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ABSTRACT Quantization in lossy video compression may incur severe quality degradation, especially at
low bit-rates. Developing post-processing methods that improve visual quality of decoded images is of
great importance, as they can be directly incorporated in any existing compression standard or paradigm.
We propose in this article a two-stage method, a texture detail restoration stage followed by a deep
convolutional neural network (CNN) fusion stage, for video compression artifact reduction. The first stage
performs in a patch-by-patch manner. For each patch in the current decoded frame, one prediction is formed
based on the sparsity prior assuming that natural image patches can be represented by sparse activation
of dictionary atoms. Under the temporal correlation hypothesis, we search the best matching patch in each
reference frame, and select several matches with more texture details to tile motion compensated predictions.
The second stage stacks the predictions obtained in the preceding stage along with the decoded frame itself
to form a tensor, and proposes a deep CNN to learn the mapping between the tensor as input and the original
uncompressed image as output. Experimental results demonstrate that the proposed two-stage method can
remarkably improve, both subjectively and objectively, the quality of the compressed video sequence.

INDEX TERMS Compression artifact reduction, convolutional neural networks, high efficiency video
coding, sparse representation, temporal correlation.

I. INTRODUCTION
Quantization in lossy image and video compression is a
many-to-one mapping. This means that the decoded block
can be quite different from the original one, especially
at low bit-rates. Developing post-processing methods that
improve visual quality of decoded images at decoder sides
has attracted great interest of researchers, as they can be
directly incorporated in any existing compression standard
or paradigm. Most existing such methods can be classified
into three categories. Methods in the first class are deblocking
oriented, in which blocking artifacts are regarded as artificial
discontinuities around block boundaries, and these annoying
boundary pixels are smoothed out with linear or non-linear
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filters in spatial or frequency domain [1], [2]. Methods in
the second class are restoration oriented. They regard the
image compression as distortion, and the restoration from a
decoded image is usually formulated as an ill-posed image
inverse problem which is typically solved by exploiting
some image model priors, including projections onto convex
sets [3], [4], block-based sparse representation [5]–[11], total
variation [12], and Markov random field [13], [14]. Recently,
inspired by the great success of deep learning in other
computer vision tasks such as single image super-resolution
[15]–[17] and image denoising [18], researchers began to
use deep convolutional neural networks (CNNs) for compres-
sion artifact reduction [19]–[25], leading to the third class,
the CNNs based methods. In using deep neural networks
one needs to train and learn a mapping function that esti-
mates for a given decoded input its corresponding original
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uncompressed counterpart. Works originally developed for
JPEG images typically use a single image as the input
[19]–[21]. Direct extension to the video domain is possible
in a frame-by-frame manner. However, the quality of a com-
pressed video can fluctuate dramatically across frames [24].
In particular, for low quality frames, though the trained net-
work may improve their visual quality to some degree, there
would always exhibit a large number of visually noticeable
artifacts. Therefore, works developed for image sequences
typically use multiple frames as the input [23], [24], [26]
to the CNN. With the help of its neighboring high-quality
frames, a low-quality frame can be adequately enhanced.

Considering that compression artifact reduction is a
severely under-determined inverse problem, we make two
hypotheses in this study. The temporal correlation hypoth-
esis assumes that for every patch in the current decoded
frame, there exist several similar patches with more image
details along the motion trajectory in neighboring frames;
the sparsity prior assumes that natural image patches can be
represented by sparse activations of dictionary atoms. Video
compression artifact reduction is implemented by fusing the
predictions obtained under these hypotheses, and proceeded
on two stages: 1) texture detail restoration, and 2) deep CNN
fusion. The first stage performs texture detail restoration in a
patch-by-patch manner. For each patch in the current decoded
frame, one prediction is estimated based on the sparsity prior,
and another one or more are predicted based on the temporal
correlation hypothesis. The second stage proposes a deep
CNN to fuse the resulted predictions from the preceding
stage.

The main contribution of this work is that it proposes a new
method to address the challenge of restoring high frequency
contents lost in quantization. The two hypotheses are utilized
to construct multiple predictions. These predicted frames
typically contain many regions that havemore high frequency
contents than the current decoded frame. As input of the deep
CNN, these frames not only facilitate the network training,
but also allow output of improved visual quality.

The remainder of this article is organized as follows.
Section II reviews some previous studies related to compres-
sion artifact reduction. Section III describes our method for
enhancing the visual quality of decoded videos. Experimental
results are given in Section IV. Finally, Section V concludes
our study.

II. RELATED WORK
As the concomitant of the integer transform and quantiza-
tion in HEVC, the quantization error of a transform coeffi-
cient affects the pixels in the same block. In spatial domain,
the quantization error for a given point is the sum of the errors
of each transform coefficient multiplied by the corresponding
2-D DCT basis image [27]. The quantization process can
also be considered as a low-pass filter. This means that a
large amount of high-frequency components of the block
are removed in the process. In view of this consideration,
we regard the reduction of compression artifact as image

detail restoration, and review the related work in two parts:
1) restoration oriented, and 2) deep learning methods for
compression artifact reduction.

A. RESTORATION ORIENTED COMPRESSION ARTIFACT
REDUCTION
Many restoration oriented methods have been proposed for
compression artifact reduction. Some works rely on infor-
mation in the DCT domain. Foi et al. [28] proposed to
perform hard-thresholding and empirical Wiener filtering in
the shape-adaptive DCT domain, and to utilize clipped or
attenuated DCT coefficients to reconstruct a local estima-
tion of the image signal within an adaptive shape support.
Zhang et al. proposed [29] to estimate the DCT coeffi-
cients of each block by adaptively fusing two predictions:
the coefficients decoded from the compressed bitstream and
the weighted average of the coefficients in nonlocal blocks.
Dar et al. [30] considered a linear approximation of the
nonlinear compression-decompression process and formu-
lated the compression artifact reduction as a regularized
inverse problemwhichwas solved by the alternating direction
method of multipliers [31]. Zhang et al. [32] utilized both
the spatial and temporal correlation to form three predictions.
The first prediction was constructed by inversely quantiz-
ing transform coefficients directly; the second was derived
by representing each transform block with a temporal auto-
regressivemodel along itsmotion trajectory; and the thirdwas
inferred with the original coefficients from similar blocks in
non-local regions. Li et al. [33] focused on super-resolution
(SR) of compressed images. After analyzing the correlation
between the deblocking and SR sub-process, they proposed
an iterative cascading framework, where a feedback route
was constructed to send extra information extracted from the
SR outcome back to the deblocking module, and thus helped
produce further performance gains.

Recently, learning-based methods, particularly those
sparse representation-based, are gradually becoming a better
choice. For solving image inverse problems such as com-
pression artifact reduction, single image super-resolution and
image denoising, sparse representation models an image x as
a linear system

x = 8α (1)

where matrix8 ∈ Rn×K , and vector α ∈ RK . Each column in
8 serves as an atomic image, and thus8 itself is a dictionary
of atoms. Vector α is known to be sparse with only k � K
non-zero elements. Note that α is a representation of x under
8 and describeswhich atoms andwhat ‘‘portions’’ thereof are
used for its construction [34]. Learning dictionaries, which
are necessary for mapping a degraded patch to a visually
more appealing one, from example images is essential for
sparse representation. Jung et al. [5] proposed to iteratively
train a general dictionary for image deblocking by theK -SVD
algorithm, and to estimate an error threshold in the recon-
struction stage for orthogonal matching pursuit according
to the compression factor of the compressed image. Works
in [6], [10] introduced the notion of group-based sparse
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representation (GSR) by explicitly exploiting the intrinsic
local sparsity and nonlocal self-similarity of natural images.
The GSR searches similar patches in an image and organizes
them as a group, which is further assumed to be represented
by a few atoms of a self-adaptive dictionary. The reconstruc-
tion is then obtained as the solution of an `0 minimization
which is solved via its `1 surrogates and the split Breg-
man based iterative algorithm. In [7], an image was first
decomposed into low-frequency (LF) and high-frequency
(HF) parts. The HF part was further decomposed into block-
ing and non-blocking components. A dictionary was learned
using training samples extracted from the HF parts of the
image, and was divided into two sub-dictionaries, corre-
sponding to blocking components and non-blocking compo-
nents. Liu et al. [9] learned two dictionaries of PCA bases,
one in the DCT domain and the other in the pixel domain.
In restoration, two locally adaptive sparse representations that
jointly determined the restored patch were generated using
these two dictionaries.

B. DEEP LEARNING FOR COMPRESSION ARTIFACT
REDUCTION
More recently, CNNs have been applied to compression
artifact reduction following their success in many other
computer vision tasks. Dong et al. [19] proposed an arti-
fact reduction CNN (AR-CNN), which was constructed
by adding a feature enhancement layer in their previously
developed super-resolution CNN (SRCNN), and reported to
achieve more than 1dB PSNR (peak signal-to-noise ratio)
improvement over original JPEG images. Cavigelli et al. [20]
proposed a deep CNN for image compression artifact sup-
pression (CAS-CNN). It was a 12-layer CNN with hierarchi-
cal skip connections and was trained with a multi-scale loss
function. It was reported that CAS-CNN allows a boost of
up to 1.79dB in PSNR over JPEG images. Guo et al. [21]
proposed an one-to-many network for compression artifact
reduction. Their model consists of two components: the pro-
posal component and the measurement component. Taking
a JPEG compressed image as input, the former outputs a
number of artifact-free candidates; and the latter evaluate
the output quality using three loss functions. It was reported
that their one-to-many network could reconstruct multiple
artifact-free candidates that were more favored by humans.
Dai et al. [22] proposed to replace deblocking and SAO in
HEVC intra coding with a variable-filter-size residual learn-
ing CNN (VRCNN). The VRCNN can reportedly provide
4.6% BD-rate reduction on average against the HEVC refer-
ence implementation. Soh et al. [23] proposed a deep artifact
reduction temporal network (ARTN) consisting of three tem-
poral branches. One branch takes the current decoded frame,
and the other two take the motion compensated frames as
input. The outputs of the three branches are then concatenated
and fed to a single network. It was reported that this ARTN
achieved about 0.23dB PSNR improvement over the conven-
tional networks for HEVC artifact reduction. Guan et al. [24]
observed that there typically exists large quality variation

in consecutive frames of a compressed video. Therefore,
it is possible to improve the quality of a low-quality frame
with the help of its neighboring high-quality frames referred
to as Peak Quality Frames (PQFs). To this end, they pro-
posed a bidirectional long short-term memory (BiLSTM)
model for no-reference PQF detection and a multi-frame
CNN architecture for non-PQF quality enhancement. Gal-
teri et al. [25] proposed an image transformation approach
based on a feed-forward fully convolutional residual network.
Their model can be optimized either directly in terms of
an image similarity loss or using a generative adversarial
network (GAN), and they showed via experiments that GAN
is capable of producing higher quality images with sharp
details.

III. THE PROPOSED TWO-STAGE METHOD
As shown in Figure 1, the proposed artifact reduction method
proceeds on two stages, namely, 1) an texture detail restora-
tion stage, and followed by 2) a deep CNN fusion stage. The
first one performs image detail restoration in a patch-by-patch
manner; whereas the second uses a deep CNN to fuse the
predictions of the preceding stage.

In applying deep CNN to solve regression problems
such as compression artifact reduction and single image
super-resolution, higher-quality inputs not only improve the
probability of the model in predicting better outputs, but
also facilitate the network training. Recognizing the sig-
nificant role of the input in affecting the performance of
the deep CNN, we propose the two-stage method for com-
pression artifact reduction. The first stage performs in a
patch-by-patch manner, and aims to hallucinate the missing
details of the patches. Based on the temporal correlation
hypothesis, we search matching patches in reference frames
for a given patch in the current frame. Patches with more
texture details are selected to tile motion compensated pre-
dictions. Based on the sparsity prior, we learn dictionary
pairs representing the mapping between HEVC-compressed
patches and their corresponding ground-truths. In the second
stage, a deep CNN, which takes a degraded frame and the
multi-hypothesis based predictions of the first stage as the
input, is constructed to estimate the artifact-free image.

A. PATCH PREDICTION USING TEMPORAL CORRELATION
PRIOR
The first hypothesis for image detail restoration states that
for a patch in the current decoded frame, there is a high
probability that several similar patches with more texture
details can be found along its motion trajectory in neigh-
boring frames. To validate this hypothesis, we code several
test sequences for three quantization parameter (QP) values,
i.e., QP = 42, 37, 32. For each 16× 16 patch in the decoded
frame Ik , we calculate themean squared error (MSE) between
the patch and its uncompressed counterpart, and denote it
as MSEd . Using Ik±i, i = 1, 2, 3, 4, as reference frames,
we search the best matching patch in all references. Then, the
MSE between a matching patch and the original uncom-
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FIGURE 1. Framework of the proposed two-stage method for video compression artifact reduction.

TABLE 1. Percentage values (%) of matching patches.

pressed one, denoted as MSEm, is also calculated. For each
patch, we count the number of matching patches that are
associated withMSEm smaller thanMSEd . The results for the
test sequences are given in Table 1, where r1 is the percentage
of the patches that have at least one matching patch with
smaller MSEm to the number of total patches, and r2 is the
percentage corresponding to the patch having at least two
patches with smaller MSEm.

The results in Table 1 show that on average and over all test
sequences, about 67% patches are found to have at least one
matching patch with higher quality in neighboring frames,
and about 47% are found to have at least two higher quality
patches when using 8 reference frames. Understandably, con-
structingmotion-compensated frames by these higher-quality
patches and using such frames as input to the deep CNN in
the fusion stage could be helpful not only in reducing the
training difficulty, but also in improving the visual quality of
the predictions of the network.

Note that the original frame (i.e., the reference signal
against which the decoded frame is to be compared) is
not available at the decoder side, we then confront with
a no-reference image quality assessment problem. That is,
in the absence of the original uncompressed image, how can
we select patches of lower distortions and then using these
patches predict motion compensated frames? The strategy in
this study uses the default coding setting of HEVC reference
software, in which an intra-picture is coded at a relatively high
quality. Therefore, the patches located in intra-coded frames
are directly accepted as candidates for compensation; for
matching patches in inter-coded frames, the approach in [35]
is employed to estimate quality scores, and patches with
higher scores are selected for compensation. Specifically,
assume that we will construct L predictions using tempo-
ral correlation hypothesis (we tested L = 1, 2, 3 in our
experiments). For each patch in the current decoded frame,
L patches are selected according to the strategy above, and
the ith patch will tile the ith frame in the corresponding
position.

B. PATCH PREDICTION USING SPARSITY PRIOR
The second hypothesis utilized in our approach is the sparsity
prior, which assumes that most patches in a natural image
can be well coded by structural primitives, e.g., edges and
textures, and can be represented by a small number of basis
functions chosen out of an over-complete code set.

An external database is utilized to learn an one-to-one
mapping between HEVC-compressed patches and their cor-
responding ground-truths. We partition the samples in the
database into M clusters by using the k-means clustering
algorithm, and hence the samples in a cluster are similar to
each other. Then, dictionaries are learned from each of theM
clusters. Mathematically, let P = {X ,Y } denote the training
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sets corresponding to a cluster, where X and Y are sets
containing quantization degraded and uncompressed image
patches, respectively. For each

√
n×
√
n image patch xp ∈ X

which is cropped from the decoded image at location p, its
undegraded counterpart yp ∈ Y is extracted from the original
uncompressed image at the same position.

Given a cluster P, we aim to learn dictionaries from sets X
and Y . The sparse representation (i.e., coding vector α in (1))
for any uncompressed patch in Y is the same as that for its
degraded counterpart in X . Following the approach in [36],
the learning can be formulated as the following optimization
problem:

8d = arg min
8d , 3

‖X −8d3‖
2
2 + λ ‖3‖1 (2)

and

8o = arg min
8o, 3
‖Y −8o3‖

2
2 + λ ‖3‖1 (3)

where λ is a parameter that balances the sparsity of the
solution and the error term; 8o and 8d are the dictionaries
corresponding to uncompressed and degraded image patches,
respectively; 3 = [α1, . . . , αN ], and each column vector in
the matrix satisfies xi ≈ 8dαi and yi ≈ 8oαi.
Since there always exists fine texture regions in images,

learning only one pair of dictionaries is often insufficient to
cover all variations of the patches in a cluster. Therefore,
in our implementation, we learn multiple dictionary pairs for
a cluster, and organize these pairs as a decision tree. Each
tree consists of leaf (terminal) and internal (non-terminal)
nodes. A leaf node stores a pair of dictionaries which is the
optimal solution for estimating the artifact-free patch using a
compression degraded patch as input. An internal node serves
as a split function which attempts to efficiently select an
appropriate dictionary pair for an input sample. For a cluster,
the leaf nodes are recursively learned using the corresponding
sample set. The maximum depth and the minimum number
of samples arriving at a node are chosen to be the stopping
criteria, and the growing of a tree will stop if either one is
met.

The task for learning an internal node is to find a split
function that can correctly partition training samples for each
leaf node. There are several choices for this purpose. In this
article, we employ Naive Bayes as the weak classifier in
internal nodes. Let 8k

o and 8k
d denote the dictionary pair in

the kth leaf node. The class label for (xi, yi) is determined
by

ci =

{
1, if ‖yi − ỹi‖2 < ‖yi − xi‖2 ∧ ‖yi − ỹi‖2 < δT

0, otherwise
(4)

where ỹi is the patch that reconstructed on 8k
o with sparse

coefficients coded by xi over8k
d , and δT is a threshold. Then,

we form the train set as {(xi, ci)}Ni=1, and train a Naive Bayes
classifier as the split function for the kth leaf.
The scheme for learning all leaves and the corresponding

split functions in a tree is summarized in Algorithm 1.

Algorithm 1 Decision tree learning for a cluster
Input: Data set P for a cluster
Output: The learned decision tree
% Learning dictionaries in leaf nodes;
while the criteria for stopping the growing is not
satisfied do

Randomly select N sample pairs {(xi, yi)}Ni=1 from P;
Learn a dictionary pair from these training samples
by solving (2) and (3), and store the pair as a leaf;
Q← ∅;
for ∀ (xi, yi) ∈ P do

Estimate the artifact-free patch ỹi;
if ‖yi − ỹi‖2 > ‖yi − xi‖2 or ‖yi − ỹi‖2 > δT
then

Q← Q ∪ (xi, yi);
else

Skip (xi, yi);
end

end
P← Q ;

end
% Learning split functions;
for each leaf node do

Assign a class label to each sample in P using (4);
Form the training set {(xi, ci)};
Train a Naive Bayes classifier as the split function;

end

C. VISUAL QUALITY ENHANCEMENT USING A DEEP
CONVOLUTIONAL NEURAL NETWORK
The first stage in our method works in a sliding window style.
Based on the sparsity prior, we estimate a prediction for each
patch in the current decoded frame. The resulted patches are
tiled as a reconstructed image. Based on the temporal corre-
lation hypothesis, we search the best matching patch in each
reference frame. As a result, we can select several matching
patches, and use them to tilemotion compensated predictions.
The process of the first stage can produce images with more
texture details. However, it also creates small artifacts across
an image since visible artifacts may occur on block bound-
aries. To circumvent these artifacts, the second stage in our
method proposes a deep CNN that further enhances the visual
quality of images.

For restoring a given decoded frame, the degraded image
itself, the sparse coding based reconstruction, and several
motion compensated frames are stacked as a tensor. The
first convolutional layer in the deep CNN (i.e., Conv_IN
in Figure 1) takes the tensor as the input to extract feature
maps.

At the core of our deep CNN are many stacked residual
units which have identical layout. Inspired by [15], [37] for
debluring and super-resolution, we do not use batch nor-
malization layers and remove the rectified linear unit which
follows the short connection of the original building block

VOLUME 8, 2020 162483



W.-G. Chen et al.: Neural Network-Based Video Compression Artifact Reduction Using Temporal

TABLE 2. Typical parameter configurations for the proposed deep CNN.

as in [38]. As shown in Figure 1, the residual building block
in our model uses two convolutional layers. The first layer
(e.g., Conv_11) uses 3 × 3 × C kernels and generates 2C
feature maps, where C is a constant; whereas the second one
(e.g., Conv_12) uses 3 × 3 × 2C kernels, and generates C
feature maps. After the first convolutional layer, a parametric
rectified linear unit (PReLU), whose slope for negative inputs
is learned from data rather than pre-defined, is used as the
activation function. Let zi and zi+1 denote the input and output
of the ith residual unit, respectively. The nonlinear mapping
of the unit can be formulated as follows [38], [39]:

zi+1 = zi + F (zi,Wi) (5)

where F represents the residual function, and Wi is the
weights of the ith unit.
The reconstruction module in our network includes three

convolutional layers (i.e., Conv_F1, Conv_F2 and Conv_F3).
As illustrated in Figure 1, there are two inputs for this module,
i.e., the input z1 of the first residual blocks and the output
zL+1 of the last block. For each input, 16 filters of size
3× 3× C are used to generate feature maps, and then fused
via element-wise sum. Finally, the last convolutional layer
outputs the desired reconstructed image corresponding to the
input tensor using a 3× 3× 16 filter.

Assume that the number of the input channels is 3.
A typical parameter configuration for the proposed deep
CNN is listed in Table 2, where the total number of residual
units is chosen to be 8, and the constant C = 24.

IV. EXPERIMENTS
A. DATASETS AND TRAINING
For learning the dictionaries to be used for sparse reconstruc-
tion and training the deep CNN in our method, we have built
a large-scale dataset which was derived from standard test
sequences recommended by JCT-VC with four resolutions
(Class B, C, D, and E). For each sequence, the corresponding
HEVC bitstream is coded by HM 16.0 [40] at three QP values
(i.e., 42, 37, 32) using encoder_lowdelay_P_main.cfg as the
configuration file. For each QP value, a dataset containing
several hundred image pairs is constructed. Let it be denoted
as S =

{(̃
Ik , Ik

)}NS
k=1, where Ik is a frame selected from a

test sequence, Ĩk is the corresponding decoded frame, and Ns
is the total number frame pairs in the dataset. Only the first
30 frames of a sequence are included in the training set; the
frames thereafter serve as test set.

For constructing the temporal correlation based predic-
tions, block matching algorithm, which estimates motion on
the basis of rectangular blocks and generates one motion

vector for each block [41]–[43], is employed to obtain a
straightforward and efficient implementation. Though the
full search method, which checks all candidate patches to
find the best match within a particular window, could finds
the best motion vectors in a global sense, its computational
requirement is often too high for practical implementation.
Therefore, we use an improvement of the successive elim-
ination algorithm (SEA) [41], which excludes many search
positions and still allows accuracy comparable to that of the
full search. In our experiments, the patch size is fixed to
be 16 × 16, and the search range is determined in relation
to the interval between the current frame and the reference
frame. To cope with the case of abrupt scene change, when
the matching error exceeds a certain threshold, as in [23],
the matching patches are discarded and replaced by the patch
in the current frame.

For learning decision trees used for sparse coding-based
reconstruction, we randomly crop about 500,000 patch pairs
from images in S (one from Ĩk and the other from Ik at the
same position). The size of the patches is set to be 8 × 8.
These patch pairs are then partitioned into clusters, and for
each cluster, we learn a decision tree that stores dictionary
pairs as the leaf nodes and split functions as internal nodes.

For training our deep CNN, we randomly select a degraded
image in the training set, and crop a B × B patch (we have
experimented different patch sizes, e.g., B = 96, 128, 160)
by randomly selecting the pixel coordinate of the patch. And
total of L (L = 1, 2 or 3) patches of the same size are
cropped at the same position in the motion compensated
frames, and one patch is cropped in the sparse coding-based
reconstruction. These L + 1 patches along with the degraded
patch itself are stacked to form a tensor as the input of the
network. Then, the patch from the same location in the corre-
sponding uncompressed image serves as the ground-truth. As
a result, a training sample is formed, and the flip based data
augmentation is also adopted during training.

The proposed network is implemented under the
Tensorflow framework and trained using a Nvidia GTX
1080Ti GPU with a mini-batch size of 80 for 128 × 128
patches. TheADAMoptimizer [44] is adopted to optimize the
parameters. The learning rate is initialized to be 0.01 and then
multiplied by 0.995 after every epoch. The training generally
takes about 1000 epoches to converge.

B. RESULTS OF PATCH-BASED RECONSTRUCTION
We now show that the predictions using the temporal
correlation and sparsity prior can indeed yield better details
and textures, thus allow improvement of artifact reduction in
the deep CNN fusion stage. For this purpose, we present part
of the results of the predictions using these two hypotheses
at QP = 42, 37, and show in Figures 2 and 3, respec-
tively. The first column in each figure shows the original
frames, the second shows degraded images compressed by
HEVC. The predictions derived based on temporal correla-
tion and constructed via the sparse representation are shown
in columns 3 and 4, respectively.
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FIGURE 2. Experimental results of temporal correlation and sparsity prior predictions (QP = 42).

FIGURE 3. Experimental results of temporal correlation and sparsity prior predictions (QP = 37).

From the results, we observe that the predictions
(especially the sparse coding-based reconstructions) restore
some local texture details. However, some noises are also
seemingly introduced. To demonstrate the comparison graph-
ically, we also use MSE as the quality metric. Let x denote
a decoded patch, y and ỹ the uncompressed original and the
predicted one corresponding to x, respectively. We calculate
and compare two types of MSEs: 1) MSEd between y and x,
and 2) MSEr between y and ỹ. For each 8 × 8 patch in the
current frame, we count the number of reconstructed patches
associated with an MSEr that is smaller than MSEd . For the
patches that are associated with at least one reconstructed
patch with smaller MSEr , we label them as red regions
(other regions shown in blue) and show results in the fifth
columns of Figures 2 and 3 (denoted as r1 labeled). The
patches associated with at least two smallerMSEr predictions
are labeled as red regions and shown in the sixth columns
(denoted as r2 labeled) in the two figures.

From both figures, we can see that vast majority of
patches have at least one reconstructed patch with higher
quality, and about half of them have at least two higher

quality predictions. The results confirm that the proposed two
hypotheses can predict images with better details.

C. RESULTS OF DEEP CONVOLUTIONAL NEURAL
NETWORK
Figures 4 and 5 show the subjective quality performance on
some test sequences at QP = 42, 37, respectively. By mag-
nifying the images, we can see that our method can better
reconstruct visually pleasing results with sharper edges and
more texture details than the other methods under compari-
son, namely, AR-CNN [19], ARTN [23], and MFQE2.0 [24].
The implementations of these methods are all based on their
released source codes, and our codes are also available at
https://github.com/wgchen-gsu/VCAR-CNN.

The quality enhancement is also objectively evaluated in
terms of 1PSNR and 1SSIM, which measure the PSNR
and SSIM (structural similarity index metric) gain of the
enhanced over the original decoded sequences, respectively.
Table 3 tabulates 1PSNR results on some test sequences,
with the best results highlighted in boldface type.
Table 4 gives average 1SSIM values of the test sequences.
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TABLE 3. Comparison of 1PSNR (dB) for test sequences at three QP values.

TABLE 4. Comparison of average 1SSIM (×10−3) for test sequences.

From the results, we can see that the proposed method
achieves highly competitive performance compared with
other leading compression artifact reduction methods. The
performance gain mainly owes to that in the first stage
of our method. The sparsity prior and the temporal cor-
relation hypothesis can predict patches with more texture
details and therefore can address the challenge of the loss
of high frequency contents induced by quantization in video
compression.

Following the approach of [45], we evaluate our method
using the perception index (PI), which is a no-reference

metrics that measures the perceptual quality of a recon-
structed image and is calculated as a combination of
the no-reference image quality measure Ma_score and the
naturalness image quality evaluator (NIQE) value [46]:

PI =
1
2

(
(10−Ma_score)+ NIQE

)
(6)

Recall that a lower PI value indicates better perceptual
quality. For jointly quantifying the accuracy (in terms of
the root mean square error (RMSE)) and perceptual quality
in (6), we compare ARTN, MFQE2.0 and our method on
the perception-distortion plane. For every sequence listed
in Table 3, we compute the corresponding average PI and
RMSE values of all frames of the test sequence andmark a dot
on the perception-distortion plane. The results in Figure 6 also
demonstrate that our method is admissible among the group
of the tested methods.
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FIGURE 4. Subjective quality comparison on 4 sequences (QP = 42).

FIGURE 5. Subjective quality comparison on 5 sequences (QP = 37).

In our framework, various combinations of the predictions
resulted from temporal correlation and sparsity prior can
be used as input. To evaluate the impact of such combina-
tions, we conducted experiments on several different choices.
Table 5 tabulates average 1PSNR and 1SSIM results for
three combinations on the same test sequences that are
considered in Table 3, where xM-1S-1D indicates that x

motion compensated frames (x = 1, 2, 3) and one sparse
coding-based prediction, along with the decoded frame itself,
are used as the input. For all these combinations, 8 residual
units are stacked as the core of our deep CNN model.

We noted that 1M-1S-1D performs the best in most cases.
The results suggests that using more motion compensated
predictions may not be helpful in enhancing the performance
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FIGURE 6. Performance comparison on the perception-distortion plane (a) QP = 42; (b) QP = 37; (c) QP = 32.

TABLE 5. Comparison of average 1PSNR (dB) and 1SSIM under different
combinations of predictions.

TABLE 6. Comparison of average 1PSNR (dB) and 1SSIM under different
number of residual units.

of the model. The reason behind this might be that as for
the temporal correlation based predictions of a given patch,
the number of those that have higher quality than the patch
is limited, and using more frames formed by tiling these
patches of lower quality would not be helpful in enhancing
the performance.

We also evaluate the performance while changing the
number of residual units in our model. Specifically, we fix
the combination of the predictions as 1M-1S-1D and use 6,
8, or 10 residual units in the deep CNN fusion stage. The
average 1PSNR and 1SSIM values are given in Table 6.
The results show that increasing the number of the stacked
residual units does not necessarily render improvement of
the network performance, possibly because of the difficulty
associated with the network training when the network goes
deeper.

D. COMPUTATIONAL COMPLEXITY
We evaluate the running time for the proposed method using
a computer equipped with a CPU of Intel I9-9900K, 32GB
of memory and the GPU of GeForce GTX 1080 Ti. We
record the inference time for video sequences at different
resolutions. On average, the ARTN [23], MFQE2.0 [24],
and our method (1M-1S-1D) takes the computation time
of 5.66, 8.12, and 15.07 seconds respectively for processing a
1920 × 1080 (i.e., Class B) frame, and 2.58, 3.55, and
8.17 seconds respectively for processing a 1280 × 720

(i.e., Class E) frame. The running time of the proposed
method is about two or three times of that taken by the
other methods under comparison. We would like to point out
that the first stage of our method (i.e., patch-by-patch detail
restoration based on the temporal correlation hypothesis and
sparsity prior) is currently implemented in MATLAB and
Python without parallelism. Especially, we find in experi-
ments that the sparsity-based processing typically takes about
75% of total computation time for the proposed method.
In the future, we intend to optimize the first stage processing
with parallel implementation and run optimized codes on a
GPU. We believe that the computation time of the proposed
two-stage method could be significantly reduced.

V. CONCLUSION
We have proposed in this article a two-stage method to meet
the challenge of restoring high frequency contents lost due
to quantization for video compression artifact reduction. The
first stage aims at image texture detail restoration and per-
forms in a patch-by-patchmanner. Based on the sparsity prior,
we estimate prediction for every patch in the current decoded
frame, and tile the resulted patches as a sparse coding-based
reconstruction. Based on the temporal correlation hypothesis,
we search the best matching patches in each reference frame,
and select a number of matches with more image details to
tile motion compensated predictions. In the second stage,
we stack a decoded frame and its reconstructed counterparts
as a tensor. A deep CNN is proposed to learn the map-
ping between the input tensor and the original uncompressed
image.

The main advantage of the proposed approach is that it
typically produces patches with more texture details under
the sparsity and the temporal correlation hypothesis in the
first stage. Using these high-quality predictions as the input
to the deep CNN enables the model to yield the output of
high visual quality. Experimental results demonstrate that
our proposed method can remarkably improve both the sub-
jective and the objective quality of the compressed video
sequences. It should be noted that the multi-hypothesis
prediction introduces additional computation. Also note that
in the sparse coding-based patch reconstruction, the accuracy
and computational efficiency are influenced by the number
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of clusters and the number of dictionary pairs for a given
cluster. One important problem for future investigation is to
determine optimal values for the parameters of the sparse
coding-based reconstruction.
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