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ABSTRACT In this article, an L1-Norm model predictive controller with a dead band zone is proposed
for the cut tobacco drum dryer system. The control objective is to make the drum dryer temperature, hot
air temperature and cut tobacco outlet temperature meet the process constraints, and optimize the outlet
moisture content of the cut tobacco. First, the cut tobacco drum dryer system is introduced, and the nonlinear
open equation model is established. Then an L1-Norm moving horizon estimator (MHE) is designed to
provide state and parameter estimation for the controller by using its ability to deal with nonlinearity and
constraints. A model predictive control (L1-Norm zone MPC) for L1-Norm target tracking with a dead band
zone is proposed for the cut tobacco drum dryer system. The simulation results show that the proposed L1-
Norm zone MPC (L1-ZMPC) better-tracking performance and the controller’s minimum action economic
characteristics compared with the traditional setpoint tracking model predictive control.

INDEX TERMS Cut tobacco drum dryer system, moving horizon estimation, model predictive control,
nonlinear system, parameter estimation, state estimation.

I. INTRODUCTION
Drying aims at reducing the moisture content within a
product by application of thermal energy to produce dried
products of desired attributes [1]. As one of the most
energy-consuming unit operations in the industry, drying
energy consumption accounts for about 10% − 25% of the
national industrial energy consumption. The drying operation
in the tobacco industry does not merely remove the mois-
ture content because many quality factors can be adversely
affected by the incorrect selection of drying conditions and
drying equipment. The consumer acceptability, appearance,
and organoleptic properties are the desirable properties of
high-quality tobacco [2]. Cut tobacco drum dryers are one of
the most commonly used drying equipment in the industrial
scale, which is usually used in the chemical engineering and
food processing industry. Drum drying is a complex process
involving simultaneous heat and mass transfer phenomena,
coupled with the movement of solid particles and air within
the drum dryer [3], [4]. Also, it is well known that most
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industrial dryers are less energy efficient, from a disappoint-
ing 10% to a respectable 60% (this ratio is defined as the
theoretical energy required for the drying to the actual energy
consumed). Therefore, due to the rising cost of energy and the
increasingly fierce global competition, these performances
must be improved. Besides, most research is still focused on
understanding drying mechanism and product quality, rather
than the control of operation itself. Simultaneously, it must
be noted that the main cost of the dryer is not in the initial
investment (design and assembly), but in daily operation, con-
trol is crucial for energy-saving and obtaining ideal product
quality [5]–[7].

One common control strategy adopted in the control of
cut tobacco drum dryer system is the classical proportional–
integral–differential (PID) control [1], [3], [8]. There is no
single controller that can be applied to all dryers due to
the global use of 60000 drying products and 100 dryers,
and the complexity of transport phenomena in the drying
process. In the literature, different advanced control strategies
are also studied, including the design of fuzzy controller
for natural drying process [9], the design of internal model
controller (IMC) in a continuous infrared dryer [10], and
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the design of MPC control in different dryers [5], [11]–[13].
Nevertheless, the above control algorithms MPC and PID
are designed based on the linear dynamic model or approx-
imate linear model of the drying system. Model predictive
control (MPC), also referred to as moving horizon control or
receding horizon control, has become an attractive feedback
strategy, especially linear processes. MPC can solve some
important problems, such as online calculation, the interac-
tion between modeling/identification and control, and sys-
tem theory stability. However, many systems usually have
inherent nonlinearity. This, coupled with higher product qual-
ity specifications and increasing productivity requirements,
more stringent environmental regulations, and economic con-
siderations of process industry requirements, requires oper-
ating systems to be closer to the permitted operating areas’
boundaries. In these cases, the linear model is often not
enough to describe the process dynamics, so the nonlinear
model must be used. This promotes the application of non-
linear model predictive control [14].

In the cut tobacco drying process is a complex nonlinear
thermodynamic system. Several factors make the optimal
operation of this process challenging. First, the moisture at
the outlet of the cut tobacco is controlled by the drum dryer
temperature and the hot air temperature, and there is no direct
operation input, which is a weak control; second, there is
a strong coupling between the drum dryer temperature, cut
tobacco outlet temperature, and hot air temperature. Anyone
temperature cannot be well controlled, and the other two
temperatures are greatly affected. The nonlinearity of the
system and the typical wide operating range also exacerbate
operational challenges. In the cut tobacco drying process,
the primary task is to meet the cut tobacco’s outlet moisture
content. Under the condition of reducing the operation cost,
as long as the cut tobacco outlet temperature, drum dryer tem-
perature, and hot air temperature meet the process require-
ments, energy consumption can be saved. Motivated by these
considerations and inspired by Hedengren et al. [15], Liu
et al. [16], Mao et al. [17], and Zhang et al. [18], an L1-Norm
MPC with a dead band zone tracking design is proposed for
cut tobacco drum dryer system in this work. First, the studied
cut tobacco drum dryer system with a production capacity
of 500kg

/
min along with its fourth-order nonlinear open

equation model are formulated. Then, an L1-Norm moving
horizon estimator (MHE) is employed to provide state and
parameter estimates for the subsequent controller design due
to its distinct ability in dealing with system constraints and
nonlinearities. Subsequently, a novel L1-Norm MPC with
dead band zone tracking design is proposed to optimize the
cut tobacco drying process. To achieve this, a dead band
zone, which penalizes the distance between system output
and the demand target zone, is incorporated into the existing
MPC framework. The conventional tracking MPC (CMPC)
is also introduced for comparison purposes. The simulation
results under different scenarios have demonstrated that the
proposed L1-Norm zone MPC (L1-ZMPC) provides a more
flexible way to handle the cut tobacco drum dryer system’s

optimization problem in the presence of system nonlineari-
ties, constraints, and disturbances.

The remainder of this article is organized as follows: a
detailed description of the studied cut tobacco drum dryer
system with a production capacity of 500kg

/
min along with

its fourth-order nonlinear open equation model in Section 2;
Section 3 introduces the design of L1-Norm MHE and con-
ventional tracking MPC (CMPC), and Section 4 provides the
design details of the proposed L1-Norm MPC with a dead
band zone and NMPC stability. Extensive simulations have
been conducted in Section 5 to verify the performance of the
proposed L1-Norm zoneMPC (L1-ZMPC) over conventional
tracking MPC (CMPC) in setpoint tracking and disturbance
rejection, especially weak control. Finally, we give conclu-
sions in Section 6.

II. SYSTEM DESCRIPTION AND MODELLING
A. SYSTEM DESCRIPTION
In cigarette production, the dryer is not only important equip-
ment for tobacco drying and expansion but also key equip-
ment to determine the internal quality of cigarettes. The
dryer’s drying task: first, remove some moisture in the cut
tobacco to meet the subsequent processing requirements.
After heating and humidifying, cut tobacco’s moisture con-
tent is more than 19%. It needs to be dried and dehumidified
by the dryer to reduce the moisture content to 13%− 15%,
to meet the technological requirements of coiling. Second,
improve and enhance the sensory quality of tobacco. Due
to the large surface area of tobacco, in the drying process,
the tobacco is treated by high temperature, part of the free
nicotine and ammonia volatilization, the smoke’s irritation
will be reduced, and part of the impurities can be removed
at the same time.

In this work, we consider a cut tobacco drum dryer sys-
tem with a production capacity of 500kg

/
min, as shown in

Figure 1. The drum dryer uses steam as the heating energy
and adopts the mixed drying method of conduction and con-
vection to dry and dehumidify the cut tobacco, with conduc-
tion heating as the main and convection heating auxiliary.
The heating steam heats the cylinder wall through the steam
supply system of the dryer. The cut tobacco is fed into the
continuously rotating dryer cylinder by the vibration con-
veyor, and the cylinder wall is in direct contact with the cut
tobacco, which transmits the heat to the cut tobacco in the
way of conduction. Simultaneously, the hot air flows in the
tube from the feeding end to the cut tobacco. The hot air
directly contacts the cut tobacco and transmits the heat to
the cut tobacco by convection to strengthen the cut tobacco’s
moisture vaporization. After the cut tobacco absorbs heat
from the cylinder wall and the hot air, the temperature rises,
and the moisture vaporize on the surface of the tobacco,
diffuses to the hot air flow, which absorbs water vapor and
turns into the hot and wet air, and enters the air dust box
from the discharge end of the dryer. When the exhaust gas
comes out from the dryer, the exhaust gas’s entrainedmaterial
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FIGURE 1. Schematic of cut tobacco drum dryer system.

must go through suitable dust collectors such as cyclones and
baghouses to collect the entrained product and satisfy the
exhaust discharge regulations. In the whole process, under
the action of the heating wall and hot air, the cut tobacco will
turn continuously with the rotation of the inclined cylinder,
and then gradually slide down from the high end of the dryer
to the discharge end.

B. DYNAMIC MATHEMATICAL MODEL OF CUT
TOBACCO DRUM DRYER SYSTEM
For the convenience of calculation and testing, the following
assumptions are made: the drum dryer is adiabatic (Heat loss
Ql1 andQl2 equal to 0), moisture movement and heat transfer
are one dimensional; the drum length L is 7.7m; the diameter
is 1.25 m; the slope of drum dryer is 3.5 degree; the area
is A, cross-area is A1, and the volume is V . No chemical
reaction occurs during the drying process; that is, the thermal
and chemical properties of the material, air and moisture are
constant within the range of temperatures considered; the
drying air is distributed uniformly through the dryer. The
mass flow at the input and output of the drum dryer must be
equal; otherwise, the mass and heat capacity of the system
will change.

Table 1 specifies the inlet and outlet data of the drum dryer
in operation, assuming that the speed of cut tobacco and hot
air, the specific heat of cut tobacco, water, and air, and the
quality of cut tobacco and hot air are always constant.

Mass balance equation for moisture in the cut tobacco is
represented by equation 1:

ρpV
dw
dt
= ṁinwin − ṁoutw− ρpVRevap (1)

The drying rate of cut tobacco, Revap, is an important
parameter of the model. Drum dryer temperature is the direct
reason for the drying of cut tobacco. The drum directly
transmits heat to the cut tobacco through the heating wall
and the heat exchange plate, so that the cut tobacco is fully
heated and the moisture evaporates to dry. The mass flow and
velocity of the hot air in the drum are fixed. The saturation
degree of air in the drum is determined by the evaporation
amount of cut tobacco and hot air temperature. When the
drum dryer’s speed and temperature are fixed, the evaporation

TABLE 1. Inlet and outlet data of the cut tobacco dryer (operational data).

amount depends on the hot air temperature. The drum’s rota-
tion speed determines the retention time (baking time) of the
cut tobacco in the drying cylinder. The longer the baking
time is, the more water evaporates. As the baking process
is accompanied by chemical reaction to improve tobacco’s
internal quality, it needs a certain time, which should not be
too short or too long. The higher the flow rate of hot air,
the better the evaporation of moisture. When the moisture
discharge valve is closed, the hot air stops supplying to the
drum dryer. Although the air’s moisture is still evaporating,
the moisture in the air continuously returns to the humidified
tobacco, forming the dynamic balance of moisture evapora-
tion and humidification of cut tobacco. Although increasing
the drum dryer temperature, hot air temperature, and reducing
the drum dryer speed can not make the cut tobacco dry
in the drum dryer. In this article, the rotation speed of the
drum dryer and the hot air velocity is fixed. The direct drum
dryer rotate at 11.6 rpm, hot air speed 0.3 m/s. Revap only
considers the influence of the drum dryer temperature and
the temperature of the hot air on the moisture evaporation of
tobacco.

Revap = 0.0001649exp
(
2Tdryer + T1

T1

)
(2)
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FIGURE 2. Cut tobacco drum dryer system step test.

Energy balance equation for temperature in the heater and
dryer are represented by equation 3, 4, 5:

dTdryer
dt

=
ρaircairq

(
Tin − Tdryer

)
ρmixVcmix

+
ṁincp

(
Tpin − Tpout

)
ρmixVcmix

+
ρpVRevapcw

(
Tpin − Tf

)
ρmixVcmix

+
Akeff

(
Tc2 − Tdryer

)
LρmixVcmix

− Ql2

(3)
dTpout
dt

=
Akeff 1

(
Tdryer − Tpout

)
LρpVcp

+
Akeff 1

(
T1 − Tpout

)
LρpVcp

−
ρpVRevapcw

(
Tpout − Tpin

)
ρpVcp

(4)

dT1
dt

=
ρaircairq (Tin − T1)

ρawVcaw
+
A1keff 2 (Tc1 − T1)

LρawVcaw
− Ql1 (5)

ρmix and cmix are the mixing density and mixing specific
heat capacity in the drum, ρaw and caw are the mixing density
and mixing specific heat of air and water in the heater. keff =
100, keff 1 = 5, keff 2 = 700 are all thermal conductivity
(W
/
m◦C); here, they were considered constant along the

time; in the following nonlinear dynamic estimation section,
these three parameters will be estimated.

Model validation is accomplished through dynamic param-
eter estimation. The parameter estimation experiment was
similar to a step test. We verify the established transient
model of cut tobacco drying through a step test, as shown
in Figure 2. Simultaneously, the step test brings a beneficial
analysis of the subsequent dynamic estimation and control.
Compared with the cut tobacco dryer system’s operational
data, the results show that the proposed model can be used
within an acceptable error range.

Two common manipulated variables are the steam tem-
perature Tc1 of the heater and the heating steam tempera-
ture Tc2 of the drum dryer. Let us define the state vector

as x =
[
w Tdryer Tpout T1

]T , the manipulated input vec-
tor as u =

[
Tc1 Tc2

]T , and the process output vector
as y =

[
w Tdryer Tpout T1

]T , a set of parameters p =[
keff keff 1 keff 2

]T , d is a time varying trajectory of dis-
turbance values. output functions, equality and inequality
constraints are represented by f , g, and h, respectively. Then
the dynamic mathematical model of cut tobacco drum dryer
system can be described by a compact nonlinear open equa-
tion form model as follows:

0 = f
(
dx
dt
, x, y, p, d, u

)
0 = g(x, y, p, d, u)

0 ≤ h(x, y, p, d, u) (6)

Constraints dealing with process limitations (e.g., actu-
ators magnitude have upper and lower bounds), process
safety (e.g., a maximum temperature threshold beyond
which operation becomes hazardous), process specification
(e.g., a maximum is known surface temperature beyond
which final quality is too altered) may be explicitly incorpo-
rated into this formulation (g and h).

III. NONLINEAR DYNAMIC ESTIMATION AND
CONVENTIONAL TRACKING MPC
In this section, we introduce MHE and conventional tracking
MPC (CMPC). We propose using MHE for states and param-
eter estimation purposes since it can handle nonlinear systems
and take into account constraints [19]–[24]. The conventional
tracking MPC (CMPC) will be compared with the proposed
L1-norm MPC with dead band zone tracking. The MHE
and MPC structure considered in this work are represented
in figure 3.

FIGURE 3. MHE and MPC structure.
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A. NONLINEAR DYNAMIC ESTIMATION OF MHE
State estimation and parameter estimation have been applied
in the chemical process industry. Examples of industrial
applications include offline and online process system iden-
tification, parameter estimation for model predictive control
and process disturbance prediction. Some states of the system
can not be measured directly, or the cost of direct measure-
ment is too high, so it is necessary to estimate these states
according to the output measurement of the system. For the
cut tobacco drum dryer system, the measurable outputs are
hot air temperature T1, drum dryer temperature Tdryer and cut
tobacco outlet temperature Tpout , while the cut tobacco outlet
moisture w is not measured. Three parameters keff , keff 1 and
keff 2 are estimated simultaneously. In the proposed L1-norm
zone MPC design, the whole system states and parameters
are needed, which makes the design of state and parameter
estimator necessary.

According to the different estimation time domain, mov-
ing horizon estimation can be divided into full information
state estimation and approximate moving horizon estimation.
Full information state estimation uses all the measurement
information to estimate the system’s initial state and the
disturbance acting by minimizing the optimization problem’s
performance index and calculating the system state’s esti-
mated value from the system dynamic equation. The esti-
mation results are accurate because of the large amount of
information and the ability to estimate the system’s distur-
bance. However, with the increase in time, more and more
data are processed, leading to an unsolvable problem. Rao
and Rawlings [19] and Rao et al. [20]introduced a fixed
time domain N to divide the calculation time domain of
the optimization problem into two parts. By introducing the
arrival cost function, the full information moving horizon
estimation problem is transformed into a fixed time-domain
estimation problem, to avoid the problem that the amount
of computation increases with time. However, the arrival
cost function calculation is complex, and there may be no
analytical solution for the constrained system. To ensure the
solvability of the estimation problem, Hedengren et al. [21],
Spivey et al. [22], and Hedengren and Eaton [24] proposed a
new MHE method, which overcomes some of the limitations
of the squared error MHE approach.

The purpose of MHE is to estimate states and parameters
and to readjust the predicted and measured values of the
model. By adjusting the model’s parameters and initial con-
ditions, the model prediction matches the previous measure-
ment results. As the estimation range increases, the sensitivity
of the solution to x0 decreases at xn. The unique d has a
significant influence on the current model state in a long
enough time range. Therefore, it is not necessary to estimate
the initial state x0 as the degree of freedom in the optimization
problem [23], [24].

min
x̂,ŷ,p̂,d̂

8 = wTm (eU + eL)+ w
T
p (cU + cL)+1p

T c1p

s.t. 0 = f
(
dx̂
dt
, x̂, ŷ, p̂, d̂, u

)

0 = g(x̂, ŷ, p̂, d̂, u)
0 ≤ h(x̂, ŷ, p̂, d̂, u)

eU ≥ ŷ− yx +
db
2

eL ≥ yx −
db
2
− ŷ

cU ≥ ŷ− ȳ
cL ≥ ȳ− ŷ
1pU ≥ pi − pi−1
1pL ≥ pi−1 − pi
eU , eL , cU , cL ,1pU ,1pL ≥ 0 (7)

MHE can use complex dynamic models and processing
constraints to prevent estimated parameters from entering
unreal areas. MHE can make full use of the continually
changing system information and various information to
estimate the system state more accurately, not only as a
state observer output feedback to MPC but also for system
model verification. L1-Norm Moving Horizon Estimation
with dead-band, as shown in equation 7.

In the above optimization equation 7, x̂, p̂ and d̂ represent
the estimates of x, p and d , respectively; 8 represents mini-
mized objective function result; ŷ represents model outputs(
ŷ0 · · · ŷN

)T ; yx represents measurements
(
yx,0 · · · yx,N

)T ;
ȳ represents prior model outputs (ȳ0 · · · ȳN )T ; wTm repre-
sents measurement deviation penalty; wTp represents penalty
from the prior solution; 1pU and 1pL represent upper and
lower parameter change; c1p represents penalty from the
prior parameter values; db represents dead-band for noise
rejection; 1pT represents change in parameters; eU and eL
represent slack variable above and below the measurement
dead-band; cU and cL represent slack variable above and
below a previous model value; N represents the size of the
estimation window.

The MHE objective function in equation 7 is implemented
in a form suitable for the large-scale model’s numerical
solution. By using relaxation variables to solve inequality
constraints, absolute value functions are avoided. Relaxation
variables and inequalities establish a smooth, continuous,
and differentiable objective function required by large-scale
nonlinear programming (NLP) solver. An essential advantage
of L1-NormMHE is its low sensitivity to data outliers, noise,
and measurement drift, which is very important in processing
industrial data, leading to instrument drift or failure. Another
advantage of L1-Norm MHE is that only linear equations are
added to the objective function. Because there is no other
nonlinear expression, a numerical solution is usually easier
to find the optimal solution.

The MHE structure, as shown in figure 3, at time step k ,
The nonlinear MHE (NMHE), which is based on a rigorous
process model, computes the parameters and states, x̂ and p̂.
The detailed steps are shown below:

1. Initialization step
Given weight matrix wTm, w

T
p and 1pT , initial state x0,

estimated parameter initial value p0, the dead band db and
the size of the estimation window N .
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2. MHE step
At a certain time step k , acquire past measurements over a

window of size N . When k < N , the MHE objective function
is a full-information MHE. When k > N , the MHE objective
function is an approximate MHE.

3. Parameter and state prediction step
Find the best parameter and state trajectory that best fit

the considered window of measurements. This is done by
minimizing theMHE objective function in equation 7. Repeat
the same steps at the next time step.

B. DESIGN OF TRACKING MPC
With control tools like MPC, it is expected that the indus-
trial drying operation will continue to improve its energy
efficiency while enhancing product quality and reducing
the negative environmental impact of dryers. The dynamic
response of the outputs of a system is affected by controlled
inputs (or manipulated variables) and uncontrolled inputs (or
disturbances). A dynamic model of the system can capture
such dynamics. Afterward, the controller can exploit them
to make predictions of the system’s possible future response
as a function of future controlled and uncontrolled inputs.
According to a specific performance index, MPC uses these
predictions to select the best sequence of future manipu-
lated variables. The best sequence is obtained by solving a
numerical optimization problem, which also considers the
constraints on input and output variables one must satisfy
during the operation of the drum dryer.

The conventional trackingMPC (CMPC)will be compared
with the proposed L1-Norm zone MPC design. A common
objective function form is the squared error or L2-norm
objective (see equation 8). In this form, there is a squared
penalty for deviation from a set point or desired trajectory.
The squared error objective is simple to implement, has a rel-
atively intuitive solution, and is well suited for Quadratic Pro-
gramming (QP) or Nonlinear Programming (NLP) solvers.

min
u
8 =

(
ŷ− yt

)TWt
(
ŷ− yt

)
+ ŷTwy + uTwu

+1uTW1u1u

s.t. 0 = f
(
dx̂
dt
, x̂, ŷ, p̂, d̂, u

)
0 = g(x̂, ŷ, p̂, d̂, u)

0 ≤ h(x̂, ŷ, p̂, d̂, u)

τc
dyt
dt
+ yt = sp (8)

In the above optimization, x̂, ŷ, p̂ and d̂ represent the state
and parameter estimate from L1-Norm MHE. 8 represents
minimized objective function result; yt represents desired
trajectory target;Wt represents penalty outside reference tra-
jectory; wu and wy represent the weight on input and output;
1u represents manipulated variable change; W1u represents
manioulated variable movement penalty; sp represents set-
point; τc represents time constant of desired controlled vari-
able response.

IV. PROPOSED L1-NORM ZONE MPC AND
NMPC STABILITY
A. DESIGN OF L1-NORM MPC WITH DEAD
BAND ZONE TRACKING
From the second part of the system modeling, it can be seen
that the cut tobacco drying system is a non-square system
(the number of input variables is less than the number of
output variables), and there is a problem of lack of freedom
in control. For a given setpoint control, the traditional MPC
control will appear static error at the output variables, and
the control can not achieve satisfactory results. In the cut
tobacco drying system, the most critical control task is the
cut tobacco’s outlet moisture content w. The set values of
other output variables do not need to be strictly controlled
to a certain value. The control requirements are relaxed to
make them stable within the given operation constraints.
Thus, the system’s freedom degree is increased to a certain
extent; the control requirements of the system’s critical output
variables are met, and the static error of the output variable
is eliminated. The L1-Norm zone control’s essence is: for
the control of the system with a degree of freedom D < 0,
the zone control strategy is adopted for some outputs, that
is, to give up the setpoint of this part of the output. That
is, to reduce the number of steady-state equations, to obtain
unique solutions, or even infinite solutions (the number of
solutions is related to the number of relaxed outputs of the
zone control strategy), to eliminate the steady-state residual
error of the output (see equation 9). A unique feature of
the L1-norm zone MPC is that a dead band zone or no
penalty zone is added to the measured value without causing
any loss. Only when the model prediction exceeds this dead
band zone will the optimizer change the model’s parameters.
This setting reduces the controller actions to a certain extent,
achieving cost savings, and optimizing economic goals.

min
u
8 = wThiehi + w

T
loelo + ŷ

Twy + uTwu

+wT1u (1uU +1uL)

s.t. 0 = f
(
dx̂
dt
, x̂, ŷ, p̂, d̂, u

)
0 = g(x̂, ŷ, p̂, d̂, u)

0 ≤ h(x̂, ŷ, p̂, d̂, u)

τc
dyt,hi
dt
+ yt,hi = sphi

τc
dyt,l0
dt
+ yt,lo = splo

ehi ≥ ŷ− yt,hi
el0 ≥ yt,lo − ŷ

1uU ≥ ui − ui−1
1uL ≥ ui−1 − ui
ehi, el0 ,1uU ,1uL ≥ 0 (9)

In the above optimization, x̂, ŷ, p̂ and d̂ represent the state
and parameter estimate from L1-Norm MHE. 8 represents
minimized objective function result; wThi and wTlo represent
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penalty outside reference trajectory; ehi and elo represent
upper and lower error outside dead-band;wu andwy represent
the weight on input and output; wT1u represents manioulated
variable movement penalty; 1uU and 1uL represent upper
and lower manipulated variable change; sphi and splo repre-
sent upper and lower bounds to final setpoint dead-band, if the
upper bound of the output region is equal to the lower bound,
the problem is simplified to the traditional setpoint tracking
problem; yt,hi and yt,lo represent upper and lower bounds to
desired trajectory target.

The L1-Norm zone control strategy is applied in systems
where the control output’s precise setpoint is not impor-
tant, as long as they are kept within the specified opera-
tional constraints. Considering the optimization problem of
equation 9, we must consider adding terminal constraints to
prevent the cost function from becoming unbounded. These
terminal constraints are contained in g and f, which means
that the input and output errors are zero in the control time
domain. Because the input increment constraint may lead to
the optimization problem’s infeasibility, L1-Norm zoneMPC
makes the optimization problem always feasible by adding
relaxed variables (all inequality constraints are transformed
into equality constraints by adding relaxed variables). When
the system state is measurable or estimable, as long as the
state estimator converges to the real state of the system in
a short time, the controller generated by the solution of the
optimization problem will stabilize the closed-loop system.

Literature theorem [25], [26]: for the system with a stable
model, it is controllable at the equilibrium point correspond-
ing to the expected input target and output zone. If problem 9
is feasible at k time, then it is feasible at any time step
after it. Similarly, if the weight w is large enough, then the
control sequence obtained from the solution of problem 9 in
a continuous-time step will drive the output of the closed-loop
system to a point in the corresponding zone.

Here we explain how the zone control eliminates the sys-
tem residual error by linearizing the nonlinear system. The
linearization relationship between system input variables and
output variables is shown in equation 10:

G× U = Y

G =


∗ ∗

∗ ∗

∗ ∗

∗ ∗


4×2

, U =
[
Tc1
Tc2

]
2×1
, Y =


w

Tdryer
Tpout
T1


(10)

G is the system linearized steady-state gain matrix, U is the
input variable matrix, and Y is the output variable matrix.
G is a non rank matrix, so its column space c(G) is a
two-dimensional subspace of R4. If the matrix Y does not
belong to the column space c(G) of G, that is, the matrix Y
cannot be expressed linearly by the column vector of G, then
the system of equations has no solution, that is, the system
has residual error control. The methods to solve this problem
are as follows: (1) make the matrix Y belong to the column

space c(G) ofG, and realize unbiased control. (2) By relaxing
some output variables of matrix Y , the degree of freedom of
equations is improved, and the unbiased control is realized.
The L1-Norm zone MPC (L1-ZMPC) proposed in this article
is to use the second method to drive the output target to the
target value.

B. FINITE HORIZON NMPC SCHEMES WITH
GUARANTEED STABILITY
The specifications for NMPC control functions and dynamic
performance are essentially provided through cost functions
and constraints. We will not detail the actual tuning tradeoffs
and the types of physical and operational constraints, but note
that you can usually choose a cost function of type L2-Norm
or L1-Norm.

8 =
∥∥ŷ− yt∥∥2Wt

+ ‖1u‖2W1u + ŷ
Twy + uTwu

8 =

∥∥∥wThiehi∥∥∥1 + ∥∥∥wTloelo∥∥∥1 + w1u (1uU +1uL)
+ŷTwy + uTwu (11)

Different possibilities for achieving closed-loop stability of
NMPC using a finite horizontal length have been proposed,
see example [14], [27]–[29]. Most of these methods modify
the NMPC settings so that the closed-loop stability can be
guaranteed independently of the process and performance
specifications. This is usually achieved by adding appropriate
equality or inequality constraints and appropriate additional
penalty terms to the cost function. These additional con-
straints are usually not driven by physical or expected perfor-
mance requirements, but their only purpose is to enhance the
closed-loop stability. Therefore, they are often called stability
constraints [29].

According to the optimality principle of dynamic program-
ming, infinite horizon cost is stable. Theoretically, this leads
to an infinite-dimensional problem (except for simple, special
cases), so a more practical method is to use a quasi-infinite
horizon NMPC to approximate the infinite horizon cost. The
following principles are usually helpful to ensure the stability
of NMPC [29], [30]:

(1) Sufficiently long horizon Np to cover most of the
dynamic of the process.

(2) A terminal penalty term F(x(Np)) which is added to the
cost functional:

F(x(Np)) = ŷTwy + uTwu (12)

(3) The terminal set constraint of type y(Np) ∈ � ensures
that the state is adjusted to the "close enough" setpoint, so that
a feasible and stable controller is known prior to Np, which
ensures that y(Np) will never leave� and eventually approach
the setpoint.

(4) Terminal equality constraints of the type y(Np) =
setpoint , [14], [31], that ensures convergence in finite hori-
zon. One disadvantage of a terminal equality constraint is
that the system must be brought to the setpoint in finite
time.
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In the quasi-infinite layer NMPC method, a terminal
penalty term F(x(Np)) of equation 12 and a terminal region
constraint contained in inequality constraint h(x̂, ŷ, p̂, d̂, u)
are added to the standard setup. On the contrary, the terminal
penalty term F(x(Np)) and the terminal region are deter-
mined offline, so the cost functional with the terminal penalty
term F(x(Np)) gives the upper approximation of the infinite
layer cost functional with the stage cost 8, thus solving
the closed-loop performance problem on the infinite layer.
In addition, as shown in [14], [27], [28], [30], the stability
is realized, and only one optimization problem on the finite
layer needs to be solved.

TheMPC structure, as shown in figure 3, at time step k , it is
assumed that the control stage corresponding to the NMPC is
dedicated to guiding the outputs to the specified zones while
keeping the manipulated inputs within specified constraints
zones. The detailed steps are shown below:

1. Initialization step
Given weight matrix Wt , W1u, wy, wu, wThi, w

T
lo and w1u,

the upper and lower bounds to desired trajectory target yt,hi
and yt,lo and the size of the prediction window Np.

2. NMPC step
At a certain time step k , acquire measure the state x̂ and

parameter p̂. Based on x̂, compute the (optimal) sequence of
controls over a prediction horizon Np:

u∗(x̂) :=
(
u∗(k), u∗(k + 1), · · · , u∗(k + Np − 1)

)
3. Implementation step

Apply the control u∗(k) on the sampling period [k, k + 1].
Repeat the same steps at the next decision instant.

V. SIMULATION RESULT
This section applies the proposed L1-Norm zone MPC
(L1-ZMPC) to the cut tobacco drum dryer system and com-
pares its performance with the conventional tracking MPC
(CMPC). The optimization problems (MHE, L2-NormMPC,
and L1-Norm zone MPC) are solved using IPOPT in Matlab
based on APMonitor [15].

A. SYSTEM PARAMETERS AND CONSTRAINTS
For the cut tobacco drum dryer system in equation 6, model
parameters used in the simulations are given in Table 1. The
lower and upper limits of the manipulated inputs are umin =[
0 0

]T and umax =
[
200 200

]T , respectively. The lower
and upper limits of the changing rates of the two manipulated
inputs are 1umin =

[
10 10

]T and 1umax =
[
100 100

]T ,
respectively. The lower and upper limits of system states
are xmin =

[
0 0 0 0

]T and xmax =
[
0.2 160 60 120

]T ,
respectively. The lower and upper limits of the four sys-
tem outputs are ymin =

[
0.135 150 20 100

]T and ymax =[
0.145 160 60 110

]T , respectively. The lower and upper
limits of the three system parameters are pmin =

[
0 0 0

]T
and pmax =

[
200 50 1000

]T , respectively.

B. SYSTEM PARAMETERS AND STATES
ESTIMATION USING MHE
First, the state and parameter estimation performance of the
MHE scheme introduced in Section 3 is illustrated. It is
assumed that the three outputs (Tdryer , Tpout and T1 ) are
measured every1T = 1s and the measurements are immedi-
ately available to the state estimator. First of all, the estimator
must predict the outlet moisture content of cut tobacco w,
because there is no direct measurement of this output vari-
able. Secondly, three thermal conductivity keff , keff 1 and
keff 2 need to be predicted. We consider that the system is at
initially a zero state x0 and the corresponding initially input
is u0 =

[
100 130

]T . Here, db = 0.1 represents dead-band
for noise rejection. The choice of MHE window length N is
based on extensive simulation. The simulation results show
that when N is greater than 6, the estimation performance
is not significantly improved. Therefore, N is chosen as 10.
In order to illustrate the estimation performance of L1-Norm
MHE, a set of step input signals (u(1 : 19) =

[
100 130

]T
and u(20 : 90) =

[
130 150

]T ) are applied to the non-
linear cut tobacco drum dryer system. Figure 4 shows the
results of L1-Norm parameters and states estimation. For this
application, the results indicate that L1-Norm MHE provides
accurate estimates of three thermal conductivity and four
states, especially when the tobacco outlet’s moisture content
is not measurable; it is also estimated accurately.

C. RESULTS OF LOAD-TRACKING CAPABILITY TESTS
For the cut tobacco drum dryer system, generating the
required moisture content of cut tobacco within the required
time in response to tobacco production is always the top
priority. Therefore, this section first verifies the tracking
capability of the proposed L1-Norm zone MPC (L1-ZMPC)
and conventional tracking MPC (CMPC) and considers the
controller’s economic performance in the load-tracking capa-
bility test. The nonlinear open equation form model in equa-
tion 6 is used in the simulations.

For the conventional tracking MPC (CMPC), we use the
equation 8. The sampling time is 1T = 1s, the prediction
horizon isNp = 80s to cover most of the dynamics of process.
yt =

[
0.14 160 60 110

]
represents the desired trajectory

target, here we choose to set points for fixed values. The
weighting matrices Wt = diag

([
30 20 20 10

])
represents

penalty outside reference trajectory. Because the outlet tem-
perature of cut tobacco is controlled loosely, that is, the corre-
sponding weight coefficient is smaller than the weight coeffi-
cient of other output variables.wu andwy represent the weight
on input and output, here we choose as the identity matrix.
W1u represents manipulated variable movement penalty, here
we choose as W1u = diag

([
200 200

])
.

For the proposed L1-Norm MPC (L1-ZMPC), the predic-
tion horizon Np and the sampling time 1T are selected to
be the same as the conventional tracking MPC (CMPC). wThi
and wTlo represent penalty outside reference trajectory, here
we choose as: wThi =

[
30 20 20 10

]
, wTlo =

[
30 20 20 10

]
.
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FIGURE 4. Trajectories of the actual states and parameters, and states and parameters estimate by the L1-Norm MHE.

FIGURE 5. Under the nominal condition, L1-ZMPC and CMPC track the change of the cut tobacco outlet moisture setpoint in
closed-loop simulation.

wu andwy choose as the identity matrix.W1u is selected to be
the same as the conventional tracking MPC (CMPC). In the
cut tobacco drying process, the primary task is to meet the
outlet moisture content of cut tobacco. Under the condition of
reducing the operation cost, as long as the cut tobacco outlet
temperature, drum dryer temperature and hot air temperature
meet the process requirements, energy consumption can be
saved. We set a dead band zone for drum dryer temperature
Tdryer , outlet temperature of cut tobacco Tpout and hot air
temperature T1 to meet the process requirements and the

outlet moisture content setpoint is same as conventional
tracking MPC (CMPC). sphi and splo represent upper
and lower bounds to final set-point dead-band zone, here
we choose as: sphi =

[
0.14 160 60 110

]
, splo =[

0.14 150 20 100
]
.

Simulation is carried out in two typical cases, the first
of which is system simulation in a nominal case. Figure 5
shows the controlled variables, the manipulated variables
and outlet moisture error of cut tobacco SP − w. A set of
cut tobacco outlet moisture setpoints (sp(0 : 30) = 0.14,
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FIGURE 6. Under the disturbance condition, L1-ZMPC and CMPC track the change of the cut tobacco outlet moisture setpoint in
closed-loop simulation.

sp(31 : 60) = 0.155 and sp(61 : 90) = 0.135) are
applied to the system. It can be seen that L1-Norm MPC
(L1-ZMPC) tracks the cut tobacco outlet moisture setpoint
without any offset. CMPC could not track the highest prior-
ity cut tobacco outlet moisture setpoint of the system. The
other three output control, L1-ZMPC and CMPC can be well
controlled in the process range. Comparing the two control
algorithms’ controller actions, we can see that L1-ZMPC has
smaller controller actions. Smaller controller actions mean
lower operating costs; that is, energy consumption can be
saved.

In the second case, we consider a disturbance in the system,
either from upstream equipment or the equipment itself. Here,
we assume that the moisture and temperature at the inlet of
the cut tobacco from the upstream equipment fluctuate, i.e.
win = 0.20, Tpin = 35; the air temperature at the inlet of
the heater changes twice as much, i.e. Tin = 40. Thereby we
can verify the achieved performance of the L1-ZMPC to the
CMPC controller. In the modeling part, it has been shown
that the system has no direct controller action for the outlet
moisture content of the cut tobacco. It is indirectly controlled
by drum dryer temperature and hot air temperature, which
belongs to a weak control. It can be seen from figure 6 shows
the controlled variables, the manipulated variables and outlet
moisture error of cut tobacco SP−w. The simulation reveals
that the CMPC control is a residual control because the
cut tobacco’s outlet moisture content w exceeds the process
setting range of ±0.005, and the other three output variables
conform to the process setting range. The four output vari-
ables controlled by L1-ZMPC are all in the process setting
range. This simulation demonstrates how well the L1-ZMPC
can eliminate some errors in the system model and shows the

robustness of the L1-ZMPC to face harsh disturbances that
commonly exist in industrial dryers.

From the simulation, we can see that compared with
conventional tracking MPC (CMPC), the proposed L1-
Norm zone MPC (L1-ZMPC) shows better tracking perfor-
mance and realizes the controller’s minimum action eco-
nomic characteristics. When the system has disturbances,
L1-NormMPC (L1-ZMPC) shows robust anti-jamming char-
acteristics, especially for weak control (The number of
manipulated variables is less than the number of controlled
variables).

VI. CONCLUSION
In this article, a novel L1-Norm zone MPC (L1-ZMPC) with
dead band zone tracking is proposed for the cut tobacco
drum dryer system to account for system economics dur-
ing the transients while always prioritizing outlet moisture
content of cut tobacco tracking. Extensive simulations were
carried out to compare the proposed L1-Norm MPC (L1-
ZMPC) with a conventional tracking MPC (CMPC). From
the simulations, we see that the proposed L1-Norm MPC
(L1-ZMPC) has a better tracking capacity than the conven-
tional tracking MPC (CMPC). However, due to the dead
band zone tracking targets, the proposed L1-NormMPC (L1-
ZMPC) provides a flexible framework. The proposed L1-
Norm MPC (L1-ZMPC) provides a dead band zone to reject
the measurement error and stabilize the parameter estimation.
It can be used to obtain more economic benefits by tuning
the size of the tracking zone. Further, when the system is
disturbed and parameter perturbed, the proposed L1-Norm
MPC (L1-ZMPC) can use the dead band zone to reject
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the disturbance and unreasonable parameter perturbations,
significantly improving the economic benefits, especially in
the case of weak control. Overall, the proposed L1-Norm
MPC (L1-ZMPC) with dead band zone tracking provides
an attractive control alternative to the conventional tracking
MPC (CMPC).
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