSO is an optimizing technique that attempts to improve
its population solution iteratively; its development is pre-
sented in [54]. In the original formulation, the authors
presented an optimization technique that contains several
particles (called swarm) attempting to optimize the problem
by exploring in the problem search space. The measure of
quality is a fitness function (objective function), f(obj), which
depends on different parameters. The algorithm consists of
several particles, and each particle position is considered as
a possible solution to the problem. The particle iteratively
changes its position with velocity. After the kth iteration,
the position and velocity of the independent particle in the
generated population, P, at the kth iteration is defined by
M-dimensional vectors as follows:

i i i T
X (k) = [xl(k)...xM(k)] (13)
i i i T
V) = [0 v b] (14)
where i = 1...|P||; x and v represent the position and

velocity of the ith member of the M-dimensional vector,
respectively. In the PSO, each particle also has informa-
tion regarding its neighbors through information exchange;
accordingly, the particles are aware of the globally best parti-
cle in the swarm, and the swarm follows the best particle. The
communication of each particle with its neighbor is defined
as

Nik)y={jeP:i<j} (15)

where the symbol < represents the information exchange
between two particles. The movement and direction of par-
ticles within the search space in the PSO depends on the per-
sonal best solution, X;;B(k), and the global best, Xyp(k) [55].
When the neighbors communicate, they share the information
regarding the best-known particle, which is globally best in

the swarm. Based on this information, the new globally best
particle is updated by satisfying the condition in Eq. (16):

Xep () = [X1 (0 (0b)) = Xj(h) < X 0] (16)

where X,p (k), X;B (k), and f (X;B(k) are the global best at
the kth iteration, the personal best of the ith particle at the
kth iteration, and the objective function to compute the per-
sonal best of the ith particle at the kth iteration, respectively.
The particles at every iteration update their position and
compare their personal best with the global best. If the per-
sonal best of a particle at the kth iteration in minimizing the
problem is less than the global best described in Eq. (16),
the global best is updated with that particle’s personal best.
The personal best of each particle is updated according to
Eq. (17), i.e., if the personal best of the ith particle at the kth
iteration is less than the last known personal best of the same
particle, then XI’; 5 updates as follows.

Xip(k) = {X;B(k) : f(obj) < X;'B} (17)

As the PSO algorithm starts, the initial population with n
number of particles is generated within the predefined range
with nil velocity. At each iteration, the ith particle velocity
and position are updated according to Egs. (18) and (19):

Vik+1) = o (k) +cy.rand. (X;B (k) — x* (k))
+¢o.rand. (XgB k) — x' (k)) (18)
Y+ =x"k)+vVk+1) (19)

where w represents the inertia coefficient; ¢; and ¢, are
the learning or acceleration factors; rand represents the
generation of random numbers within the specified range
[—Vimaxs Vmax]. As the particles approach the desired result,
the velocity is optimized in such way that the process is
decelerated without causing the solution to deviate from the
target result or have a large or increasing error.

C. PROPOSED ALGORITHM

The analysis of the various techniques for solving the
real-time IK of a 5-DOF robot for NPP dismantling includes
the calculation of the end-effector position (in Cartesian
space) and orientation (roll, pitch, and yaw) simultane-
ously. However, the allowable calculation time for the first
point in the trajectory is considerably brief, i.e., f400 =
0.25s. The maximum allowable tolerances for the position
and orientation of the end-effector are E7, = +5mm and
E7, = £.0175rad, respectively.

JZ[ZOX(OS—OO) 71 X (05 — 01) Z4><(05—04):| an
20 ez
0
_ _ pl pd _ pl 4
20=10],21=Rpyz0, -+ ,24 =R3z3 = Ry- - R320 (12)
1

159626

VOLUME 8, 2020

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

IEEE Access

To achieve better results for a single point in Cartesian
space, a new PSO paradigm, known as DPSO, was proposed
to solve the IK problem using the combination of two differ-
ent PSO algorithms. For the trajectory, a new combination of
the inverse Jacobian and DPSO, known as dual particle swarm
optimization integrated with the inverse Jacobian (DSPOLJ),
was formulated.

1) DPSO

The PSO algorithm iteratively improves the solution by con-
stantly updating the information in each particle based on
the best solution thus far. Each particle moves with a certain
velocity toward the desired point. As the particle approaches
the best particle in the population, its velocity decreases. The
proposed scheme uses two different PSO algorithms working
separately—one for analyzing the position and the other for
the orientation. First, PSO-1 attempts to reach the target
position of the end-effector. Then, PSO-2 slightly adjusts the
joint angles to obtain the desired orientation. The following
steps describe the DPSO process.

Step 1: The initial population of N particles is randomly
generated within the predefined range; N is the number
of particles generated depending on the robot’s DOF. It is
defined as

_ Ndof X d}v (20)

Tallow X ETp

where ng,r represents the robot’s number of DOFs; dy is a

constant number (dy = 10 in the simulation) for increasing
the population range.

Step 2: The global best is set to infinity, and the forward
kinematics is computed for each particle. The function of the
forward kinematics of a robot whose joint configuration is
defined as g; (k) is given by

Opi 0,0
Fiine (qi (k) = *Tyy (g (k) = [[O Rné<k>0] pﬁi(k)]

2D

where ORj",,(k) e R3¥3 and 0pj‘l,,(k) e R3*! represent the
end-effector orientation and position, respectively.

Step 3: The objective function for each particle is
computed.

fobjl = [|Pg — Pcll
= =%+ G =P+ a— 2 (22)

where Py (x4, Va,zq) and Pq(xc, y¢, zo) are the desired and
current positions in the Cartesian space, respectively.

Step 4: Each particle’s personal best is computed according
to Eq. (17). Then the global best is selected according to
Eq. (16). The position for the next particle is updated using
Eqgs. (18) and (19).

Step 5: The personal best and global best are computed
at each iteration. Check whether the termination criteria
have been satisfied. The algorithm can determine whether
the desired joint variable for the required position has been
obtained.

VOLUME 8, 2020

Step 6: If the required position is obtained within E7, =
+5mm, terminate all iterations for the position.

Step 7: Generate M particles around the global best
obtained in Step 6; M is defined as

_ itpsol X Ipsol

- E, x dy
where if)51, tpso1, and dy; represent the total iterations per-
formed by PSO-1 to obtain the desired position, the time used
by PSO-1, and the constant that causes M < N, respectively.
In this case djyy = 10. For PSO-2, the global best particle of
PSO-1 with a random orientation of 0.174 rad is used. The
probability of maintaining the end-effector position obtained
by PSO-1 while solving for the orientation in PSO-2 is greater
by using the global best particle obtained by PSO-1 in PSO-2.

Step 8: The newly generated particles for PSO-2 start
adjusting the joint variables in such a way that the
end-effector position remains the same; however, the desired
orientation is obtained by repeating Steps 2-5.

The particle velocity in PSO-2 is reduced as the newly gen-
erated particles move into the search space near the desired
position. If the acceleration factor is high, then an output error
will occur because the particle will search in the out-of-range
space. To solve this problem, the new velocity used for PSO-2
is defined as follows.

Vitk+1) = oy (k) + ca.rand. (XgB k) — x' (k)) (24)
The objective function of PSO-2 is
fobj2 = Ppso |Pg — Pell + Opso 104 — Ocll

= ppsofobjl +Gpsa\/(Rd _Rc)2 +(Py _Pc)2 +Ya— Yc)2
(25)
where Og (Ry, P4, Y;) and O (R, P, Y.) are the desired and
current orientations, respectively; R, P, and Y represent the
roll, pitch, and yaw, respectively. Moreover, 0 < pp50 < 1
and 0 < op5 < 1 are the weighting importance of posi-
tion and orientation, respectively. In the proposed algorithm,
Ppso and oy, are set as 0.25 and 0.75, respectively, because
PSO-2 searches for the desired orientation without affecting
the position. However, in some cases, Ppso = Opso = 1,
resulting in a single PSO or traditional PSO because of the
complex desired posture. In such cases, only Eq. (25) is used
for the entire solution of IK. Thus, it can be concluded that
occasionally, either the traditional PSO or DPSO is employed.
The current study generally focuses on the DPSO.

Step 9: Terminate the iterations if the desired orientation is
obtained within E7;, = £5mm and Eg, = £.0175 rad.

Step 10: The algorithm checks whether the results are
within the space limitation of the robot. Otherwise, the algo-
rithm will adjust them within the specified range.

The DPSO steps are summarized in the flowchart shown
in Figure 3.

(23)

2) DPSO INTEGRATION WITH INVERSE JACOBIAN
After the separate implementation of the inverse Jacobian
and DPSO methods, the selection was based on the errors

159627

IEEE Access

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

PSO-1 Compute fonj

Check the stopping
criteria

Input desired

Update X5 and X,
posture paate Zps and Agn

1

Stop PSO-2 d j
Continue the PSO-2

till max iterations

Generate N
particles for PSO-1

Perform forward
kinematics

Compute fypj1

Update Xy and X

Continue the PSO-1
till max iterations
Generate M
particles for PSO-2
!

Perform Forward
Kinematics

FIGURE 3. DPSO flowchart.

of position and orientation. For a single point, the inverse
Jacobian has an orientation error exceeding the specified
tolerance when the position and orientation are solved simul-
taneously. In contrast, the DPSO satisfies the error conditions.
Subsequently, the desired trajectory for the end-effector is
introduced and divided into several points; for each point,
the IK was performed using both the above-mentioned
methods.

The DPSO was ultimately found to be the worst method
for the end-effector joint trajectory. There was a substan-
tial variation in the joint angle for which it was impossible
to implement position control for the robotic manipulator.
In contrast, the joint trajectory was observed to be smooth
using the inverse Jacobian. For a trajectory to complete the
task with a smooth joint path and less errors, a new technique
combining both the inverse Jacobian and DPSO is proposed.
The mathematical expressions of both methods are the same
as those given previously; the only aspect that has changed,
however, is the Jacobian matrix. After observing the DPSOIJ
responses, the first three rows of Eq. (11) are considered as
forming the new Jacobian matrix. It is actually the position
matrix given as follows.

- 24 X (05— 04) |
(26)

J=[z0 % (05 — 00) z1 X (05— 01)

The proposed DPSOIJ algorithm works in a way similar to
that in obtaining the design trajectory, which is divided into
several points. The IK for the first point, which is the start-
ing (initial) posture of the robotic manipulator, is performed
using the DPSO. For the rest of the trajectory, the inverse
Jacobian is employed. Based on the different simulations of
IK using the inverse Jacobian, it is observed that the initial
point in the trajectory must be accurately solved. When a
robot has an initial orientation error caused by singularity,
the rest of the trajectory orientation will have the same initial
error in the subsequent desired trajectory even if the IK is used
to reach the desired final orientation. Therefore, considering
the behavior of inverse Jacobian, the initial IK point was
solved using the DPSO to achieve accurate calculation and
then followed by the inverse Jacobian to obtain a smooth joint
trajectory.

159628

IV. INTEGRAL SLIDING MODE CONTROL (ISMC)

In the field of robotics, various control algorithms, including
linear and non-linear controllers, are widely used. In the
non-linear controller type, the SMC technique is extremely
useful for designing the controllers in the system with
matched disturbance uncertainties. The compensated dynam-
ics of the system become insensitive to disturbances and
uncertainties in the case of sliding mode control. This insen-
sitivity is only achieved by reaching the sliding surface and
establishing sliding motion [49]. However, the SMC requires
system dynamics to compensate for the non-linearities.
Therefore, to overcome this problem in system dynamics,
the ISMC is proposed. The ISMC actually compensates for
the disturbance by designing an auxiliary sliding surface
while retaining the order of the uncompensated system.

A. ISMC FORMULATION
The auxiliary sliding surface is defined as
s=0—z 27

where s, o, and z are the auxiliary sliding surface, conven-
tional SMC sliding surface, and integral term, respectively.
The actual sliding surface of SMC is given as

oc=¢+c-e (28)

where e and c are the error and positive constant, respectively.
Consider an uncertain system given in the following state
space equation:

X=f@)+BX)u+ Y1) (29)

where x € R”" represents the state vector; u € R™ represents
the control input; W(x, #) represents the perturbation. For
such systems, the dynamic form of the actual sliding surface
is as follows.

o=V (x,t)—u (30)

Itis assumed that W (x, r) < H, where H is the upper bound
of perturbation. To verify the Lyapunov stability in the SMC
case, the following condition must be satisfied.

0-6<0 31)

Moreover, the control input should be greater than the
upper bound of perturbation. In the ISMC, the control is
divided into two parts as given by

u=uy+u (32)

where u; initially compensates for the bounded perturbation
without reaching the phase, and u, causes the sliding variable
to be equal to zero over time. The integral term of the ISMC
is defined as follows.

I=-uw (33)

The auxiliary sliding variable dynamics, §, can be
calculated as

§=06—-z2 (34)

VOLUME 8, 2020

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

IEEE Access

where § is obtained by integrating Egs. (30), (32), and (34).
§=W(x, 1) = (u1 +uz2) — (—u2) (35)
After solving Eq. (35), s, is obtained as follows.
S=W(x,x,1t) —u (36)

In finite time, the control input, u;, drives the auxiliary
sliding variable to zero and is given as

uy = K - sat(s) 37

where K represents the switching gain. In the auxiliary sliding

mode, the equivalent control input can be calculated using the
condition s = 0 (5§ = 0).

§=W(x,x,1) —Ueq =0 (38)

Uleqg = W (x, X, 1) (39)

The actual dynamics of the system calculated using

Egs. (30), (32), and (39) during the auxiliary sliding mode
are given as

6 =W (x,x,1) = (U1eqg + u2) (40)
6=V (x,x,1)—VY(,xt)—u 41
6 =—u (42)
upy=k-o,k>0 43)

where k is a constant. In the ISMC, the actual sliding surface
starts and remains at zero because there is no reaching phase.
To start the auxiliary sliding surface from zero without the
reaching phase, s = 0 must be imposed in Eq. (27) such that
the following are obtained.

50) = 00 —20) =0 (44)
0(0) = Z(0) (45)
2(0) = Xd(0) + € - Xc0) — X2(0) — € - X(0) (46)

As previously discussed, the ISMC does not require system
dynamics, and only the feedback of the system output is
required. The control input ISMC is then derived as follows.

u=p-sat(s)+k-o 47
B. STABILITY
The Lyapunov stability analysis is the most popular approach
to prove the stability and evaluate the stable convergence
property of the non-linear controller [56]. To investigate the

ISMC stability, the Lyapunov function [57], [58] is defined
as

1 2
V() = 35 @) (48)

where V (0) = 0and V (¢) > O for s (#) # 0. Taking the first
derivative of Eq. (48) with respect to time yields

V(t) = s(0)i(t) < 0, s(t) £ 0 (49)
where * (#) is given as

(13 = —Ksat (s) + ¥ (x, %, 1) (50)

VOLUME 8, 2020

in which K is the switching gain with the assumption that
K > |W(x,x',1)|. Substituting Eq. (50) into Eq. (49) yields
the following.

V(t) = s (1) [—Ksat (s) + W (x, %, 1)]
S —IsOIK + sV (x, X, 1)
< —IsOI[K - |¥xx,n|]] <0 (51)

A

To satisfy Eq. (51), K should exceed the upper bound of the
absolute value of perturbation, i.e., K > |\ll(x, x', 1) |max. The
foregoing analysis ensures stability because V (¢) is negative.

Master Device

Command

-1<data<l| End-Effector || x,y z
. Inverse
-) (Data mapping)
Haptic] l
Joint
F Trajectory

Feedback
d, 6

Je :
Control input, u :
Environment | put, Position
Control

Contact

Slave Device

d : Prismatic joint displacement
F: End-effector force

6: Joint angles
fe: Environment (Contact) force

FIGURE 4. Bilateral teleoperation experimental structure.

V. EXPERIMENTAL ENVIRONMENT

The experimental structure of bilateral teleoperation is
described in Figure 4. MATLAB/Simulink is used for the
design, implementation, and validation of the proposed IK
and position control algorithm.

A. VIRTUAL ROBOT MODEL

The modeling of robotic manipulators can be performed
either by using the Euler-Lagrange method in terms of
the equation of motion or by using a CAD model with
the SimMechanics MATLAB toolbox to represent an actual
system [59], [60]. SimMechanics is a block diagram envi-
ronment for modeling and simulating mechanical systems
that use the standard Newtonian dynamics of forces and
torques [61]. The prototype of the actual system is modeled
using SolidWorks and then exported to the Simulink environ-
ment. This is accomplished using the SimMechanics toolbox,
which computes the system dynamics based on the informa-
tion provided by the designer and the physical connections
of joints [62]. Figure 5 presents the Simulink (SimMechanics
toolbox) model of the virtual robot.

B. EXPERIMENTAL SETUP

In this research, the experimental setup is composed of a
3-DOF joystick as the master device, and a virtual 6-DOF
SCARA type robotic manipulator. This manipulator has a
1-DOF telescopic mast and a 5-DOF robotic manipulator as
a slave with an attached working tool for operation at the

159629

IEEE Access

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

FIGURE 6. Bilateral teleoperation experimental setup.

end-effector in a real hardware. The bilateral teleoperation
experimental setup is presented in Figure 6.

The joystick for generating the desired trajectory has a
vibration function for haptic feedback. The experimental
setup in Figure 6 presents an application of the bilateral
teleoperation with the haptic feedback in the field of NPP
decommissioning. This is appropriate because the thermal
and radioactive environment of the NPP for decommissioning
requires humanless or remote automation [4], [63]. The vir-
tual prototype of the manipulator representing the real-time

hardware is controlled through the joystick command using
the proposed IK and position control algorithm. The Simulink
bilateral teleoperation experimental structure is described
in Figure 7.

The joystick is connected to the Simulink by USB commu-
nication through the Simulink joystick driver block, as pre-
sented in Figure 7. Each joystick movement produces a data
value in each axis ranging from —1 to 1 (unitless). The data
values are then magnified by multiplying them with the con-
stant gain (500 in the current study) depending on the maxi-
mum reachable workspace of the manipulator.

The master joystick design is asymmetric with the slave
robotic manipulator; hence, the joystick data are used to
determine the end-effector’s desired position in Cartesian
space. Next, the IK, which generates the joint trajectory for
the designed position controller, is derived. By using this con-
troller, the SimMechanics model is manipulated and driven.
This model represents the actual system hardware and aids in
visualizing the system in a parallel monitoring window for a
visual feedback.

C. HAPTIC FEEDBACK

The bilateral teleoperation with the haptic feedback allows
the user to interact with and feel the environment as well as
perform tasks in a remote or inaccessible environment [64].
To provide haptic feedback, the end-effector force should
be calculated. The force at the end-effector is determined
by using an impedance model representing the environment
dynamics [65], [66] given by

Je =B, (xef -)'Ce) + Ke(xer — Xe) (52)

where f., B., K., xor, and x, are the force exerted by the
environment at the end-effector of the robotic manipulator,
damping of the environment, stiffness of the environment,

Experimental Environment

Data Mapping

G

]

End Eflector Force

Select Data Mapping
1 for Button

I(Joystick - dependent)

(Joystick ID and Axes

must be set properly!)

Virtual Manipulator Control Current End-Effector Position

) ot

091

Virtual Robot Manipulator

Forward Kinematics 1

IK and Robot Joint Angles
Inverse Kinematics Desired End-Effector Position
[™ 1
W
[d
t2] q
[22 E
2} 9
q
. Joint angies from |
Inverse Kinematics Check
=l
a3
=
fen
330
L ()= =
& 000454
Robot End-Effector Position
w Orientation Eror [itt4)
@—. = ® Robol joint angles.
orwerd Kinematics

FIGURE 7. Simulink bilateral teleoperation experimental structure.

159630

VOLUME 8, 2020

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

IEEE Access

end-effector position, and environment position, respectively.
The joystick used as a master device is PXN- 2119 with a
haptic vibrational feedback.

The force calculated using Eq. (52) is then employed
to determine the vibration intensity in the master device.
The impedance parameters for Eq. (52) are summarized
in Table 4.

TABLE 4. Impedance parameters.

Parameters Value Unit
B, 1e? Kg/sec
K, le* Kg/sec?

VI. SIMULATION RESULTS

Before performing an experiment in real time, the IK algo-
rithms and control method are analyzed and validated in
the simulations. The simulation results present the initial
progress in the system. For both the IK and ISMC control
schemes, the simulations and results, which indicate the ini-
tial progress in the system, are as follows.

A IK

Initially, the IK algorithms were simulated without a joystick,
and the results were compared and validated based on the
allowable error tolerance of position and orientation.

TABLE 5. Desired posture.

No Py (X4, Ya, Zq) (mm) 04(Rg, Py, Yy) (rad)

1 —990, 642, —1140 —2.35,-0.82, —-1.74
2 —600, 425, —284 —1.43,0.87,-3.03
3 -2,820, —250 1.57,1.57,0

4 1620, 1620, =500 —1.57,0.78,0.78

1) IK FOR DESIRED POSTURE
The simulations plan a trajectory for which the algorithms
should be implemented. Before establishing the trajectory,
the desired position (P;) and orientation (Oy) of a single
Cartesian end-effector are considered and generated ran-
domly, as summarized in Table 5. Initially, the inverse
Jacobian was used to solve the IK for the desired end-effector
position and orientation listed in Table 5. The results of IK
using the inverse Jacobian are summarized in Table 6, where
it;y and Tg are the number of iterations performed and the
total runtime consumed by the inverse Jacobian, respectively.

The list in Table 6 indicates that the inverse Jacobian
method is not effective in solving the IK because the position
error, Ej, is extremely small but the orientation error, E,,
is considerably large, such that it exceeds the allowable error
tolerance.

After employing the inverse Jacobian, the traditional PSO
and DPSO are implemented; their parameters are summa-
rized in Table 7. The PSO and DPSO convergence curves are

VOLUME 8, 2020

TABLE 6. Inverse Jacobian results for desired postures.

No E, (mm) E, (rad) ity Tr
1 972 1.9 3000 .14
2 .603 1.2 3000 A2
3 489 2.4 3000 11
4 917 1.6 3000 .24
TABLE 7. DPSO parameters.
PSO /PSO-1 PSO-2

[0.9 0.5

wy 0.99 0.9

[1.5 0

[1.5 1

Traditional PSO Convergence

100

50

Objective Function

0 20 40 60 80 100
Number of Iterations

FIGURE 8. PSO convergence.

PSO-1 Convergence PSO-2 Convergence

150

100

50

Objective Function
Objective Function

0 20 40 60 80 0 20 40 60 80

Number of Iterations Number of Iterations

FIGURE 9. DPSO convergence.

TABLE 8. PSO and DPSO comparison.

No E,_pso Eo_pso E,_ppso Eo_pp Ts_pso Ts—ppso
1 .14 .0013 45 .005 242 325
2 .05 .0023 .88 .0002 21 29
3 .04 .0022 .58 .0025 25 .19
4 .15 .0015 28 .0005 .28 22

shown in Figures 8 and 9, respectively. The comparison of the
performances of both algorithms is summarized in Table 8.
According to Figures 8 and 9, the DPSO is efficient in terms
of performing fewer iterations (average iterations: 52) for the
desired solution compared with those of the traditional PSO
algorithm (average iterations: 66). Initially, the solution of the
PSO algorithm was not converging toward the desired result;
accordingly, the inertia coefficient was adjusted by multiply-
ing it with a damping coefficient, wy, at each iteration. This
coefficient is given as follows.

w=ws X (53)

159631

IEEE Access

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

Another performance comparison between the traditional
PSO and DPSO algorithms is summarized in Table 8. Both
algorithms are compared based on the position error (PSO
position error (E,_pso) and DPSO position error (E,_ppso)),
orientation error (PSO orientation error (E,_pso in mm) and
DPSO orientation error (E,—ppso in rad)), and total solving
time (PSO solution time (T¢_pso) and DPSO solution time
(Ts—ppso in 8)).

From the list in Table 8, it is observed that the position and
orientation errors of both algorithms are within the defined
error tolerances, i.e., Er, and Ep,, respectively. However,
the primary comparison is based on the total simulation time
run by both algorithms. For some simple desired postures
(i.e., Nos. 3 and 4 in Table 5), the DPSO works well by
solving them individually using pps = 0.25 and 6,5, = 0.75
in Eq. (25). However, in other cases, the single PSO is more
effective, i.e., ppso = 0pso = 1. This means that in some
cases, the DPSO does not guarantee the same position by
solving the IK within the defined allowable time. In such
instances, it is difficult for PSO-2 of the DPSO to attain the
desired orientation using the obtained position in PSO-1. This
results in solving the IK for position and orientation together;
hence, the DPSO changes the position obtained previously.
In such cases, the DPSO requires more time to complete the
solution to achieve the desired result.

2) IK FOR PLANNED TRAJECTORY

After obtaining the single posture results, the IK algorithms
are implemented for a planned trajectory. The trajectory is
divided into several points (50 in the current case), and for
every point, the IK is performed. The output error graph
of position and orientation when implementing the inverse
Jacobian, DPSO, and DPSOIJ for the desired end-effector
trajectory are shown in Figures 10 and 11, respectively.
Where the number of points in the x-axis indicates the number
of divisions from the initial point (location/position) to the
endpoint of the desired end-effector trajectory.

Inverse Kinematics Position Error for End-Effector Trajectory

Allowable error upper limit Smm === Inverse Jacobian DPSO
6|—DPSOU

~ Allowable error lower limit -5Smm

IS
T
L

¥}
T
L

Position error (mm)
<
T

¥

IS

6L I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Number of points in trajectory

FIGURE 10. IK trajectory position error.

The position errors of all the methods are less than the
defined error tolerance, i.e., E, = %5 mm; the orientation
error of the inverse Jacobian is greater than the defined error
tolerance, i.e., E7, = +0.0175rad throughout the trajectory.

159632

Inverse Kinematics Orientation Error for End-Effector Trajectory
0.07

Allowable error upper Limit .017 rad === Inverse Jacobian
0.06 DPSO =——DPSOII
= Allowable error lower Limit -.017rad

Z 005
.8
T 0.04 4
&
5 0.03 B
g
5]
= 0.02
8
s
g ootp B
R}
5 o\

-0.01 - B

-0.02 - L 1 L L L 1 L L L -

0 5 10 15 20 25 30 35 40 45 50

Number of points in trajectory

FIGURE 11. IK trajectory orientation error.

It is observed from Figures 10 and 11 that for the inverse
Jacobian, the error throughout the trajectory remains prac-
tically the same, ie., £, = 1 & 0.lmm and E, =
0.048 4 0.002rad. This validates the behavior discussed in
Section III-C-2, i.e., if the first/starting point of the trajec-
tory has an orientation error, the rest of the trajectory will
have practically the same initial error. This means that when
using the inverse Jacobian, the first/starting point IK should
be precisely calculated. The proposed DPSOIJ exploits this
behavior.

Joint 3 Trajectory

)
T

Angle in Radians
— =

'
&)
T

0 5 10 15 20
Number of points in trajectory

FIGURE 12. DPSO joint 3 trajectory.

Joint 4 Trajectory

Angle in Radians

0 5 10 15 20
Number of points in trajectory

FIGURE 13. DPSO joint 4 trajectory.

In contrast, the trajectories of joints 3 and 4 that are solely
generated by the DPSO are presented in Figures 12 and 13,
respectively; a considerable angle variation in the generated
trajectory is observed. This variation is caused by the heuristic
nature of the PSO because it is a heuristic approach.

Consequently, its output may satisfy the given condition,
but the process for choosing the best solution is unpredictable

VOLUME 8, 2020

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

IEEE Access

because the solution is randomly generated. The PSO ran-
domly finds a set of angles for one point in the trajectory and
selects the best angle. For the second point in the trajectory,
the solution is once again started with random numbers result-
ing in the optimal angle selection for that point based on the
cost function (Egs. (22) and (25)).

At this instance, the angles for the second point in the
trajectory considerably differ from the angles obtained for the
previous point, even though the two points are extremely near
each other. This results in a variating joint trajectory from
one point to another, leading to the conclusion that only the
DPSO-based IK is not feasible for the control implementation
on the manipulator with actual dynamics.

Joint 3 Trajectory

-0.5F

-0.55F b

-0.61 1

-0.65F 1

0.7+ 1

Angle in Radians

-0.75F q

08 . . .
0 5 10 15 20
Number of points in trajectory

FIGURE 14. DPSOLJ joint 3 trajectory.

Joint 4 Trajectory
1.6 T T

Angle in Radians

0.8 L L L
0 5 10 15 20
Number of points in trajectory

FIGURE 15. DPSOJ joint 4 trajectory.

Accordingly, in this research, the DPSOIJ is proposed to
smooth the trajectory to achieve even motion and control
implementation in the robotic manipulator. The joint tra-
jectories of joints 3 and 4 generated by the DPOSIJ are
presented in Figures 14 and 15, respectively. When the IK is
implemented using the DPSOIJ, the trajectories of both joints
(3 and 4) become considerably smooth. Hence, the DPSOILJ
is feasible for the control implementation of a planned tra-
jectory because it can generate a smooth joint trajectory with
small errors in the end-effector position and orientation.

The aforementioned techniques are also compared based
on the total time consumed by each method to solve IK for
the desired trajectory divided into 50 points as summarized
in Table 9. The fastest solution is the inverse Jacobian. The
DPSO is more time-consuming than the inverse Jacobian and
DPSOI1J because for each point (position), an average popu-
lation of 80 is considered with an average of 55 iterations.

VOLUME 8, 2020

TABLE 9. IK simulation time.

Technique Time (Sec)
Inverse Jacobian 2
DPSO 2.89
DPSOIJ 2.25

The DPSOLJ is less time-consuming than the DPSO but
consumes more time than inverse Jacobian because the first
point is solved using the DPSO.

B. ISMC IMPLEMENTATION

The ISMC scheme is proposed for the robotic manipula-
tor for decommissioning NPPs. The advantage of ISMC is
that it does not require information on system dynamics;
that information is compensated by the switching gain, p,
in Eq. (47). Before the simulation, the controller performance
between the ISMC and SMC in the presence of external
disturbance was compared to determine the effectiveness of
the former; for the controller performance, a second-order
system was considered. The controller performance compar-
ison is summarized in Table 10. With the SMC, the system is
significantly affected by the external disturbance even with a
high switching gain, whereas the effect of disturbance on the
system response using the ISMC is minimal.

TABLE 10. Controller performance evaluation.

Controller ~ Switching Rising Settling Steady-state
Gain Time Time +1% error +1%
SMC 700 2.36sec 5.35sec 0
ISMC 50 2.31sec 4.65sec 0

For the robot control implementation, several desired tra-
jectories are introduced. A polynomial trajectory for the pris-
matic joint is devised, as shown in Figure 16. The ISMC
parameters are listed in Table 11; in this case, the parameters
are manually tuned by trial and error.

Prismatic Joint Trajectory Tracking
! ! ! ! " [Desired trajectory
= = =Prismatic joint

6000

5000

4000

W
=3
=3
S

Distance (mm)
(3%
(=3
(=3
(=]

| | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

FIGURE 16. Prismatic joint trajectory tracking.

The trajectory tracking error of the prismatic joint is
presented in Figure 17. The prismatic joint has a 2 mm
steady-state error because of its heavy weight and work

159633

IEEE Access

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

TABLE 11. ISMC parameters.

Controller Joints

Parameters 1 2 3 4 5 6
k 150 50 35 25 20 20
c 50 20 20 15 10 10
p 300 150 150 120 100 100

Prismatic Joint Trajectory Tracking Error
T T T T T T

7

Error (mm)
- &
| .

tn
T
|

1 1 L 1 1 L L L L
0 0.5 | 1.5 2 25 3 35 4 4.5 5
Time (sec)

FIGURE 17. Prismatic joint trajectory tracking error.

against gravity. A sine wave with a 0.7854 rad amplitude and
1.25 rad/s frequency is introduced as the desired trajectory
for the different joints of the 5-DOF robotic manipulator. The
trajectory tracking and tracking error of joints 2 and 4 shown
in Figures 18 and 19, respectively, are obtained by observing
the controller performances of both joints.

Joint 2 Trajectory Tracking

s —— Desired trajectory
E 0.5 = = =Joint 2 trajectory
b=l
=
= 0
=
205
< I I I I I L . . I

0 0.5 1.5 2 25 3 35 4 4.5 5

Joint 4 Trajectory Tracking

i T T T - “tor
] Desired trajectory
-,g 051 - = —Joint 4 trajectory
= 0
L
e -0.5

1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

FIGURE 18. Joint 2 and joint 4 trajectory tracking.

%107 Joint 2 Trajectory Tracking Error
T T T T T

Error (radians)
= n
7')
) .

5 I I L I I L I
1.5 2 25 3 35 4 4.5 5

0 0.5 1
x 107 Joint 4 Trajectory Tracking Error
z T T 7 T T T
= 5r 1
=
£
0 [/\.
=}
=
& 5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

FIGURE 19. Joint 2 and joint 4 trajectory tracking error.

Figures 16-19 demonstrate the improved performance
of the ISMC despite the absence of information on the
system dynamics. The desired trajectories in the simulations

159634

are smooth and continuous. Accordingly, to observe the
ISMC performance under a randomly changing trajectory,
the controller has to be validated by conducting an experiment
in real time on the virtual manipulator using the joystick

VII. EXPERIMENTAL RESULTS

The experimental results of IK and ISMC while teleoperation
with the experimental setup presented in Figure 6 and 7 are
presented as follows.

Real-Time End-Effector Trajectory Tracking

200 - B

=
=
T
L

y-axis (mm)
(=]

100 - h
-200 h
Desired trajectory
300 = - End-effector trajectory || . . .
-300 -250 -200 -150 -100 -50 0 50 100 150

x-axis (mm)

FIGURE 20. End-Effector real-time trajectory tracking.

Real-Time End Effectory Trajectory Tracking Error

Error (mm)
(=]
T

10 . . I . . I . . .
0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

FIGURE 21. End-Effector trajectory tracking error.

A. IK

In the real-time experiment with the joystick, the IK is
initially implemented without the virtual manipulator to vali-
date the IK. A random movement of the joystick is performed,
generating a random end-effector trajectory (position only;
top-view) using the DPSOIJ as presented in Figure 20; the
end-effector trajectory tracking error is shown in Figure 21.
The DPSO and DPSOIJ are implemented in real-time with
the joystick to observe the generated trajectory. Figure 22
presents the generated trajectory of joint 2 using the DPSO
and DPSOLJ. The DPSO generates large angle variations as
illustrated in Figures 12 and 13. These deviations are caused
by the IK and mainly consist of randomly generated solutions
for each point or new data; consequently, the joint trajec-
tory is variated. However, in the case of DPSOIJ, the gen-
erated trajectory is considerably better and smoother than
that produced by the DPSO. Similar to the procedure used
in the DPSOIJ, only the first or starting point is calculated
using the DPSO; the rest of the trajectory is obtained using
the inverse Jacobian to derive a smooth trajectory.

VOLUME 8, 2020

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

IEEE Access

DPSO Joint 2 Real-Time Trajectory

Angle (Radians)
(=}

&
rT

20 30 40 50 60 70 80 90 100
Time (seconds)
DPSOI1J Joint 2 Real-Time Trajectory
T T T T T

o
o

0.2

I I |

I
0 10 20 30 40 50 60 70 80 90 100

Angle (Radians)
(=]

Time (seconds)

FIGURE 22. Real-time joint 2 trajectory.

The simulation and experimental results of IK indicate
that both algorithms (DPSO and DPSOLJ) provide better
end-effector trajectory tracking with a small error. They only
differ in terms of the nature of the generated joint trajectory,
i.e., either variating or smooth (Figure 22). To reduce the
calculation time, it should be noted that only the end-effector
position is considered in the experiment.

TABLE 12. ISMC parameters for real-time experiment.

Controller Joints
Parameters 1 2 3 4 5 6
k 150 100 100 75 40 20
c 50 50 50 40 10 10
p 500 150 150 120 100 100
B. ISMC

The ISMC parameters for the real-time experiment are sum-
marized in Table 12. Here, the parameters are tuned manually
by trial and error. Numerous experiments are performed on
the different types of operations in the NPP dismantling pro-
cess. For the controller implementation, only the end-effector
position is considered, and IK is performed using the inverse
Jacobian in which the orientation is assumed parallel to the y-
axis. The experimental results include the trajectory tracking
of different joints and the trajectory tracking errors of those
joints. The trajectory tracking of joint 2 in the real-time
teleoperation experiment is presented in Figure 23.

The trajectory tracking error of joint 2 is presented in
Figure 24. The trajectory tracking of joint 2 (Figure 23) shows
that the ISMC works robustly in real time even without the
information on system dynamics. In Figure 24, the blue and
red colors represent the actual and expected trajectory track-
ing errors, respectively. The actual error is greater than the
predicted error because it includes the combined errors of the
IK and control process.

There are some sudden spikes in the errors, i.e., at approx-
imately 40, 65, and 80 s. These spikes are undesirable; they
are not part of the control process but are caused by the
fluctuation in joystick data. This problem occurs because the
joystick in the current study is used for gaming (PXN21191I);
hence, it is inaccurate. The control process assumes that the

VOLUME 8, 2020

Joint 2 Trajectory Tracking
T T T

Desired trajectory
= = =Joint 2 trajectory

Angle (Radians)
S s o
(5] (=} [S) £

I
=

206 1 I 1 I I I
0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

FIGURE 23. Real-time joint 2 trajectory tracking.

0.08 -

Actual
Expected

Joint 2 Trajectory Tracking Error
T T T
0.06 |-
0.04 |-

ooal Ll ' I ’1 | | l‘Im 1’

-0.02 '| l”'. | 'LI ,

Error (Radians)
(=]

-0.04 |-

-0.06 - 1

0.08 I I ! I I I I
0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

FIGURE 24. Real-time joint 2 trajectory tracking error.

joystick moves fast (this is among the scenarios considered in
the simulation) and causes rapid changes in data. This gener-
ates a high-velocity trajectory that mismatches the movement
of the manipulator, resulting in process delay. Consequently,
the error further increases but is tolerable.

The performance of joint 4 can be observed from the
trajectory tracking and trajectory tracking error presented
in Figures 25 and 26, respectively. Similar to joint 2, joint 4
exhibits acceptable trajectory tracking. However, because of
the nature of the joystick (master device), fluctuation errors
also occur.

s Joint 4 Trajectory Tracking
§ T T T

Desired trajectory

= = =Joint 4 trajectory

Angle (Radians)

1 I I I I I I ! I
0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

FIGURE 25. Real-time joint 4 trajectory tracking.

The prismatic joint is an important joint to observe in
the robotic manipulator because it is the heaviest joint
(approximately 735 kg). Hence, it is necessary to monitor the
response of the prismatic joint, which changes according the

159635

IEEE Access

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

trajectory generated by the joystick. The trajectory tracking
error of the prismatic joint is shown in Figure 27.

Joint 4 Trajectory Tracking Error
0.08 T T T T

0.06

0.04

0.02

-0.02

Error (Radians)
(=]

-0.04

-0.06 - a

20.08 I . 1 1 I I I
0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

FIGURE 26. Real-time joint 4 trajectory tracking error.

Prismatic Joint Trajectory Tracking Error

'
=}

Error (mm)
&

T

.

S
T
I

_15 L I I 1 L I I 1
0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

FIGURE 27. Real-time prismatic joint trajectory tracking error.

A close examination of Figure 27 shows that the simulation
results of the prismatic joint has a smooth trajectory with a
2 mm average steady-state because of the effect of gravity.
The spikes in errors are again caused by the joystick data and
randomly generated trajectory. Moreover, it is observed that
whenever the generated trajectory is opposite to the direction
of gravity, the error (negative error or less than 2 mm) further
aggravates. Nevertheless, the controller performance remains
satisfactory because the system does not encounter extreme
variations.

C. CONTROLLER PERFORMANCE WITH TIME DELAY

This section introduces the variation in the communication
time delay over time as given by 7; = 0.2sin (¢). This
means that the delay changes from 0-2 s with time when the
sampling time of the system is 1 ms. It is observed in the
simulations that as a result of this time-varying communica-
tion time delay, the operator perceives the end-effector force
depending on the delay at that moment, i.e., the response lag
between 0 and 2 s. The haptic feedback at the joystick with
and without time delay is given in Figure 28, represented by
the red line and blue dotted line, respectively.

The communication time delay includes the delay of the
data sent from the joystick to the slave and the force feedback
received at the joystick. Accordingly, a system with a control
process time delay is introduced.

159636

End-Effector Force for Haptic Feedback
T T

60

Haptic feedback without delay
= = —Haptic feedback with delay

Force (N)

[3*] () Y w

= = = =
T

=)

=)

Time (seconds)
FIGURE 28. Haptic feedback at joystick with variable time delay.
Joint 2 Trajectory Tracking with Time Delay

L7F ' = Desired trajectory
= = =Current Trajector:

Angle (Radian)

Time (seconds)

FIGURE 29. Real-time joint 2 ISMC trajectory tracking with time delay.

Joint 2 Trajectory Tracking with Time Delay
1.6 ! ! ! ! ! " [—Desired trajectory
= = =Current Trajector

Angle (Radians)
5

Time (seconds)

FIGURE 30. Real-time joint 2 SMC trajectory tracking with time delay.

The joystick only generates commands for the slave robot,
and the IK and control work on the slave robot area (Figure 4).
Therefore, the control process delay aids in validating the
ISMC compared with the SMC. The system response under
time delay may be observed by transforming the system into a
time-varying scheme by introducing time-varying inputs and
state delay functions [45], such as ¢ (f) = 100sin () and
d (t) = 100cos (). The responses of joint 2 with time delay
for the ISMC and SMC are shown in Figures 29 and 30,
respectively.

The foregoing system transformation has certain effects on
system performance. In Figure 29, the response of joint 2
from 2.7 to 4.8 s indicates that the time delay leads to cer-
tain tracking errors and chattering. In comparing the ISMC
response with that of the SMC in the presence of time delay,

VOLUME 8, 2020

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

IEEE Access

the SMC exhibits an undesirable response (Figure 30) even
with high switching gains. The SMC shows significant delays
and undershoots with higher errors than the ISMC. In con-
trast, the overall response of the ISMC is satisfactory.

VIil. CONCLUSION

This paper presents an application of the bilateral teleoper-
ation with a haptic feedback for the NPP dismantling pro-
cess. The procedure includes the use of a joystick (master
device) and virtual robot (slave device). The joystick move-
ment (command) generates the trajectory for the end-effector
of the slave in Cartesian space with the control implementa-
tion in the joint space. To generate the joint trajectory, the IK
was performed. The inverse Jacobian method was initially
implemented for the IK for a predefined operation and tra-
jectory. However, the error in the orientation was consider-
able; therefore, to reduce error, another heuristic approach,
the DPSO, was implemented. The DPSO reduced the error
by separately solving the position and orientation. The joint
trajectory generated by the DPSO-based IK, however, has
a considerable angle variation. To solve the error and fluc-
tuation problem simultaneously, another novel IK approach,
i.e., the integration of DPSO and inverse Jacobian, as one of
the main contributions of this research, was proposed. The
DPSOIJ aided in obtaining a smooth joint trajectory with
less errors for a planned end-effector trajectory. For precise
trajectory tracking, the ISMC was implemented. In the ISMC,
the auxiliary sliding surface makes the system insensitive
to perturbations (disturbance and unmatched uncertainties),
making the controller robust and faster to respond. The ISMC
switching gain aids in compensating for the system dynamics;
accordingly, the dynamic model information is not required,
reducing the control process time delay. The system satisfac-
torily tracked the trajectory (joystick command). In the future,
the authors intend to integrate the non-linear compensator
SPO with the ISMC to improve performance. Additional
algorithms for solving the communication delay problem will
also be introduced. Moreover, a precise joystick or haptic
device (such as Geomagic Touch or 3D Touch) with proper
data mapping will be utilized to solve the above problem.

REFERENCES

[1] G. Graetz and G. Michaels, “Robots at work,” Rev. Econ. Statist., vol. 100,
no. 5, pp. 753-768, 2018.

[2] E. Abele, M. Weigold, and S. Rothenbiicher, “Modeling and identification
of an industrial robot for machining applications,” CIRP Ann., vol. 56,
no. 1, pp. 387-390, 2007.

[3]1 W. G. Hao, Y. Y. Leck, and L. C. Hun, “6-DOF PC-based robotic arm
(PC-ROBOARM) with efficient trajectory planning and speed control,” in
Proc. 4th Int. Conf. Mechatronics (ICOM), May 2011, pp. 1-7.

[4] T. Moore, “Robots for nuclear power plants,” JAEA Bull., vol. 27, no. 3,
pp. 31-38, 1985.

[5] S. Abbasi, K. Kallu, and M. Lee, “Efficient control of a non-linear system
using a modified sliding mode control,” Appl. Sci., vol. 9, no. 7, p. 1284,
Mar. 2019.

[6] F. E. Gelhaus and H. T. Roman, “Robot applications in nuclear power
plants,” Prog. Nucl. Energy, vol. 23, no. 1, pp. 1-33, Jan. 1990.

[7] G. Clement, J. Vertut, A. Cregut, P. Antione, and J. Guittet, ‘“‘Remote
handling and transfer techniques in dismantling strategy,” in Proc. Seminar
Remote Handling Nucl. Facilities, 1984, pp. 556-569.

VOLUME 8, 2020

[8]

[9]

[10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

S. Ma, S. Hirose, and H. Yoshinada, “Development of a hyper-redundant
multijoint manipulator for maintenance of nuclear reactors,” Adv. Robot.,
vol. 9, no. 3, pp. 281-300, Jan. 1994.

K.D.Kallu, S.J. Abbasi, H. Khan, J. Wang, and M. C. Lee, “Tele-operated
bilateral control of hydraulic manipulator using a robust controller based on
the sensorless estimated reaction force,” Appl. Sci., vol. 9, no. 10, p. 1995,
May 2019.

Z. Chen, F. Huang, C. Yang, and B. Yao, “Adaptive fuzzy backstep-
ping control for stable nonlinear bilateral teleoperation manipulators with
enhanced transparency performance,” IEEE Trans. Ind. Electron., vol. 67,
no. 1, pp. 746-756, Jan. 2020.

N. Mehmood, F. Ijaz, Z. Murtaza, and S. 1. Ali Shah, “Analysis of
end-effector position and orientation for 2P-3R planer pneumatic robotic
arm,” in Proc. Int. Conf. Robot. Emerg. Allied Technol. Eng. (iCREATE),
Apr. 2014, pp. 47-50.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, “Motion con-
trol,” in Robotics: Modelling, Planning and Control. London, U.K.:
Springer-Verlag, 2010, pp. 303-360.

P-F. Lin, M.-B. Huang, and H.-P. Huang, “Analytical solution for
inverse kinematics using dual quaternions,” IEEE Access, vol. 7,
pp. 166190-166202, 2019.

K. S. Fu, R. Gonzalez, and C. G. Lee, “Robot arm kinematics,” in
Robotics: Control Sensing. Vis. New York, NY, USA: McGraw-Hill, 1987,
pp. 12-76.

S. B. Niku, “Kinematics of robot: Position analysis,” in Introduction to
Robotics: Analysis, Systems, Applications. Upper Saddle River, NJ, USA:
Prentice-Hall, 2010, pp. 33—113.

S. O.Park,J. G. Yoon, M. G. Jung, and M. C. Lee, “Robot manipulator arm
inverse kinematics analysis by Jacobian,” in Proc. ICAROB Annu. Conf.,
2018, p. 45.

G. K. Singh and J. Claassens, “An analytical solution for the
inverse kinematics of a redundant 7DoF manipulator with link off-
sets,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2010,
pp. 2976-2982.

W. Wolovich and H. Elliott, “A computational technique for inverse
kinematics,” in Proc. 23rd IEEE Conf. Decis. Control, Dec. 1984,
pp. 1359-1363.

B. Siciliano, “Kinematic control of redundant robot manipulators: A tuto-
rial,” J. Intell. Robot. Syst., vol. 3, no. 3, pp. 201-212, 1990.

T. P. Singh, P. Suresh, and S. Chandra, “Forward and inverse kinematic
analysis of robotic manipulators,” Int. Res. Hournal Eng. Technol., vol. 4,
no. 2, pp. 1459-1469, 2017.

X. Zhang and C. A. Nelson, “Multiple-criteria kinematic optimization
for the design of spherical serial mechanisms using genetic algorithms,”
J. Mech. Des., vol. 133, no. 1, Jan. 2011, Art. no. 011005.

T. Cavdar, M. Mohammad, and R. A. Milani, “A new heuristic approach
for inverse kinematics of robot arms,” Adv. Sci. Lett., vol. 19, no. 1,
pp- 329-333, Jan. 2013.

N. Rokbani and A. M. Alimi, “Inverse kinematics using particle
swarm optimization, a statistical analysis,” Procedia Eng., vol. 64,
pp. 1602-1611, Jan. 2013.

J. de Lima Silveira Junior, R. C. de Oliveira Jesus, L. Molina,
E. A. N. Carvalho, and E. Oliveira Freire, “FRPSO: Inverse kinematics
using fully resampled particle swarm optimization,” in Proc. Latin Amer.
Robotic Symp., Brazilian Symp. Robot. (SBR) Workshop Robot. Educ.
(WRE), Nov. 2018, pp. 402-407.

T. J. Collinsm and W.-M. Shen, “Particle swarm optimization for high-
DOF inverse kinematics,” in Proc. 3rd Int. Conf. Control, Autom. Robot.
(ICCAR), Apr. 2017, pp. 1-6.

M. A. Adly and S. K. Abd-El-Hafiz, “Inverse kinematics using single-
and multi-objective particle swarm optimization,” in Proc. 28th Int. Conf.
Microelectron. (ICM), Dec. 2016, pp. 269-272.

R. Falconi, R. Grandi, and C. Melchiorri, ‘“Inverse kinematics of
serial manipulators in cluttered environments using a new paradigm
of particle swarm optimization,” in Proc. IFAC, 2014, vol. 47, no. 3,
pp. 8475-8480.

H.-C. Huang, C.-P. Chen, and P-R. Wang, “Particle swarm optimiza-
tion for solving the inverse kinematics of 7-DOF robotic manipula-
tors,” in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2012,
pp. 3105-3110.

Y. Du and Y. Wu, “Application of IPSO algorithm to inverse kinematics
solution of reconfigurable modular robots,” in Proc. Int. Conf. Mech. Sci.,
Electric Eng. Comput. (MEC), Aug. 2011, pp. 1313-1316.

159637

IEEE Access

H. Khan et al.: DPSO and Inverse Jacobian-Based Real-Time IK With Trajectory Tracking Using Integral SMC for Teleoperation

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

H. Khan, H. H. Kim, S. J. Abbasi, and M. C. Lee, “Real-time inverse
kinematics using dual particle swarm optimization DPSO of 6-DOF robot
for nuclear plant dismantling,” in Proc. IFAC, Berlin, Germany, 2020,
pp. 1-6.

M. A. Johnson and M. H. Moradi, “PID control technology,” in PID
Control. London, U.K.: Springer, 2005, pp. 1-46.

E. M. Jafarov, M. N. A. Parlakci, and Y. Istefanopulos, “A new variable
structure PID-controller design for robot manipulators,” IEEE Trans. Con-
trol Syst. Technol., vol. 13, no. 1, pp. 122-130, Jan. 2005.

J. Z. Shi, “A fractional order general type-2 fuzzy PID controller design
algorithm,” IEEE Access, vol. 8, pp. 52151-52172, 2020.

J. Tang, F. Huang, Z. Chen, T. Wang, J. Gu, and S. Zhu, “Disturbance-
observer-based sliding mode control design for nonlinear bilateral tele-
operation system with four-channel architecture,” IEEE Access, vol. 7,
pp. 72672-72683, 2019.

K. D. Young and U. Ozguner, “Sliding mode: Control engineering in
practice,” in Proc. Amer. Control Conf., vol. 1, 1999, pp. 150-162.

X.-G. Yan, S. K. Spurgeon, and C. Edwards, “Introduction,” in Variable
Structure Control of Complex Systems. Cham, Switzerland: Springer, 2017,
pp. 1-25.

Z. Chen, F. Huang, W. Chen, J. Zhang, W. Sun, J. Chen, J. Gu, and
S. Zhu, “RBFNN-based adaptive sliding mode control design for delayed
nonlinear multilateral telerobotic system with cooperative manipulation,”
IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1236-1247, Feb. 2020.
X.Liu, W. Jiang, and X.-C. Dong, “Nonlinear adaptive control for dynamic
and dead-zone uncertainties in robotic systems,” Int. J. Control, Autom.
Syst., vol. 15, no. 2, pp. 875-882, Apr. 2017.

J. T. Moura, H. Elmali, and N. Olgac, “Sliding mode control with sliding
perturbation observer,” J. Dyn. Syst., Meas., Control, vol. 119, no. 4,
pp. 657-665, Dec. 1997.

H. Elmali and N. Olgac, “Implementation of sliding mode control with
perturbation estimation (SMCPE),” IEEE Trans. Control Syst. Technol.,
vol. 4, no. 1, pp. 79-85, Jan. 1996.

K. D. Kallu, S. J. Abbasi, H. Khan, J. Wang, and M. C. Lee, “Implemen-
tation of a TSMCSPO controller on a 3-DOF hydraulic manipulator for
position tracking and sensor-less force estimation,” IEEE Access, vol. 7,
pp. 177035-177047, 2019.

H. Khan, S. J. Abbasi, K. Dad Kallu, and M. C. Lee, “Robust control design
of 6-DOF robot for nuclear power plant dismantling,” in Proc. Int. Conf.
Robot. Autom. Ind. (ICRAI), Oct. 2019, pp. 1-7.

Y. Pan, C. Yang, L. Pan, and H. Yu, “Integral sliding mode control: Per-
formance, modification, and improvement,” IEEE Trans. Ind. Informat.,
vol. 14, no. 7, pp. 3087-3096, Jul. 2018.

Y. Pan, Y. H. Joo, and H. Yu, “Discussions on smooth modifications of
integral sliding mode control,” Int. J. Control, Autom. Syst., vol. 16, no. 2,
pp- 586593, Apr. 2018.

D. B. Salem, W. Saad, A. Sellami, and G. Garcia, “Integral sliding mode
control for systems with time-varying input and state delays,” in Proc. Int.
Conf. Eng. MIS (ICEMIS), May 2017, pp. 1-5.

Z. Chen, F. Huang, W. Sun, J. Gu, and B. Yao, ‘“RBF-neural-network-
based adaptive robust control for nonlinear bilateral teleoperation manipu-
lators with uncertainty and time delay,” IEEE/ASME Trans. Mechatronics,
vol. 25, no. 2, pp. 906-918, Apr. 2020.

F. Huang, W. Zhang, Z. Chen, J. Tang, W. Song, and S. Zhu, “RBFNN-
based adaptive sliding mode control design for nonlinear bilateral tele-
operation system under time-varying delays,” IEEE Access, vol. 7,
pp. 11905-11912, 2019.

H. Caballero-Barragdan, L. P. Osuna-Ibarra, A. G. Loukianov, and
F. Plestan, ‘“‘Robust control for perturbed linear systems with time-varying
delay via sliding mode control,” in Proc. 15th Int. Workshop Variable
Struct. Syst. (VSS), Jul. 2018, pp. 7-12.

Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, “Introduction,” in
Sliding Mode Control and Observation. New York, NY, USA: Springer,
2014, pp. 1-42.

H. Yi and Q. Zhang, ““An optimal fuzzy control method for nonlinear time-
delayed batch processes,” IEEE Access, vol. 8, pp. 42608-42618, 2020.
M. W. Spong and M. Vidyasagar, *“Velocity kinematics: The manipulator
Jacobian,” in Robot Dynamics and Control. Hoboken, NJ, USA: Wiley,
2008, pp. 112-128.

S. Park and M. C. Lee, “7DOFs robot numerical approach method with
Jacobian,” in Proc. Int. Conf. Inf. Commun. Technol. Robot. (ICT-ROBOT),
Sep. 2018, pp. 1-4.

K. M. Lynch and F. C. Park, “Inverse kinematics" in Modern Robotics:
Mechanics, Planning and Control. Cambridge, U.K.: Cambridge Univ.
Press, 2017, pp. 219-244.

159638

(54]

[55]

[56]

(57

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Mach. Hum. Sci. (MHS), 1995,
pp. 39-43.

R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm Intell., vol. 1, no. 1, pp. 33-57, Jun. 2007.

I. Eker, “Second-order sliding mode control with experimental applica-
tion,” ISA Trans., vol. 49, no. 3, pp. 394-405, Jul. 2010.

X. Zhou, W. Wang, Z. Liu, C. Liang, and C. Lai, “Impact angle con-
strained three-dimensional integrated guidance and control based on frac-
tional integral terminal sliding mode control,” IEEE Access, vol. 7,
pp. 126857-126870, 2019.

C.P. Vo, X. D. To, and K. K. Ahn, ““A novel adaptive gain integral terminal
sliding mode control scheme of a pneumatic artificial muscle system with
time-delay estimation,” IEEE Access, vol. 7, pp. 141133-141143, 2019.
V. Nath and R. Mitra, “Swing-up and control of rotary inverted pendulum
using pole placement with integrator,” in Proc. Recent Adv. Eng. Comput.
Sci. (RAECS), Mar. 2014, pp. 1-5.

K.J. Astrom and K. Furuta, “Swinging up a pendulum by energy control,”
Automatica, vol. 36, no. 2, pp. 287-295, Feb. 2000.

Y. Shaoqgiang, L. Zhong, and L. Xingshan, ‘““Modeling and simulation of
robot based on MATLAB/SimMechanics,” in Proc. 27th Chin. Control
Conf., Jul. 2008, pp. 161-165.

A. Kathpal and A. Singla, “SimMechanics based modeling, simulation and
real-time control of rotary inverted pendulum,” in Proc. 11th Int. Conf.
Intell. Syst. Control (ISCO), Jan. 2017, pp. 166-172.

H. Shin, S. H. Jung, Y. R. Choi, and C. Kim, “Development of a shared
remote control robot for aerial work in nuclear power plants,” Nucl. Eng.
Technol., vol. 50, no. 4, pp. 613-618, May 2018.

X. Xu, B. Cizmeci, C. Schuwerk, and E. Steinbach, ‘“Model-mediated
teleoperation: Toward stable and transparent teleoperation systems,” JEEE
Access, vol. 4, pp. 425-449, 2016.

L. Roveda, “Adaptive interaction controller for compliant robot base appli-
cations,” IEEE Access, vol. 7, pp. 6553-6561, 2019.

F. Zeng, J. Xiao, and H. Liu, “Force/torque sensorless compliant control
strategy for assembly tasks using a 6-DOF collaborative robot,” IEEE
Access, vol. 7, pp. 108795-108805, 2019.

HAMZA KHAN received the B.S. degree in
mechatronics engineering from Air University,
Islamabad, Pakistan, in 2018. He is currently
pursuing the M.S. degree in mechanical engi-
neering with Pusan National University, Busan,
South Korea. His research interests include
non-linear control, robot manipulators, and system
identification.

SAAD JAMSHED ABBASI received the B.S.
degree in mechatronics engineering from Air Uni-
versity, Islamabad, Pakistan, in 2015, and the M..S.
degree in mechanical engineering from Pusan

e / National University, Busan, South Korea, in 2018,
- where he is currently pursuing the Ph.D. degree
: in mechanical engineering. His research interests
include non-linear control, robot manipulators,
and system identification.

MIN CHEOL LEE (Member, IEEE) received the
Ph.D. degree in applied physics from the Univer-
sity of Tsukuba, Tsukuba, Japan, in 1991. He was a
Visiting Professor with North Carolina State Uni-
versity from August 2000 to 2001, and with Perdue
University from 2009 to 2010. Since 1991, he has
been a Professor with the School of Mechani-
cal Engineering, Pusan National University, South
Korea. His research interests include intelligent
robot control, autonomous mobile robot, medical

é' \f

robot, signal processing to identify a systems, robust control of a systems,
sensor application, and mechatronics.

VOLUME 8, 2020

