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ABSTRACT Under the background of the large-scale construction of photovoltaic (PV) power stations,
it is crucial to discover and solve module failures in time for improving the service life and maintaining
the normal operation efficiency of modules. Based on analyzing the difference of I-V curves of PV arrays
under different fault states, the I-V curves, temperatures and irradiances are taken as input data, and a fusion
model of convolutional neural network (CNN) and residual-gated recurrent unit (Res-GRU) is proposed to
identify the PV array fault. This model consists of a 1-dimensional CNN module with a 4-layer structure
and a Res-GRU module. It has the advantages of end-to-end fault diagnosis, no manual feature extraction,
strong anti-interference ability, and usable in the absence of irradiances and temperatures. Moreover, it can
not only identify a single fault (e.g., short circuit, partial shading, abnormal aging, etc.), but also can
effectively identify hybrid faults. Experimental results show that the classification accuracy of the proposed
method is 98.61%, which is better than the ones of the artificial neural network (ANN), the extreme
learning machine with kernel function (KELM), the fuzzy C-mean (FCM) clustering, the residual neural
network (ResNet), and the stage-wise additive modeling using multi-class exponential loss function based
on the classification and regression tree (SAMME-CART). In addition, in the absence of temperatures and
irradiances, the classification accuracy still reaches 95.23%, which has a broad application prospect in the
online fault diagnoses of PV arrays.

INDEX TERMS Photovoltaic, fault diagnosis, I-V curve, 1-dimensional convolutional neural network
(1-D CNN), residual-gated recurrent unit (Res-GRU).

I. INTRODUCTION
Photovoltaic (PV) power generation is a technology that
converts solar energy into electric energy and is the most
direct way of energy utilization. It has the advantages of not
being restricted by geographical conditions, flexible in scale,
safe and reliable, clean and environmentally friendly, and
occupies a prominent position and proportion in renewable
energy. A report [1] published by the 21st Century Renewable
Energy Policy Network shows that since the growth rate
of PV surpassed other renewable energies for the first time
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in 2016, new installed capacity has been increasing continu-
ously. In 2018, the global new installed capacity of PV power
generation was 100GW, with a total capacity of 505GW, and
the total installed capacity of global PV power generation is
expected to reach 1TW in 2021 [2]. In many countries, the
PV has become an important and growing power generation.

The solar cell is the core component of a PV power gener-
ation. It is a P-N semiconductor, and its essential characteris-
tics are similar to diodes. Its equivalent circuit is composed of
a photo-generated current source, diodes and resistors (shunt
and series resistances) [3]. Since the power of a single cell
is very small, the module is usually composed of multiple
cells in series and parallel connections, and then the array
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is composed of modules in series and parallel connections.
Therefore, the failure of cells or modules will affect the power
generation performance of the entire system. Although most
PV power generation systems have achieved real-time moni-
toring of the system’s operating status, they can only display
statistic operating data and events of a power outage. In gen-
eral, the fault identification only can be realized through field
equipment testing or data interpretation and analysis by expe-
rienced engineers, and limited human resources cannot meet
the demands of a massive PV market. Therefore, with the
development of technology and the upgrading of the industry,
the PV system fault detection and diagnostic technology will
become the driving force for the sustainable and healthy
development of the PV industry, which is of great significance
for promoting the scale expansion of PV power generation
worldwide.

Current PV fault diagnosis methods can be divided into
two categories including the visual & thermal method and the
electrical method. For a healthy PV module, solar radiation
will make its surface temperature evenly distributed. When
the module fails or accumulates dust, the affected cells will
be forced to use part of its energy, causing the cells to overheat
and causing the temperature of the module to be irregularly
distributed. Therefore, a thermal imaging camera is a useful
PV fault diagnosis tool [4]–[6]. Heraiz et al. [6] proposed
a PV state assessment method by combining the thermal
image and the convolutional neural network (CNN). The
researchers investigated the unmanned aerial vehicles (UAV)
to obtain PV thermal imaging data, and adopted the CNN
algorithm to automatically detect and identify the relatively
high-temperature region on the PV panel. Thus, it finally
determined the hot spot location with high precision. In short,
the visual & thermal method only can identify the abnormal
heating caused by the fault, but cannot reliably identify the
reason of the fault. Under normal circumstances, due to the
different installation angles and manufacturing processes,
each cell will have a temperature difference, which will affect
the identification accuracy of the visual & thermal algorithm.

The electrical method can be further divided into the
performance comparison method and the signal processing
method. The performance comparison method distinguishes
the normal state or the failure state by comparing the param-
eter characteristics of a PV array. The PV parameters include
external parameters (open-circuit voltage Voc, short-circuit
current Isc, the voltage Vm and current Im at the maxi-
mum power point), internal parameters (photo-generated cur-
rent Iph, ideal factor A, parasitic diode saturation current Io,
series resistance Rs and shunt resistance Rsh), the I-V curve,
and the P-V curve. When a PV module encounters different
faults, its internal and external parameters or the slope and
shape of the I-V/P-V curves will change [7], [8]. Therefore,
through analyses and derivations, the characteristic expres-
sion forms and rules to describe various faults can be found.
Pei and Hao [8] investigated a new method to diagnose
PV faults by observing and evaluating voltage and current
changes. Voltage and current indexes were defined by the

voltage Vm and current Im at the maximum power point,
the open-circuit voltage Voc, and the short-circuit current Isc.
By comparing the index value and the threshold value col-
lected in real-time, the fault of the system can be judged. Due
to the influence of power station scale and module parame-
ters, the method of judging fault state by the corresponding
threshold values is weak in generalization. When the module
performance is aging, the corresponding threshold values
require to be reselected again.

The signal processing is a method to identify and locate
faults by using the waveform signal decomposition, which is
often used to solve the problems of line-to-line fault, dynamic
shading, and arc fault in multi-series systems [9]–[13]. The
line-to-line fault is also called as the mismatch fault, whose
fault characteristics are very similar to the partial shading,
and cannot be easily identified by the performance compar-
ison. Instantaneous waveform decomposition and frequency
transformation are often investigated to extract fault features
and identify fault types due to the backflow of fault current
in the line-to-line fault. Pillai and Rajasekar [12] adopted
the uniqueness theory of the rightmost peak power (RPP) in
PV array output characteristics to detect the line-to-line and
line-to-ground faults. To this end, the global perturbation &
observation method was used to track the RPP. Experimental
results in [12] showed that it could effectively detect the faults
regardless of the mismatch level, the system type, or the
system rating. It was also effective at the conditions of low
irradiance and partial shading. Kurukuru et al. [13] performed
the wavelet decomposition of voltage and current signals
to extract the energy, the entropy, the peak power spectral
density, and the kurtosis as features, and then trained a radial-
basis-function (RBF) neural network to identify 14 kinds of
faults. Most of these online signal processing methods are
characterized by the amount of signal mutation at the faulty
time. Moreover, the corresponding signals are decomposed,
and the rules before and after the change are discovered.
By this way, they can identify faults without shutting down
the system operation and avoid human-made power loss.
If the fault occurs at night or during the system shutdown
period, no waveform data can be extracted such that these
methods in [9]–[13] cannot work.

In general, the application of artificial intelligence (AI)
technologies based on data-driven mechanisms [14] helps
to construct automatic fault classifiers and improves the
efficiency and accuracy of faulty diagnoses. Recently,
the methods of artificial neural network [15], probabilistic
neural network [16], random forest [17], parity relation [18],
observer [19], fuzzy inference system [20], extreme learning
machine [21], and support vector machine [22] have been
widely used in fault diagnoses for industrial physical systems
and PV arrays. Jiang et al. [18] proposed a parity relation-
ship algorithm based on residual generators to deal with
the diagnostic problem of a Hammerstein nonlinear system,
and verified it in the hot rolling mill fault identification.
Wu et al. [19] designed an initial failure evaluation method
based on the descriptor estimation to evaluate the status of
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high-speed railway traction devices. Then, a robust observer
was also designed to early detect faults in the induction motor
system of high-speed trains [23]. In order to identify five
common fault types, Belaout et al. [20] dimensionalized the
fault characteristics through neuro-fuzzy classifiers to extract
the optimal combination of feature expressions for each fault
type, and trained five classifiers to identify them one by one
on the basis of considering all the feature parameters that
can be extracted. Unfortunately, it requires using a normal
value in the same environment for the feature normalization,
and the normal value used in [20] should be obtained via
numerical simulations, which leads to great difficulties in
practical applications.

The basic framework for the application of traditional
AI technologies is as follows. Firstly, it extracts the corre-
sponding characteristics from the voltage, the current, and the
power of a PV system, and then conducts the standardized
processing. Finally, the AI algorithm is adopted to mine the
difference of characteristics under different fault conditions
for realizing the fault diagnoses. At present, more advanced
AI algorithms have been developed to mine the differences
between curves or images actively and recognize them, such
as CNN [24], residual network (ResNet) [25], adversarial
generative network [26], transfer learning [27] etc. Compared
with traditional methods, these methods in [24]–[27] do not
require the multi-step processing of the signal and realize the
fast diagnosis. To address the problem of the lack ofmeasured
arc signal samples, Lu et al. [26] used the domain adap-
tive of deep convolutional generative adversarial network
(DA-DCGAN) to realize the enhancement of arc sam-
ples from laboratory simulation to actual measurement
environment. Then, the CNN was performed to iden-
tify serial arc fault. The deep learning model in [26]
requires complex networks and deep structures, which
brings difficulties to the selection and adjustment of
hyper-parameters.

On the basis of reviewing and summarizing previous
research results, this study integrates a variety of machine
learning models, and takes the waveform of the I-V curve
as input directly without extracting the internal and exter-
nal parameters of a PV system. Moreover, it constructs an
end-to-end shallow fault diagnosis model, and realizes the
identification of single and hybrid faults of PV arrays. The
framework of the proposed method is illustrated in Fig. 1.
The first part is two-dimensional input data composed of I-V
curve, irradiance, and temperature. Then, the second part is
a multi-layer one-dimensional CNN network, whose role is
to mine the shape characteristics of the I-V curve. Moreover,
the third part is the residual-gated recurrent unit (ResGRU)
network, which is responsible for the memory of time and
space information of the input features. In addition, the fourth
part is the output layer, which implements the fault classifica-
tion. The main contributions of this research are summarized
as follows.

(1) The convolutional neural network and the gated
recurrent unit (GRU) are fused and modeled, and the input

FIGURE 1. Framework of proposed method.

information is mined from the space and time dimensions,
which improves the diagnostic accuracy.

(2) The ResGRU is used to replace the ordinary GRU for
solving the problem of the network degradation, and the time
correlation of input information is well preserved.

(3) A modeling method aimed at mining the difference of
I-V curve shape under different faults is proposed. Further
analyses show that the operation status of the PV array still
can be accurately determined in the absence of meteorologi-
cal information.

This study is organized into seven sections. Section II
introduces the I-V curve characteristics of a PV system under
different faults. Section III briefly describes the algorithms
used in this study. Section IV elaborates on the framework
and diagnosis process of the constructed model. Section V
verifies and analyzes the proposed method through numerical
simulations and measured data. Section VI emphasizes the
advantages of the proposed method by comparing with other
methods. The summaries are given in Section VII.

II. I-V CURVE CHARACTERISTICS OF PV FAILURES
A photovoltaic (PV) array is usually composed of multiple
modules combined in series and parallel connections. The
output dc voltage and current level of the PV system will
be determined by series and parallel connection amount. The
roof PV power generation system of a family generally adopts
the power supply structure of single series PV modules. Each
string is fed into an independent control unit for themaximum
power point tracking (MPPT) to achieve themaximum energy
output. In commercial power stations, from the perspective of
operation scale and cost control, energy is collected through
the MPPT control after connecting many series modules in
parallel. This study mainly focuses on the fault diagnosis
research in the single-series PV system, and takes 13modules
as an example to construct a simulation model based on the
I-V curve test circuit in [21]. Under standard test conditions
(STC, G=1000W/m2, T=25◦), the I-V curve performance of
the PV array operated at various states, e.g., the normal state,
the short-circuit (SC) fault, the partial-shading (PS) fault,
the abnormal aging (Aa) fault, hybrid faults, will be analyzed.

The fault of SC refers to an accidental connection between
two points of different potentials in the PV array. In a
single-series PV system, the short-circuited modules have no
energy output, and the array will lose the energy of this part
modules. Compared with the normal state, the characteristic
of the I-V curve is that all the open-circuit voltage Voc and
the maximum power point voltage Vm are reduced, and the
voltage-loss is proportional to the number of short-circuited
strings. The curve remains smooth, and the short-circuit cur-
rent Isc and the maximum power point current Im basically
remain unchanged, as shown in the curve 2 of Fig. 2(a).
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FIGURE 2. Characteristics of I-V curve in different states under STC.
(a) Single fault; (b) Hybrid faults.

The fault of PS means that the performance parameters of
PV modules connected in series are different due to objects
or shadow occlusion, and the shaded modules are overheated
or even burned due to performance degradation. According
to the conduction of the bypass-diode of the fault string,
the PS fault can be divided into two types including the
partial-shading with bypass-diode on (PSBO) and the partial-
shadingwith bypass-diode reversed (PSBR).When the PSBO
failure occurs, the covered part of the cells becomes load,
resulting in no current output of the cell string where it is
located. At this time, the I-V curve of the array presents the
double-peak shape as shown in the curve 3 of Fig. 2(a), and
the maximum power point is at the left peak. When the PSBR
failure occurs, the output current of the array is restricted
and is equal to that of the fault modules. The I-V curve also
shows the double peak as shown in the curve 4 of Fig. 2(a),
and the maximum power point is at the right peak. From the
appearance of external parameters, the open-circuit voltage
Voc, and the short-circuit current Isc at both the PSBO and
PSBR faults are the same. However, the voltage Vm at the
maximum power point of the PSBR is greater than that of the
PSBO, and the current Im at the maximum power point of the
PSBR is smaller than that of the PSBO. In addition, although
both failures will have double peaks, the heights of the peaks
differ significantly.

The fault of Aa can be divided into the abnormal in series
resistance and the abnormal in parallel resistance. In these
cases, the probability of abnormal aging of series resistance is
relatively large, and it is easy to simulate, which is the focus of
this research. The abnormal aging of series resistance means
that the series resistance inside the cell suddenly becomes
very large, making the voltage drop on the series resistance
greater than the output voltage of the entire string of cells.
This result causes the bypass-diode conducted, and the output
curve appears abnormal or even multi-peak. From the per-
spective of external parameters, the fault of Aa is the same as
that of the PSBO, which is prone to misjudge (as shown in
the curve 5 of Fig. 2(a)). Fortunately, near the point of open-
circuit voltage, the slope of curve changes abnormally. Thus,
the slope of the open-circuit point (Roc) was used in [28] to
characterize the aging degree of the module.

The hybrid-fault waveform of SC and PSBO (SC&PSBO)
is depicted in the curve 6 of Fig. 2(b), and the external
parameters are the same as the SC fault. However, the curve of
the SC&PSBO fault has double peaks. The hybrid-fault wave-
form of SC and PSBR (SC&PSBR) is depicted in the curve 7
of Fig. 2(b). All the values of Voc, Im and Vm are reduced, and
the short-circuit current Isc remains unchanged. Moreover,
the curve presents a double-peak shape, but the second peak is
higher than that of the SC&PSBO fault. By this way, the fault
identification can be performed regardless of external param-
eters or the shape of I-V curve. The hybrid-fault waveform of
the SC andAa (SC&Aa) is depicted in the curve 8 of Fig. 2(b).
The external parameters are also the same as the SC fault, but
the slope at the end of the curve is abnormal. The hybrid-fault
waveform of Aa and PSBO (Aa&PSBO) is depicted in the
curve 9 of Fig. 2(b). The external parameters are the same
as that of the PSBO, and the slope at the end of the curve is
also abnormal. The hybrid-fault waveform of Aa and PSBR
(Aa&PSBR) is depicted in the curve 10 of Fig. 2(b). The
external parameters are the same as that of the PSBR, but the
slope at the end of the curve is abnormal. The hybrid-fault
waveform of PSBO and PSBR (PSBO&PSBR) is depicted
in the curve 11 of Fig. 2(b). The voltage Vm and current
Im at the maximum power point are decreased, which are
inconsistent with other fault types. The open-circuit voltage
Voc and the short-circuit current Isc remain unchanged, but
there are more than three peaks on the curve, which have
obvious differences.

For a single fault, the external parameters at different
fault types under the STC are obviously different, which is
conducive to identify the fault type. As for hybrid faults,
the external parameters are no longer sufficient, and other
indicators are required to assist. From the foregoing analyses,
it can be seen that for different fault types, the shape of the I-V
curve has obvious differences, and the external parameters are
also included in the I-V curve. Therefore, it is the simplest and
most direct way to diagnose with the I-V curve as the input
features. Moreover, it can be seen from the I-V characteristic
equation in [14] that temperatures and irradiances have a great
influence on output voltages and currents. These effects are
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mainly manifested in the amplitude, rather than the shape
of the curve. For the sake of prudence, temperatures and
irradiances are also used as input features, but the impact
of the lack of them on the accuracy of the algorithm will be
further discussed. In short, the traditional method of mining
or calculating key node indicators from the I-V curve is
abandoned by this research. The I-V curve, temperature and
irradiance are directly used as the input data, and an end-to-
end shallow machine learning model is established to realize
simple and fast fault diagnoses.

III. METHODOLOGY
A. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural network (CNN) is generally used for
the machine vision and the natural language processing.
It has characterization learning capabilities and can extract
high-level features from the input data. One-dimensional
CNN (1-D CNN) can be used for the time-series data pro-
cessing, and two-dimensional CNN (2-D CNN) can be used
for the visual processing such as the image recognition [29].
The structure of the 1D-CNN is depicted in Fig. 3, which is
composed of the input layer, the convolution layer, the pool-
ing layer, the fully connected layer, and the output layer. The
convolution layer extracts the features through convolution
kernels of different sizes, and the pooling layer reduces the
dimensionality of information by compressing data. The con-
volution layer and the pooling layer alternately appear for
effectively extracting and retaining data features. The fully
connected layer flattens the distributed features extracted
from the different spaces to achieve regression or classi-
fication. The CNN focuses on the local feature extraction
and reduces the number of weights through the parameter
sharing, which greatly reduces the calculation parameters of
the network.

B. GATED RECURRENT UNIT
Gated recurrent unit (GRU) and long short-term mem-
ory (LSTM) can be regarded as variants of recurrent neural
networks (RNN), which are usually used to deal with the
sequence problems. They can solve the long-term memory in
the traditional RNN and the gradient explosion problem in the
back-propagation algorithm [30]. The GRU and the LSTM
use a gate structure to replace the hidden unit in the standard
RNN structure, which can selectively memorize important
information and forget unimportant information. Compared
with the LSTM, the GRU replaces the input gate, the forget
gate and the output gate of the LSTM with the update gate
zt and the reset gate rt [31]. Under the condition of the
prediction accuracy of theGRU to be not lower than the one of
the LSTM, the training parameters can be reduced to achieve
a faster convergence speed. The structures of the traditional
RNN and the GRU are depicted in Fig. 4.

Intuitively, the reset gate rt determines the combination of
new input with the previous memory, and the update gate
zt defines the number of previous memories saved to the

FIGURE 3. Structure of 1D-CNN.

FIGURE 4. Architecture of RNN and GRU. (a) RNN; (b) GRU.

current time step. The larger the value of zt , the more state
information from the previous moment can be retained to
the current moment. The smaller the value of rt , the more
state information from the previous moment will be forgot-
ten [32]. Therefore, the working principle of the GRU can be
summarized as follows. The first step is to calculate zt and
rt according to the input state information xt at the current
moment and the hidden layer information ht−1 memorized
at the previous moment. The second step is to use the reset
gate to determine the number of new information stored in the
node ĥt . The third step is to calculate the hidden layer output
at the current moment through the update gate. The following
formulas are applied to describe the calculation process of
the GRU.

zt = σ (Wzxt + Uzht−1 + bz) (1)

rt = σ (Wrxt + Urht−1 + br ) (2)

ĥt = tanh(Whxt + Uh(rt ⊗ ht−1)+ bh) (3)

ht = (1− zt )⊗ ht−1 + zt ⊗ ĥt (4)

where σ is the sigmoid function; Wz, Wr , Wh, Uz, Ur and Uh
are weight matrices; bz, br , bh are the bias values; ĥt is the
sum of the input state xt and the hidden layer output ht−1 at
the previous moment; ht is the output of the hidden layer at
the current moment; ⊗ is the hadamard product.

C. RESIDUAL-GATED RECURRENT UNIT
Residual neural network (ResNet) can solve the problem of
model performance degradation and non-convergence caused
by network depth [33]. In the structure of residual accumula-
tion layer (as shown in Fig. 5(a)), it is assumed that the input
is x and the characteristic learned by the network isH (x). It is
hoped that the network can learn the residual F(x) = H (x)–x,
so that the original learning feature of the network is increased

VOLUME 8, 2020 159497



W. Gao, R.-J. Wai: Novel Fault Identification Method for PV Array via CNN and Residual Gated Recurrent Unit

FIGURE 5. Architecture of ResNet and ResGRU. (a) ResNet; (b) ResGRU.

to F(x) + x. When the residual is zero, the accumulation
layer only plays the role of identity mapping to avoid the
redundancy generated by the redundant network layer. As for
the case of gradient descent, the network can effectively deal
with performance degradation. However, the residual is often
not equal to zero in practice. It will make the accumulation
layer learn new features based on the input features, thereby
having a better performance.

An ordinary GRU can solve the problem of gradient explo-
sion to a great extent. However, once the amount of input
data increases, the GRU will also cause network degradation
to some extent, resulting in the loss of some characteristics
of input information. To address this problem, a network
of ResGRU is proposed in this study. The GRU module is
adopted in the residual block to extract the features of the time
series. The structure of the ResGRU is depicted in Fig. 5(b),
and the dashed line represents the dimensions matching of the
input and the output. Structurally, the output of the residual
block is equal to the sum of the output of the last layer of
the GRU and the input x. Assuming that the last layer output
of the GRU is y, the output yR of the residual block can be
expressed as

yR = relu(BNγ,β (y)+ g(xt )) (5)

where relu(·) represents the relu activation function; BN (·)
is the batch normalization function; γ and β represent two
learnable variables in the function; g(·) is the adjustment
function, making xt and ht with the same dimension. Through
the residual connection, the ResGRU network can better
remember the correlation between the information before
and after the time-series data, and improve the classification
performance of the network while retaining the characteristic
information of the original data.

IV. NOVEL CNN-RESGRU MODEL
The analyses in Section II show that the I-V curve of the
photovoltaic (PV) array has significant differences under dif-
ferent faults. By learning the shape of the I-V curve, single
and hybrid faults of PV arrays can be identified. As for I-V
curves, traditional identification methods usually only extract
key indexes, such as the voltage Vm and current Im at the
maximum power point, the open-circuit voltage Voc, and the

short-circuit current Isc as fault characteristics. By this way,
it will destroy the timing sequence of I-V curves, and the
rules contained in the curve cannot be retained and reflected.
The convolutional neural network (CNN) can fully mine the
relationship between various local features, and the ResGRU
can memorize the mined temporal dynamic features, making
it easier for the model to capture the characteristics of corre-
lation and dependence among I-V curves. Therefore, a novel
PV fault identification method by combining the CNN and
the ResGRU is proposed. The fault characteristics and rules
contained in the I-V curve are mined and extracted effectively
based on the end-to-end machine learning model, which sim-
plifies the diagnosis process and improves the identification
accuracy.

A. MODEL ARCHITECTURE
The proposed diagnostic model is depicted in Fig. 6, includ-
ing the 1-D CNNmodule, the ResGRU module, and the fully
connected module. Specifically, it is mainly composed of the
input layer, the convolution layer, the pooling layer, the Res-
GRU layer, and the output layer. The information of voltage,
current, irradiance, and temperature are extracted through
the convolution layer, and then the features are reduced by
the pooling layer. After that, the ResGRU module is used
to memorize and digest the laws contained in the previous
features, and finally it is classified via the fully connected
layer.

Suppose S0 is the input sequence matrix, and Si is the
ith output sequence matrix. The layer-wise description of the
model is expressed as follows.

(1) Input layer. The information of voltage, current, irradi-
ance, and temperature are used as the input data for the input
layer. In order to enable the convolution layer for acquiring
the information of voltage, current, irradiance and tempera-
ture simultaneously when scanning the data, the irradiance
and temperature of a single point are expanded to the vector
with the same length of voltage and current, and integrated
into an n×4matrix. S0 = [V , I , T , Irr ], where V is the voltage
vector, I is the current vector, T is the temperature vector,
Irr is the irradiance vector, and the length of each vector is n.

(2) Convolution layer. The function of the convolution
layer is to extract local features from the sequence data.
The filter sliding direction of one-dimensional convolution
is along the time axis, so the shape of the convolution kernel
is generally designed as a rectangle. In the CNN, the convo-
lution layer and the pooling layer usually appear alternately.
It is assumed that Si (i is odd) is the output matrix of the
convolutional layer, which can be described as

Si = f (Si−1 ⊗ wi + bi) (6)

where wi is the weight of the ith layer, bi is the bias of the
ith layer, and f (·) is the activation function.
(3) Pooling layer. The pooling layer is mainly used to com-

press the features extracted by the convolution layer to reduce
the information dimension and decrease the probability of
network overfitting. Maximum pooling or average pooling is
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FIGURE 6. Detailed architecture of proposed method.

the most common method. In practice, the performance of
the former is better than the one of the latter. In this study,
a rectangular maximum pooling function (z× 1) is used, and
the maximum value in the pooling core is retained as the
output feature to reduce the computational complexity from
the upper hidden layer. The output matrix Sm (m is the even
number starting from 2) of the pooling layer can be expressed
as

Sm = Y (Sm−1) (7)

where Y refers to the maximum pooling function. The size of
Sm is p/z × q, in which p and q are the scale of features of
Sm−1 layer, and z is the scale of the current pooling layer.
(4) ResGRU layer. The ResGRU layer learns the feature

vectors extracted by the CNN, and remembers the internal
rules of different features. The residual block is composed
of two GRU modules. After each GRU module, the batch
normalization is performed, so that each GRU module has
independent parameter adjustment ability to speed up model
convergence. Moreover, the batch normalization of the first
module is connected to the activation layer with the ReLu as
the activation function.

The 1-D CNN module outputs a two-dimensional feature,
including dimensions of time and spatial (channel). Specifi-
cally, the function of the ResGRU is explained as follows. The
first GRU memorizes and mines spatial dimension informa-
tion to return data of complete time dimension. The output
results are transposed into the second GRU to realize the
memory and mining of time dimension information. How-
ever, the result of this processing is that the input and output
dimensions of the residual block do not match. Therefore,
in the identity mapping part, dimension matching needs to
be completed. The processing method of the ResNet is to use
1 × 1 convolution kernel to achieve channel dimensionality
reduction. However, simple convolution cannot be achieved
in this study due to changes in the time scale of the output
data. For this reason, a GRU module is used in identity map-
ping to achieve dimensionmatching. Comparedwith ordinary
GRU units, the ResGRU not only has an independent resid-
ual learning function, but also proposes features of different
time and spatial scales from the original information through
multiple connected pipelines.

(5) Output layer. It is essentially a full-connected layer, and
its role is to classify. Therefore, the softmax is selected as

the activation function. At this layer, the model calculates the
probability of each type of input sample, and then obtains a
new expression (ypredict ).

ypredict (i) = f (L = li|S6; (W , b)) (8)

where f (·) represents the softmax activation function;
li represents the probability that the input sample belongs to
the ith category; W represents the weight, and b is the bias
value.

As for the model training, random numbers are generally
used to initialize the weight matrices and the bias values
to ensure that each parameter is not repeated and the dif-
ference is not large. In this study, the he_normal in [34]
is used to achieve this work, so that the data has a good
constant variance when input to the first convolution layer.
Moreover, the L2 regularization in [35] is selected at the
output layer to accelerate the convergence speed of the net-
work and prevent the network overfitting. In addition, the
cross-entropy is adopted to process the output probability
model.

B. LOSS FUNCTION
According to the aforementioned description, the training and
diagnostic process of the PV fault diagnosis model in this
study can be summarized as follows.
S1: Collect the I-V curve when the PV array is off-grid,

and record the temperature and irradiance at the time of
measurement.
S2: The temperature T and the irradiance Irr are

expanded and constructed together with the I-V curve into
an n × 4 matrix as the input data for the diagnostic
model.
S3: Database is divided into the training set, the validation

set, and the testing set.
S4: Put the data in the training set into the CNN-ResGRU

model and train model parameters according to the random
search algorithm. Moreover, the data in the validation set is
used to make a preliminary assessment of the capability of
the model to determine whether to re-calibrate or restructure
the model.
S5: Test the trained diagnostic model with the data in

the testing set to evaluate the diagnostic accuracy of the
model.
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V. VALIDATION AND ANALYSIS
A. NUMERICAL SIMULATIONS
1) MODEL CONSTRUCTION
The MATLAB/SIMULINK software is used to build a sim-
ulated platform for capturing numerical simulation data. Its
structure is depicted in Fig. 7. The photovoltaic (PV) array is
made up of 13 modules in series connection, each module is
made up of 60 cells in series connection, and every 20 cells are
connected in parallel connection with a reverse bypass-diode.
The parameters of the module are summarized in Table 1.
The output voltage is controlled to change linearly from
0-Voc through a controlled voltage source, and then the volt-
age and current oscilloscopes are performed to record the
output of the PV array to draw the I-V curve. The voltage and
current sequence length obtained from this simulation system
are 1000.

FIGURE 7. Model of numerical simulations.

TABLE 1. Parameter of PV Module under STC.

The data of four single faults including the short circuit
(SC), the partial-shading with bypass-diode on (PSBO), the
partial-shading with bypass-diode reversed (PSBR) and the
abnormal aging (Aa), and six hybrid faults composed of
arbitrary two single fault combinations can be obtained by
numerical simulations. As shown in Fig. 7, the number of
short circuits of the module is controlled by short-circuiting
wires. By adjusting the temperature and irradiance of a single
cell in the PV array, the faults of the PSBO and the PSBR
can be generated. By adjusting the amplitude of the aging
resistance, the Aa fault can be simulated. Finally, a total
of 1320 samples can be extracted as the data set. The fault
types and the corresponding sample numbers are summarized
in Table 2, where the SC fault includes one to three modules

TABLE 2. Summary of data set.

short circuit, respectively, and each type has 40 samples. The
ratio of the training set, the verification set, and the testing set
is determined as 6:2:2 in this study.

2) SELECTION OF HYPER-PARAMETERS
The PV fault diagnosis model is built according to Section IV,
and all the work are done in the Keras platform. The resources
of server are XEON W-2123 CPU, 2∗GTX 1080 Ti GPUs,
32G RAM. One performs the random optimization for the
parameter adjustment on the constructed network, and the
finally selected network hyper-parameters are summarized
in Table 3. During the training process, the maximum epoch
of the network is 1000; the initial learning rate of the Adam
is 1e-4, and the batch is 32.

TABLE 3. Model parameters under numerical simulations.

3) FEATURE VISUALIZATION
In order to verify the effectiveness of the proposed method
in the feature extraction and the rationality of model parame-
ter design, the t-distributed stochastic neighbour embedding
(t-SNE) [36] is used to visually show the model’s distribu-
tion effect on the features extracted from the samples in the
training set. In the visualization process, the principal com-
ponent analysis (PCA) is used for dimensionality reduction.
Figure 8 shows the two-dimensional visualization results
given by the t-SNE scheme.
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FIGURE 8. t-SNE visualization results of numerical simulations. (a) Original data; (b) Data after 1D-CNN; (c) Data
after ResGRU; (d) Output data.

Figure 8(a) is the visualization result of the input sequence
data. Different types of data are scattered throughout the
plane space, and the degree of aggregation is very low and
cannot be distinguished. Figure 8(b) is the result of visual-
ization of the data after the 1-D CNN module. At this time,
there is still no obvious distinction between the data, but
clusters are slowly formed. At the same time, it also shows
that the features extracted by the CNN is not clear enough
and needs to continue mining. The data shown in Fig. 8(c)
has undergone residual block processing, and it can be found
that different types of data gradually have a clear distinc-
tion. Although the classification effect is gradually clear,
the same type of data is not closely clustered in Fig. 8(c).
Figure 8 (d) is the visualization result of the final output data.
It can be clearly seen that the distinction between different
types of data is very high, and similar data forms clusters.
Except for individual discrete points, the rest of the data
are successfully and accurately classified. The above change
process shows that the proposed method gradually enhances
the feature recognition through feature extraction layer-wise.
With just a few layers of network, the features with high
recognition can be extracted, which reflects the high-quality
feature mining ability of the proposed method.

4) ANALYSES OF TRAINING AND TESTING RESULTS
Accuracy and recall are commonly used as evaluation indi-
cators in the field of machine learning. The accuracy reflects
the proportion of samples that are correctly identified, and

the recall reflects the recall ability of the algorithm, that is,
the number of positive samples that are correctly predicted.
The calculation formulas [37] of the accuracy and the recall
can be expresses as

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(9)

Recall =
TP

TP+ FN
(10)

where TP is the true positive category, FN is the false negative
category, FP is the false positive category, and TN is the true
negative category.

Figure 9 (a) and (b) are the accuracy curve and the loss
curve after 1000 iterations. The final training accuracy of the
model reaches 100%. It can be found that when the number
of iterations is less than 100, the accuracy and the loss change

FIGURE 9. Training results of 1000 iterations in numerical simulations.
(a) Curve of accuracy; (b) Curve of loss.
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rapidly and converge quickly. When the number of iterations
exceeds 100, the accuracy and the loss gradually stabilize.
According to the results in Fig. 9, the epoch can be set as 500.

The trained model is used to predict the categories of
the testing set. In order to evaluate the classification results
more intuitively, a confusion matrix is used to express the
relationship between the prediction result and the true label,
and the generated confusion matrix is normalized by row
to obtain a standardized one. The corresponding result is
depicted in Fig. 10. The values in Fig. 10 represent the
probability that the actual value is predicted by a certain label,
and the diagonal is the recall of each category. Obviously,
the model has a recall of 1 for each category, and there is no
sample of missed judgment. The testing result fully reflects
the high recognition accuracy of the proposed method.

FIGURE 10. Confusion matrix of numerical simulations.

B. EXPERIMENTAL VERIFICATION
1) EXPERIMENTAL PLATFORM
In order to further verify the performance of the proposed
method in practical applications, a set of PV power generation
system is built to simulate a series of failures that the PV
array may encounter. The photograph of the experimental
platform is depicted in Fig. 11. The capacity of the PV array
is 3.38kWp, which is composed of 13 modules connected
in series, and each module is 260W. The parameters of the
module are summarized in Table 4. The solar system analyzer
named as PROVA-1011 is used to collect the I-V curve of
the PV array, and the matching sensor is used to measure
the solar irradiance and the back temperature of the module.
Two Y-type taps are short-connected to produce the short-
circuit (SC) fault, i.e., the modules in the middle of two taps
are short-circuited. Broken debris such as small bricks block
a module to generate the partial-shading with bypass-diode
reversed (PSBR) fault. At this PSBR fault, the shading area is
small, and the bypass-diode of the faulty string is not enough
to conduct. Some modules are blocked by film and paper
to cause the partial-shading with bypass-diode on (PSBO)
fault. At this PSBO fault, the shading is more serious, and

FIGURE 11. Photovoltaic experimental field.

TABLE 4. Parameter of Laboratory Module under STC.

the bypass-diode of the faulty string is all in the conducting
state. A sliding rheostat is used as an aging resistor in series
in the module to simulate the abnormal aging (Aa) fault of the
module. During the experiment, the irradiance range is about
150W/m2 to 1000W/m2.
The mimic fault types in the experiment can be found

in Table 5, where ten faulty states and one normal state
are included and collected. The amount of 1892 samples is
collected to form a data set, in which the length of the voltage
and current sequence of each sample is 149. With a ratio
of 6:2:2 for each category, i.e., 1136 samples are randomly
selected as the training set, 379 samples are selected as the
validation set, and 377 samples are the testing set. Preliminary
tuning found that the established diagnostic model can be
trained directly using simulation data to obtain better classi-
fication results. Because the two input data dimensions are
inconsistent, the number of neurons in the input layer of
the measured data diagnosis model is changed to 11, and
the other hyper-parameters are the same as Table 3. Finally,
the training set and the validation set are used to train the
weight parameters of the measured data model.

2) FEATURE VISUALIZATION
The t-SNE is also used to analyze the feature extraction
effect of the model on the measured training data set, and
the result is depicted in Fig. 12. Figure 12 (a) is the visu-
alization result of the input data. It can be found that the
data of the SC&PSBO, the PSBO, and the PSBO&Aa have
a certain degree of recognition from the beginning, and the
data of other categories are still in a free state. The reason
may be that the simulation data generation conditions are
relatively ideal, and the range of weather conditions that
can be covered is relatively wide, so the data is relatively
scattered. The measured data is restricted by the collection
conditions, and the meteorological conditions are relatively
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FIGURE 12. t-SNE visualization result of measured experiment. (a) Original data; (b) Data after 1D-CNN; (c) Data
after ResGRU; (d) Output data.

TABLE 5. Summary of measured experimental fault type.

concentrated, which leads to certain data with a certain degree
of recognition. Figure 12(b) is the visualization result of the
data processed by the 1-D CNN. Although the discrimina-
tion between different categories of data is not significantly
improved compared to the one in Fig. 12(a), the distance
between different clusters starts as the data becomes larger,
the data of the same cluster begins to gather. The data shown
in Fig. 12(c) has been processed by the ResGRU. Except for
normal and Aa samples, the data of the other categories are
clearly distinguishable. Figure 12(d) shows the distribution

of the final output data, and the best discrimination between
different categories can be achieved. However, it can be found
that there is a small amount of overlap between the normal
category samples and the Aa category samples, and a small
number of PSBR category samples appear in the space of the
normal category samples.

Independent observation of these confused samples found
that a small number of problem samples appeared in the
PSBR and Aa samples, and their I-V curves are depicted
in Fig. 13 (b) and (d). Under normal circumstances, the PSBR
category curve will have obvious double peaks (as shown in
the curve 4 of Fig. 2(a)), but the double peaks of problem
sample of the PSBR are almost difficult to observe (as shown
in Fig. 13(b)). The short-circuit current of it is 6.2A, which
means that the irradiance has reached 620W/m2, which is
not a condition of insufficient sunlight. This curve is eas-
ily confused with the normal category sample (as shown
in Fig. 13(a)). For the problem sample of the Aa fault shown
in Fig. 13(d), the slope of the open-circuit voltage changes
slightly. Careful observation reveals that there is only a slight
mutation in the last two points. However, the slope of the
open-circuit voltage of the Aa sample has a significant change
(as shown in Fig. 13(c)). As a result, the probability of identi-
fying the aforementioned problem samples as the PSBR fault
or the Aa fault based on the shape and external parameters
may be very low. During the experiment, the failure mode
is fixed, and then as the irradiance changed, the solar system
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FIGURE 13. Normal and problem samples. (a) Normal category sample;
(b) Problem sample of PSBR fault; (c) Aa sample; (d) Problem sample of
Aa fault.

analyzer is used to collect data at intervals. Therefore, the fail-
ure categories of these problem samples should be correct.
Since it takes about 20s for the solar system analyzer to
collect complete data once, there may be two reasons for the
appearance of problem samples: (1) During the experiment,
the waveform shape had changed due to the irradiance varia-
tion; (2) The analyzer adopts a non-equal interval collection
mechanism (e.g., the front is dense, and the back is loose),
and the data points collected near the open circuit are too
few, resulting in the slope change un-obviously. In view of
this, this research still puts problem samples into the data set
to evaluate the recognition accuracy of multiple identification
methods. It is worth noting that the I-V curve of the measured
sample has a gradient drop process at the starting position
of the short-circuit current. After testing, it is found that this
process is caused by the hardware acquisition device. If other
fast I-V acquisition instruments are used, the gradient would
not be obvious. Fortunately, the proposed method can elim-
inate the adverse effects of this defect and make an accurate
classification.

3) ANALYSES OF TRAINING AND TESTING RESULTS
The change curves of the accuracy and the loss of the model
after 1000 iterations of the training set are depicted in Fig. 14.
The final training accuracy is 99.65%. The accuracy and the
loss of the training set converge quickly after 100 iterations,
and the stability is higher than the numerical simulation
model. The final epoch is also set to 500, which is the same
as the numerical simulation model.

The data in the testing set is used to examine the trained
diagnostic model, and the standardized confusion matrix
shown in Fig. 15 is also applied to display the results.
The diagonal elements of the matrix represent the recall of
each category. The overall accuracy of the measured data is
98.41%. The recall of the normal category is 0.94, and the
recall of the Aa category is 0.75. In other words, some nor-
mal samples are misjudged as the PSBR and Aa categories.

FIGURE 14. Training results of 1000 iteration in experimental
verifications. (a) Curve of accuracy; (b) Curve of loss.

FIGURE 15. Confusion matrix of measured experiment.

Similarly, some Aa samples are misjudged as the normal and
PSBR categories. The reason for the normal sample to be
misjudged as the PSBR category is that the double peaks of
the above-mentioned part of the PSBR samples is not obvious
and is close to the normal sample. The slope change of the
open-circuit point of the Aa sample is not obvious, which is
also close to the normal sample. Therefore, in the training
process, the features excavated from these three fault cate-
gories will tend to be homogeneous, resulting in misjudgment
in the test. It can be seen from Fig. 15 that the proposed
method achieves 100% recognition of most fault types.

The measured data used for modeling was collected in
May 2018. Generally speaking, the performance of PV mod-
ules will be affected by seasons and service life, resulting in
differences data distribution at different times. For example,
at noon, the solar irradiance in summer will generally be
greater than that in winter, and the panel temperature will be
significantly higher. As the operating time increases, the PV
module will have a power attenuation of 1%-2% per year. For
conventional machine learning algorithms, the expansion of
data disparity will cause the model to gradually fail. In order
to verify the reliability of the proposed algorithm, 270 sam-
ples collected from April 2019 to August 2020 by the same
experimental equipment are further used to test. Experimental
results in Table 6 show that the season and power attenuation
have little effects on the identification accuracy. The reason
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TABLE 6. Test Results of Samples in Different Periods.

is that the proposed method is characterized by the shape of
the I-V curve rather than the value of the electrical quantity.
The factors of the season and power attenuation may affect
the value, but it will not change the shape of the curve.

4) IMPACT OF DATA MISSING
With the development of PV inverter technologies, more and
more inverters have been equipped with I-V curve scanning
and data recording functions. Therefore, the proposedmethod
is expected to be applied to online fault diagnoses. At present,
most PV power stations are not equipped with environmen-
tal sensors. Even if a small number of power stations are
equipped with independent environmental sensors, they can-
not achieve the synchronous collection of I-V curves and
environmental information. In other words, under existing
conditions, it is still difficult to obtain I-V curve, irradiance,
and panel temperature information online simultaneously.
In the case of only I-V curve data, whether the proposed
method has the same recognition ability or not that needs
to further verify. Because the short-circuit current and the
open-circuit voltage of the array are respectively related to
the irradiance and the temperature, whether the latter can be
substituted is also worth exploring.

The cross-correlation analyses of the short-circuit current,
the open-circuit voltage, the irradiance, and the temperature
are carried out with the measured data set as the research
object. The Pearson correlation coefficients of the above
four variables are summarized in Table 7, which reflects
the close relationship between different variables. It can be
found that the short-circuit current and the irradiance have a
strong correlation, with the correlation coefficient up to 0.99.
The correlation between the temperature and the open-circuit
voltage is weak at -0.39. In other words, the short-circuit
current can be used instead when the irradiance is absent.

Therefore, this study sets four cases of missing and filling
of input data, and analyzes the diagnostic effect via modelling
verifications. By using the same data set and division ratio,
it can be compared with the above data integrity modelling
method. Four situations include the case 1-irradiancemissing,
the case 2-temperature missing, the case 3-all irradiance and
temperature missing, the case 4- all irradiance and tempera-
turemissing, but the short-circuit current is used instead of the
irradiance. Table 8 gives the test results of various modelling
methods. It can be clearly found that the lack of the irradiance
and/or the temperature has a limited impact on the proposed
method. If only single information is missing, the accuracy is
reduced by up to 2.12%. If both data are missing, the accuracy
is reduced by 3.18%. If the case 4 occurs, the accuracy is
improved by 1.32% compared to the case 3, which shows

TABLE 7. Pearson Correlation Coefficient with Four Variables.

TABLE 8. Test Accuracy of Different Data Types.

that the utilization of the short-circuit current to replace the
irradiance has a certain effect. In fact, the short-circuit current
can be easily collected on the I-V curve. In addition, if only
the temperature is missing, the recognition accuracy declines
very little, indicating that the temperature plays a small role
in the entire recognition system. In short, if the irradiance
and temperature cannot be obtained, only using the I-V curve
as input also can obtain a higher diagnostic accuracy. This
conclusion further expands the application of the proposed
method.

VI. COMPARISON AND DISCUSSION
A. PERFORMANCE COMPARISON OF DIFFERENT
FUNCTIONAL MODULES
In order to further analyze and compare the function of each
module in the proposed method, three deep learning mod-
els are constructed, namely the CNN model, the ResGRU
model, and the CNN-GRU model. The CNN model uses the
LeNet-5 structure based on one-dimensional data, and the
ResGRU model uses two residual block structures. The
CNN-GRU model consists of a four-layer CNN network and
a one-layer GRU [29]. The same measured data set and
distribution ratio as before are used for the performance com-
parisons. Table 9 shows the execution results of four models.
It can be clearly seen that the proposed fusionmodel performs
best on both the training set and the testing set. Although the
CNN model has the shortest execution time, the accuracy of
the testing set is nearly 4% behind the proposed method. The
accuracy of the ResGRU model for the testing set is close
to that of the proposed method, but the training time of each
epoch is very long, which increases the difficulty of tuning
parameters. The accuracy of the CNN-GRU for the testing
set is 13% lower than that of the training set, and there is
undoubtedly an overfitting problem.

TABLE 9. Execution result of different models.
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TABLE 10. Comparative Results Between Proposed Algorithm and Methods in [15], [21], [25], [28] and [38].

In short, the CNN is able to fully explore the relationship
between various local data features, but it requires a greater
network depth. The ResGRU can memorize and model the
temporal dynamic characteristics, making it easier for the
model to capture the interrelation and dependent characteris-
tics between I-V curves. However, its multiple residual mod-
ules make the training and execution time much longer. The
proposed method combines the advantages of the CNN and
the ResGRU, and uses the CNN to mine features. Through
the relationship between ResGRU memory features, a good
classification effect can be achieved with less network depth
and shorter training time.

B. COMPARED WITH OTHER METHODS
In order to compare and evaluate the performance of the
proposed method, the proposed method is compared with the
other five methods used in [15], [21], [25], [28] and [38]
from both qualitative and quantitative aspects. The qualitative
analytic results are summarized in Table 10, and the quanti-
tative analytic results are listed in Table 11. The motive of
this comparison is not only to show that the proposed method
has advantages in diagnostic accuracy, but also to show the
optimal comprehensive performance of the proposed method
by analyzing the similarities and differences of various meth-
ods. In Table 10, whether the diagnoses of multiple faults, the
utilization of the weather data, and the low-irradiation factor
consideration or not are compared. Moreover, the method
type and the input data amount are also discussed in Table 10.
Note that, one applies the corresponding methods from those
works in [15], [21], [25], [28] and [38] to the same dataset
used in this study, not the accuracy records from the refer-
ences. In other words, the training set and the testing set are
the same in Table 11 for fair comparisons.

As shown in Table 10, Chine et al. [15] adopted a two-
stage strategy to identify the PV faults. In [15], it calculated
the difference between the actual power and the theoretical
power to determine whether a fault occurred or not, and then
used the threshold method and the ANN network respectively
to determine the specific fault type. However, there are only
few fault types in [15] to be diagnosed. When the fault
types increase, additional thresholds and rules should be re-
designed. Chen et al. [21] combined the random artificial
bee pollination and the Nelder-Mead simplex optimization
method to calculate the ideal factor (nn), the series resistance
(Rs) and the parameter estimation error (RMSE), and adopted
the voltage (Vm) and current (Im) at the maximum power
point, the open-circuit voltage (Voc), and the short-circuit
current (Isc) to form the input data set. Moreover, the extreme
learning machine with kernel functions was used to iden-
tify the normal state, the abnormal aging fault, the short-
circuit fault, the partial shading fault, and the open-circuit
fault. Chen et al. [25] also proposed the use of the deep
residual network (ResNet) combined with I-V curves for
PV fault diagnoses. The data of I-V curves, temperatures,
and irradiances were used as inputs to the model in [25].
In view of the problem that the length of the input data is
too long and the training time is affected, the data was firstly
down-sampled non-uniformly to make the data points sparse
and uniform, and finally a 4 × 40-dimensional input data
was obtained. On this basis, a 34-layer ResNet model was
established to identify single faults such as partial shading,
abnormal aging, short circuit, and open circuit. By using
the trust-region affine method, Huang et al. [28] optimally
solved the nonlinear least square method and realized the
standardization of external parameters of a PV system. With
the normalized external parameters as the characteristics, the
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stage-wise additive modeling using multi-class exponential
loss function based on the classification and regression tree
(SMME-CART) algorithm was used to realize the PV fault
classification. Zhao et al. [38] proposed a PV array fault
diagnostic method based on the fuzzy C-means (FCM) clus-
tering and the fuzzy membership algorithm. The power (Pm),
voltage (Vm) and current (Im) at the maximum power point,
the open-circuit voltage (Voc), and the short-circuit current
(Isc) were selected as the input data. The FCM was used to
cluster fault samples, and then the fuzzy membership was
investigated to determine the clustering center distribution of
all fault samples. Finally, the threshold method was applied
to realize the short-circuit and partial-shading fault identifica-
tion. Although Chen et al. [25] uses the same input data as the
proposed method, it has the same problems as [21] and [38],
that is, it does not consider the identification of hybrid faults
and does not discuss the impact of missing environmental
data. In addition, [15], [21], [28] and [38] are typical methods
of manually extracting indicators from the I-V curve as the
input data.

When modelling, the structure and hyper-parameters of
the ResNet model are consistent with [25]. Considering that
the types of faults judged by Chine et al. [15] are relatively
few, the features used cannot cope with single and hybrid
faults identificationmentioned in this study. Therefore, on the
basis of the original features in [15], the power (Pm) at the
maximum power point, the fill factor (FF), and the ratio of the
voltage (Vm) at the maximum power point to the open-circuit
voltage (Voc) are added in [15] for fair comparisons. The test
results of the six methods are shown in Table 11 and Fig. 16.
The results show that the proposed method is significantly
better than the other five methods in both the overall accuracy
of the testing set and the recall of a single category, and the
fault identification effect is the best one.

TABLE 11. Accuracy and Test Time Comparison for Different Methods.

Specifically, Chine et al. [15] and Chen et al. [21]
have similar recognition accuracy for test samples, only
about 85%. Chine et al. [15] can accurately identify
the categories of the PSBR, the SC&PSBO, and the
PSBO&PSBR. On the other hand, Chen et al. [21] can
accurately identify the categories of the SC&PSBO and
the Aa&PSBO. For other types of samples, both methods
have misjudgments. The overall identification accuracy of
the model proposed by Chen et al. [25] is 95.76%. For
the problem samples mentioned in Section V, the ResNet
model does not work well. Moreover, when it faces the
SC failure samples, it will also produce misjudgements.
Chen et al. [25] and the proposed method both use the I-V
curve as the input data, and the fault features mined are more

FIGURE 16. Comparison results of each fault category by six methods.

comprehensive. Thus, the diagnostic accuracy is relatively
high. As for the method in [28], with the exception of the
PSBR, the PSBR&Aa, the PSBO&PSBR faults, other types
of faults all have misjudgements, with an overall accuracy of
91.53%, and finally ranked third.

Among all the methods, Zhao et al. [38] has the lowest
recognition accuracy, only 67.64%. In the recognition of
a single category, only the PSBO fault can be accurately
recognized. Because the characteristics studied in [38] were
obtained under a high irradiance and did not take hybrid faults
into account, it is reasonable that the evaluation results were
not ideal. In [38], the choice of input features has a greater
impact on the results. When the features extracted in [28]
were used as the input information for [38], its recognition
accuracy can reach 96.55%.

In addition, the comparisons of test times of various meth-
ods for a single sample are also measured in Table 11. As can
be seen from Table 11, the execution time of these methods
can be divided into two categories, where Chen et al. [21]
and Zhao et al. [38] are of the first category. Although the test
times for [21] and [38] are less than 10 ms, their classification
accuracies are poor. The remaining methods belong to the
other category, that is, test times are measured from 28.1 ms
to 38.2 ms. The proposed method in this study has the highest
accuracy with the lowest execution time in this category.
Due to the development of computer operational speed in
recent years, such execution times are acceptable in practical
applications.

In short, the proposed method uses I-V curves as the
input data, and the model will mine the fault information
from both global and detailed perspectives. Compared with
the algorithm with the indicators as the input data, such
as [15], [21], [28] and [38], its feature expression is good,
and its diagnostic accuracy is significantly higher than the
latter. In addition, compared with the method with a 34-layer
structure in [25], the proposed method not only does not
require the pre-processing of the input data, but also has fewer
layers, i.e., a four-layer CNN and one ResGRUblock, with far
fewer super parameters to adjust than the requirement in [25].

C. COMPARISON OF ANTI-INTERFERENCE ABILITY
Due to the limitation of instrument precision and perfor-
mance, the data obtained are often noisy. With the increase of
the noise intensity, the adaptive feature extraction ability and
the generalization ability of the proposed diagnostic model
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will be further examined. Noise exceeding a certain intensity
will increase the probability of misjudgement on the network.
By adding the Gaussian white noise with different signal-to-
noise ratios (SNR) into the data, the anti-interference ability
of the proposed algorithm will be analyzed. The intensity of
added noise can be controlled by adjusting the SNR [39],
the calculation formula can be expressed as

SNR = 20 log10(1/ε) (11)

where ε represents the percentage of noise. In order to exam-
ine the anti-interference ability with the addition of different
degrees of white noise to the measured data set, the proposed
method, [25], and [28] are implemented for comparisons, and
the results are summarized in Table 12.

TABLE 12. Classification Accuracy under Different SNR.

The results in Table 12 show that as the SNR gradually
decreases, the accuracy of the proposed method only shows
a slight decrease. Until the SNR is 10dB, the accuracy only
drops significantly. At this time, the noise percentage has
exceeded 30%, and the actual noise interference usually does
not reach this level. That is to say, even in the case of a low
SNR, the fault classification performance of the proposed
method is still at a good level, which reflects that the proposed
method has a good anti-interference ability.

Chen et al. [25] also has a strong anti-interference ability,
when the SNR exceeds 20 dB, the diagnostic accuracy is
basically unchanged. Until the SNR is 10 dB, the accuracy
rate drops by 4.51%, which is larger than the one by the pro-
posed method, but the accuracy still can be maintained above
91%. Compared with the first two methods, Huang et al. [28]
extracts the indicators from I-V curves as the input data, and
the anti-interference ability is weak. It can be seen from the
results that when the SNR is 20dB, the diagnostic accuracy
drops by 3.4%, but when it reaches 10dB, the diagnostic
accuracy drops by 14%. In short, the diagnostic algorithm
with I-V curves as the input has a stronger anti-interference
performance than the diagnostic algorithm with indicators as
the input.

VII. CONCLUSION
In this study, a photovoltaic (PV) array fault diagnostic
method via a fusion model with convolutional neural net-
work (CNN) and residual-gated recurrent unit (ResGRU) is
proposed by observing the differences of I-V curves under
different fault conditions. First, the CNN is used to mine

global and detailed features in the sequence, and then the Res-
GRU is used tomemorizemined time-series dynamic features
to achieve the classification objective. Numerical simulations
and experimental results verify that the proposed method has
a good fault classification performance, and the identification
accuracy reaches 100% and 98.61%, respectively. Through
the performance analyses of the input data missing, it is found
that the accuracy of the measured data still can reach 95.23%,
even if meteorological data is not added. Moreover, when
the signal-to-noise ratio is within 20dB, the corresponding
accuracy remains unchanged basically, indicating that the
proposed method has a strong anti-interference ability.

Although the proposed method has a high identification
ability, the following three tasks are worthy to be contin-
uously investigated in the future researches. (1) Applica-
tion and implementation of the proposed method on the
inverter: Fog computing is the current development direc-
tion of diagnostic technology. The diagnostic algorithm is
directly performed at the bottom layer, and only diagnostic
results are uploaded to the monitoring system. Thus, it can
effectively solve the problem of massive waveform storage.
The proposed method is a lightweight diagnostic model, and
the corresponding execution time is fast. If it is combined
with the I-V curve scanning function of an inverter, it will
further expand its application prospects in PV array online
fault diagnoses. (2) Identification of unknown types of faults:
Most of diagnostic methods, including the one in this study,
are based on the existing fault types in the learning library
for fault identifications. With the aging of a PV system,
the diagnostic model will encounter more unknown types of
fault samples, and at this time, the model may fail. The fuzzy
degree measurement and unsupervised clustering method
mentioned in [40]–[42] can be considered to further screen
out the samples that cannot be determined by fault type.
(3) Improvement of the generalization ability of diagnostic
models: This study focuses on single-string PV arrays, which
need to be re-trained when the model is extended to larger
scale systems or multi-string systems. However, it can not
ensure that sufficient fault samples can be collected in all
popularized application systems. The transfer learning in [27]
can help to realize the model extension in the new target
domain.
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