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ABSTRACT
The lesion regions of a medical image account for only a small part of the image, and a critical imbalance
exists in the distribution of the positive and negative samples, which affects the segmentation performance
of the lesion regions. Dice loss is beneficial for the image segmentation involving an extreme imbalance of
the positive and negative samples but it ignores the background regions, which also contain a large amount
of information. In this work, we propose an improved dice loss that can mine the information in background
areas and modify network architecture to improve performance. The improved dice loss called weighted soft
dice loss (WSDice loss). Our loss function gives a small weight to the background area of the label, so the
background area will be added to the calculation when calculating dice loss. It can also soft the hard label in
the lesion area to increase the robustness of the model to noise label. What’s more, we propose to cascade
Focal loss and WSDice loss. Focal Loss is a Distribution-based loss function, WSDice Loss is a Region-
based loss function, the optimization directions of them are different. The cascaded loss function can make
full use of the advantages of both and greatly improve model performance. In addition, we add a simple
but effective channel attention module to the decode module of U-net. We experimented on the ChestX-
ray8 datasets. Compared with Dice loss, WSDice loss improves the dice coefficient by 1.59%, cascaded loss
function can improve dice coefficient by 7.81%. The improved in model architecture can increase the dice
coefficient by 1.36%.

INDEX TERMS Image segmentation, sample distribution, dice loss.

I. INTRODUCTION
The occurrence of pneumothorax is a medical condition
that refers to the gas entrapment caused by a gas enter-
ing the pleural cavity. The occurrence of pneumothorax can
affect the respiratory movement, cause breathing difficulties,
affect the blood flow, reduce the blood pressure, lead to
pleurisy and cardiovascular disorders, and may even be life
threatening. Therefore, the occurrence of a pneumothorax
needs to be discovered and treated as soon as possible [1].
X-ray examination is an important method for diagnosing a
pneumothorax [2].

The associate editor coordinating the review of this manuscript and
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Currently, the detection of pneumothorax mainly relies on
artificial observation. However, this method depends on the
subjective experience of doctors, and the misdiagnosis rate
is high. The traditional techniques of pneumothorax X-ray
segmentation require the manual extraction of features. For
example, Geva O et al. determine the position of the pneu-
mothorax region by analyzing the local and global textu-
ral features [3]. Chan YH et al. use the local binary mode
and support vector machine for pneumothorax detection [4].
However, these methods are time-consuming and laborious,
and the features of the manual design contain incomplete
information, which leads to a low accuracy of the pneumoth-
orax segmentation.

With the successful application of deep learning methods
represented by convolutional neural networks in the field of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 167939

https://orcid.org/0000-0002-6772-5191
https://orcid.org/0000-0001-8314-0612
https://orcid.org/0000-0003-4642-7133


L. Wang et al.: Improved Dice Loss for Pneumothorax Segmentation

computer vision, the methods based on neural network have
demonstrated considerable success in the field of medical
image segmentation [5], [6]. Wang et al. first used deep learn-
ing to perform pneumothorax segmentation [7], and achieved
satisfactory results. In addition, Wang et al. published a
large-scale lung disease dataset, namely, ChestX-ray8, con-
tributing greatly to the field of automatic detection of lung
diseases. Several researchers used deep-learning methods to
detect pneumothorax regions [8], [9], and these approaches
considerably improved the pneumothorax segmentation
performance.

U-net [10] uses an encoder-decoder symmetric struc-
ture based on fully convolutional network (FCN) [11].
Milletari et al. proposed a 3D deformation structure of the
U-net network structure, known as the V-net [12]. The V-net
structure uses the dice coefficient loss function instead of
the traditional cross entropy loss function. The Unet++ [13]
improves the U-net in terms of the skip connection, intro-
duces the idea of deep supervision and can achieve a high
precision and speed through the implementation of model
pruning.

In the cross entropy loss function, all the pixels in the
image are treated equally. However, it leads to the network
being dominated by the classes with more pixels, and it is
difficult for the network to learn the features of small objects.
Consequently, the network segmentation performance for the
small objects is extremely poor. Researchers have performed
considerable work in an attempt to overcome these prob-
lem. Tsung-Yi Lin et al. proposed an improvement in the
cross entropy loss to address the problem of unbalanced data
distribution, and this improved function was known as the
focal loss [14]. Milletari et al. proposed the use of the dice
loss [12] to solve the limitation. However, dice loss directly
ignoring the background regions can lead to a considerable
loss of information. Although the negative sample regions do
not contain the lesion regions, they contain the characteristic
information of the healthy regions. The network identifies the
part of the information and compares it with the information
of the lesion regions to better distinguish between the healthy
and lesion regions.

Considering these disadvantages of dice loss,
Sudre C H et al. proposed the generalized dice loss and
explored the effects of different sample imbalance rates on
the model performance [15]. However, an effective method to
solve these problems was not proposed. Shen et al. generated
the weight based on the number of label categories, number
of samples and number of pixels in the same category, which
was multiplied by the dice loss [16]. This method could
effectively solve the problem of the imbalance in multiclass
segmentation. However, in the semantic segmentation tasks
with only one kind of lesions, this method could not address
the imbalance in the distribution of the lesion and background
regions. Liu Y C et al. simultaneously segmented the lesion
regions and the organ regions in which the lesion regionswere
located [17]. They used the area ratio of lesion regions to
the organ regions as the weight to strength the loss of lesion

regions. But this method needs the label of lesion regions and
organ regions at the same time, the cost of label is expensive
and it is not convenient to use. Therefore, we attempted to
improve the dice loss by introducing a weighted soft dice loss
(WSDice loss). In the proposed approach, according to the
weight of the label generation, the negative sample regions
are included in the calculation of the dice coefficient, which
can considerably improve the performance of the network
segmentation. What’s more, we propose to cascade Focal
loss and WSDice loss. The cascaded loss function can make
full use of the advantages of both and greatly improve model
performance.

The major contributions of this paper are summarized as
follows:

1) We improve dice loss to mine more information of
negative areas in medical images.

2) We propose cascading Focal loss and WSDice loss
which can greatly improve model performance.

3) We improve the U-net structure by using the core idea
of SE-ResNeXt [18].

The improved loss function can ensure that dice loss is
used to address the unbalanced sample distribution prob-
lem, and it can deeply mine the information in the positive
and negative samples. In this paper, we use the data of the
ChestX-ray8 database to perform experiments, and the exper-
iment results prove that the proposed method can effectively
improve the segmentation accuracy.

II. WEIGHTED SOFT DICE LOSS
A. FOCAL LOSS
The lesion regions of the medical image account for only a
small part of the image, and a critical imbalance exists in
the distribution of the positive and negatives samples, which
affects the segmentation performance of the lesion regions.
In 2017, Tsung Yi Lin proposed the use of the focal loss
[14] to address the problem of the imbalanced distribution
of the positive and negative samples in the field of object
detection. In medical image segmentation, because the labels
are based on the doctor’s experience, erroneous annotations
may be present. The focal loss performs the classification
of each pixel, owing to which, the erroneous annotations
considerably influence the network. Although the focal loss
has limitations, this loss function can effectively address the
problem of imbalanced samples; therefore, this function is
likely also effective in the field of medical image segmen-
tation. In general, because the cross entropy loss treats all
the samples equally, the loss value of a part may be large
when the number of negative samples is large. This value may
dominate the loss of the positive samples and lead the net-
work to deeply mine the negative sample regions; however,
this situation is in contrast to the goal of the lesion region
segmentation. To solve this problem, the focal loss divides
all the samples into easy and hard samples according to the
confidence degree of the model. The number of pixels in the
lesion regions are small; therefore, it is difficult to extract
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features, which reduces the confidence of the network, and
thus these samples are hard samples. The number of pixels
in the negative sample regions are large and their features
are obvious, and thus, these samples are easy samples. The
focal loss uses the confidence of each sample to generate a
dynamic weight to increase the loss value of the hard samples
and reduce the loss value of the easy samples to ensure that
the network can optimize the process considering the lesion
regions. The focal loss can be expressed as

Lfl = −α (1− p)γ log (p) (1)

where p is the model’s estimated probability, α, γ are two
hyperparameters, α is used to adjust the distribution of the
easy samples, and (1− p)γ is the dynamic scaling factor,
which is used to adjust the distribution of the hard samples.

B. DICE LOSS
The dice loss, proposed in the context of the V-net, is derived
from the Sørensen–Dice coefficient, which is a statistical
indicator proposed by Thorvald Sørensen and Lee Raymond
Dice in 1945. The dice loss has been often used for medical
image segmentation tasks. The dice coefficient (DC) is a set
similarity measure function, which is derived from the binary
classification task. The value of this coefficient ranges from
zero to one, which means that DC ∈ [0, 1], and the dice loss
is expressed as 1− DC .
The value of this coefficient ranges from zero to one, which

means that, and the dice loss is expressed as one minus the
dice coefficient.

For the binary classification of the image segmentation,
the dice loss can be calculated as follows:

Ldice =
1
N
(1− DC) (2)

whereN is the number of samples,DC is the dice coefficient,
it can be expressed as

DC =
2
∣∣∣Ŷ ⋂Y

∣∣∣∣∣∣Ŷ ∣∣∣+ |Y |
=

2
∑n

i=1
∑m

j=1 ŷij · yij + ε∑n
i=1

∑m
j=1 ŷ

2
ij +

∑n
i=1

∑m
j=1 y

2
ij + ε

(3)

where Ŷ represents the predicted value of the network, Y
represents the true label of the sample, Ŷ and Y are both
matrices, ŷij and yij represent the elements in Ŷ and Y , respec-
tively, n andm denote the number of rows and columns of the
matrix, respectively, and ε is a minimum value that prevents
the occurrence of a zero denominator. Since the overlap
region between the predicted value Ŷ and the true value Y
is repeatedly calculated in the denominator, the coefficient is
multiplied by two in the numerator when calculating the dice
coefficient, which can lead to the formation of a loss function
that can be minimized when calculating the dice loss.

C. WEIGHTED SOFT DICE LOSS
The lesion region labels of the samples have a value of one
and the healthy regions have a value of zero, as shown in the
first line in Fig. 1. The healthy regions have a value of zero
when calculating the dice coefficient, and thus, the healthy
regions are ignored. The advantage is that the loss of the
model is calculated considering only the segmented objective
regions, which can ensure that the model focuses more on
extracting the lesion regions of the samples and the infor-
mation of the lesion regions, which is beneficial for the
segmentation involving an extreme imbalance of the positive
and negative samples. However, it is unreasonable to ignore
the background regions, which also contain a large amount
of information, such as the features of the nonpneumothorax
regions of the lung. If the model can recognize the features of
the part and compare themwith the features of the pneumoth-
orax region, the effect of the pneumothorax segmentation can
be considerably enhanced. In other words, the use of the dice
loss causes the loss function of the negative samples being
unable to be calculated and a part of the information is lost,
which adversely affects the back propagation and destabilizes
the training process.

The improved loss function can include the negative sam-
ple regions of the image into the loss calculation and retains
the advantage of the dice loss in the problem of the imbal-
anced distribution of the positive and negative samples. The
proposed loss function is known as the weighted soft dice
loss, and it can be defined as

LWSDice = 1−
2
∣∣∣W (

2Ŷ − 1
)⋂

W (2Y − 1)
∣∣∣∣∣∣W (

2Ŷ − 1
)∣∣∣+ |W (2Y − 1)|

= 1−
2
∑n

i=1
∑m

j=1 Ĝ · G+ ε∑n
i=1

∑m
j=1 Ĝ

2 +
∑n

i=1
∑m

j=1G
2 + ε

(4)

Here Ĝ is wij
(
2ŷij − 1

)
, G is wij

(
2yij − 1

)
. Where, n and

m denote the width and height of the image, respectively.
wij is the weight generated according to the segmentation
label, wij = yij (v2 − v1) + v1, where v1 and v2 are the
hyperparameters, and 0 ≤ v1 ≤ v2 ≤ 1, v2 = 1 − v1.
As shown in Fig. 1, to include the negative sample regions in
the calculation, we use items 2ŷij − 1 and 2yij − 1 to change
the [0, 1] range of the predicted values and labels to [−1, 1].
Similar to Dice Loss, when WSDice is used in multi-class
segmentation tasks, for each class of segmentation object,
we regard it as foreground and the rest area of the image
as the background. After all category objects are segmented,
we integrate them into the one mask.

The weight wij generated using the labels has two effects:
First, the negative samples are considered in the loss func-

tion to ensure that the network can focus on extracting the
features of the negative sample regions. At the same time, due
to the small weight, even if the range of the negative samples
is large, they do not account for a large proportion of the total
loss, and thus the advantage of the dice loss in terms of the
imbalance of the positive and negative samples is retained.
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FIGURE 1. The first and second lines show simple examples of the dice loss and weighted soft dice loss, respectively. It is assumed that the
hyperparameters are v1 = 0.1 and v2 = 0.9.

Second, the concept of label smoothing [19] is introduced.
The corresponding value of the label is zero or one, which
corresponds to the hard labels. This aspect makes the network
over believe its judgment, and the network learns considering
the large gap between the predicted value and the interpola-
tion of the label. The small amount of data in the training set
is not sufficient to represent all the sample features, which
leads to overfitting. In our proposed loss function, the weight
generated from the labels of the sample softens the one hot
type hard label, which reduces the confidence of the positive
samples in the label, increases the confidence of the negative
samples, and suppresses the difference between the output of
the positive and negative samples. This approach is equivalent
to adding a certain amount of noise in the real distribution of
the data, which can have a certain regularization effect and
prevent the network from overfitting.

III. METHOD
A. DATASET
The dataset used in this paper was derived from the large scale
lung disease open dataset named ChestX-ray8 [7] developed
by Wang et al. This dataset contains more than 110, 000 lung
X-ray images of more than 30, 000 patients, corresponding
to 14 common lung diseases. We used the pneumothorax
segmentation dataset. The training set of this part of the
dataset includes 12, 089 lung X-ray images, including 2, 669
pneumothorax images and 3, 576 pneumothorax lesion areas
(some images contain multiple lesion regions). There exist
9, 420 normal chest X-ray images, with the image size of
1024 × 1024. The regions of most lesions in the dataset
have no more than 128 pixels, and the lesion regions in the
largest X-ray image have less than 512 pixels, which means
that represents a critical imbalance in the distribution of the

positive and negative samples in the dataset. In other words,
the positive samples (sick regions) are considerably smaller
than the negative samples (normal regions).

B. PREPROCESSING
Considering the influence of the network computation, video
memory size and batch size on the model performance,
the input image size of the proposed model is 576× 576. For
the data augmentation, we use the contrast limited adaptive
histogram equalization (CLAHE) technique [20], horizon-
tal flips, center crop, random brightness, random contrast
adjustment, which are commonly used in the medical image
segmentation. The upper threshold value for contrast limiting
is selected randomly from (2.0, 12.0), and the size of grid
for histogram equalization is selected randomly from (3, 15)
in CLAHE. The ratio of center crop is selected randomly
from (0, 0.25). The factor range for changing brightness is
(0.1, 0.8) in random brightness, and the factor range for
changing contrast is (0.2, 0.8) in random contrast adjustment.
The probability of applying CLAHE is 0.6, and the probabil-
ity of using other data augmentation methods is 0.5.

C. MODEL ARCHITECTURE
Compared with natural images, medical data is more difficult
to obtain due to privacy issues, the amount of medical data is
small. In addition, the complexity and individual differences
in medical images will increase the difficulty of medical
image segmentation. The U-net model [10] can solve these
problems well, and its use has generated satisfactory results
in medical image segmentation since it was proposed in 2015.
This paper also uses the U-net structure albeit with certain
improvements.
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FIGURE 2. Pneumothorax image samples from the ChestX-ray8 dataset. The images in the first row are the chest X-ray
images, the corresponding pneumothorax mask images are in the second line and the last row is the chest X-ray images
that mark the pneumothorax areas.

FIGURE 3. Network architecture. Each color box corresponds to a multichannel feature map. The number at the top of the box indicates
the size of the feature map. The number at the bottom indicates the number of channels. The arrows indicate the different operations.

We make some improvements based on the U-net,
as shown in Fig. 3. A certain amount of information is lost in
the downsampling operation of the encoding module, and the
upsampling operation can recover the dimension of the fea-
ture map. However, this operation cannot completely restore
the lost information. The original U-net fuses the feature map

in the downsampling process with the feature map in the
upsampling process, which allows the complete utilization
of the rich information in the encoding module, thereby
compensating for the information that cannot be restored
in the decoding module and improving the accuracy of the
image segmentation. However, in theU-net decodingmodule,
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the different depth layers also contain different information,
and the U-net does not make better use of this information.

To more adequately mine the information of the feature
map, we add a simple but effective channel attention module
[21] to the decodingmodule.We use 1×1 convolution filter to
compress the feature maps’ channels in the decoding module,
extract key features, and then concatenate the key features to
the features before the output layer. Finally, the fused fea-
tures are normalized and activated with Relu. The activated
features become the input of the output layer.

Feature maps in convolutional neural networks (CNN)
generally have many channels, the more feature channels,
the stronger the expression capabilities of CNN, generally.
But the importance of the features in different channels is
different, only a small number of channels play a key role
in the feature extraction, and most of channels only play an
auxiliary role. However, if the number of feature channels
used is too small, it will lead to weak feature extraction
capabilities of the network. All feature channels are often
considered to be equally important in CNN, which will lead
to the significant loss of information in the key channels.

In our method, 1 × 1 convolution filter is used to com-
press the channels in the decoding module. After the loss
convergence, we can regard the compressed feature channels
as the key channels. We concatenate them before the output
layer, which is equivalent to weighting these important fea-
ture channels, highlighting the importance of these feature
channels. In addition, different depth features in the decode
module has different receptive fields. The information of fea-
ture maps at different scales can be fully used to improve the
accuracy of multi-scale object segmentation after cascading
them. Finally, we use 1 × 1 convolution filter to compress
the feature map channels to 32 in the decode module, and the
ammount of parameters just have a slight increase.

We have tried the same method in the encode module,
rather than increase the performance, this method aggra-
vated it. The features in the shallow layers are not abstract
enough, they can only extract simple local features such as
textures and colors. So this method is only applicable to
the decode module of U-net. The features of the decode
module are deeply encoded by the encode module, the deeply
encoded feature fusion can promote each other and improve
performance.

The backbone network used in this paper is the SE-
ResNeXt-50 [18]. As shown in Fig. 4, the SE-ResNext
module is a combination of the SE block and ResNeXt.
The SE block is not a complete network structure, which
can be embedded in other network models. The core idea
of this block is to establish the interdependence between
channels. Through the loss function of the network, we can
learn the feature weight. If the effective feature weight is
large, the ineffective feature weight is small, and the model
can achieve better results. The ResNeXt [22] proposed by
Xie et al., which is based on the ResNet [23] and reference of
Inception [24], changes from a single path to multiple parallel
paths, increases the width of the residual block and reduces

FIGURE 4. Se-ResNext module. W, H and C represent the width, height,
and number of channels of the feature map, respectively.

the number of super parameters. When the ResNet param-
eters are used, the model depth of the ResNeXt is smaller,
but the accuracy is higher. The SE-ResNeXt combines the
advantages of the SE block and ResNeXt, as both of these
blocks can weigh the channel of the model and increase the
width of the network. Consequently, the performance of the
model is high, and the amount of calculation does not increase
considerably.

D. LOSS FUNCTION
As mentioned before, the dice loss ignores the negative
sample regions and loses a large amount of information.
Consequently, the medical image has the characteristics of
fewer and smaller lesion regions and the positive and negative
samples exhibit an unbalanced distribution in a single image.
The proposed loss function uses an improved version of the
dice loss called the weighted soft dice loss. The improved
loss function can make the model focus on the lesion regions
and overcome the problem of the unbalanced distribution
of the positive and negative samples in a single sample of
the medical image, and it can also avoid the loss of the
feature information of the negative sample regions. These
characteristics can considerably improve the accuracy of the
medical image segmentation.

E. OPTIMIZER
We use the RAdam [25], which was recently proposed by
Liyuan Liu. The new optimizer, RAdam, has many the advan-
tages. It can not only ensure a fast rate of convergence, but it
can also avoid falling into the local optimal solutions. The
algorithm can dynamically turn the adaptive learning rate on
or off, and the convergence result is not sensitive to the initial
value of the learning rate. Only a few hyperparameters are
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required to be adjusted. Therefore, this approach is conve-
nient to use, and it exerts a desirable influence.

IV. EXPERIMENTS
A. PERFORMANCE EVALUATION
We evaluate the segmentation accuracy of the pneumothorax
X-ray images considering the degree of overlap between the
predicted regions and the regions of the ground truth. In our
experiment, the dice coefficient was used to quantitatively
evaluate the segmentation. A larger dice coefficient value
corresponds to a higher segmentation accuracy. The dice
coefficient can be calculated as follows:

DC =
2
∣∣∣Ŷ ⋂Y

∣∣∣∣∣∣Ŷ ∣∣∣+ |Y | = 2 · TP
2 · TP+ FP+ FN

(5)

Here, Ŷ is the predicted result of the model, and Y is the label
of the image. The true positive TP represents the common
area of the manual segmentation and network prediction. The
false positive FP represents the part of the model prediction
area remaining after the removal of the common area of the
manual segmentation. The false negative FN indicates that
the artificial segmentation area removes the overlapped part
with the segmentation area of the network prediction.

B. EXPERIMENTAL RESULTS
The experimental equipment used in this paper was a Tesla
P100 with a 16G memory. Considering the data volume,
image resolution, amount of model calculation, and comput-
ing power of the graphics card, the backbone network used
in the experiment was the SE-ResNext-50. The size of the
input image was 576×576, and the batch size during training
was set as 16. We set epoch as 80, the initial learning rate
was set as 0.001 and the learning rate schedule is gradual
warmup, the warmup time is 2 epochs, the cosine learning
rate schedule was used after warmup. We use the default
parameters in the RAdam optimizer. The backbone was pre-
trained in ImageNet and we freeze the first three blocks. The
threshold used in inference is 0.39, it’s means that pixels with
a probability greater than 0.39 are determined as the lesion
area after sigmoid, and the predicted lesion area with an area
less than 3500 is deleted.We divide the training set, validation
set and test set according to the ratio of 6 : 2 : 2.

To demonstrate the effectiveness of the proposed method,
in this paper, the original U-net and the improved U-net were
trained on the dataset by using the cross entropy loss, focal
loss, dice loss, and weighted soft dice loss, while keeping
the other conditions unchanged. The focal loss can effectively
overcome the problem of segmentation of small object sam-
ples in the dataset, and its segmentation effect is better. The
dice loss only focuses on the positive sample regions and is
less affected by the imbalanced distribution of the positive
and negative samples, which can alleviate the problem of the
sample imbalance. The focal loss and dice loss thus have
different regions of interest and advantages. Combining the
advantages of both the losses, the segmentation effect can

FIGURE 5. Comparison of segmentation performance with different
settings of hyperparameter v1 in the ChestX-ray8 dataset.
βFL− log(WSDice) is the combined loss function, and the β is 7.

be considerably improved. Therefore, this paper also uses
different loss functions involving a weighted combination.
In other words, the results of the focal loss and dice loss as
a weighted combination, and those of the focal loss and the
weighted soft dice loss as a combination, are compared. The
experiments show that the method of using the combined loss
function can considerably improve the performance of the
network for pneumothorax segmentation.

In this paper, the improved dice loss function introduces
the hyperparameters v1 and v2, which represents the weights
of the negative and positive samples, respectively, 0 ≤ v1 ≤
v2 ≤ 1, v2 = 1 − v1. In other words v1 lies between 0 and
0.5. These two hyperparameters are adjusted according to the
proportion of the positive and negative samples in different
datasets. Fig. 5 shows a comparison of the dice coefficients
of the models trained with different hyperparameters on the
pneumothorax segmentation dataset used in this paper. The
blue ployline indicates WSDice and the orange ployline is a
cascade loss function of Focal loss and WSDice loss. In the
cascade loss function, the coefficient of Focal loss is 8 and the
WSDice loss is scaled by log. WSDice loss belong to [0, 1],
it will approximately equal to the 8 times Focal loss after use
log to scale. It can be seen that the network segmentation
effect is the best when v1 = 0.15 and v2 = 0.85.

When using the loss function of the weighted combina-
tion, the results pertaining to different weight proportions
of the two loss functions are also considerably different.
When multiple loss functions are weighted and combined,
it is necessary to maintain the proportion of the different loss
functions to the total loss as constant. The hyperparameters
can be adjusted according to this method by starting from the
value that can maintain this proportion as nearly constant and
later finetuning. The optimal weight value is near the starting
value. As shown in Fig 7, a large number of experiments were
performed using the combination of the focal loss and dice
loss and the combination of the focal loss and weighted soft
dice loss.

To optimize the experimental results, the improved net-
work was used to determine the hyperparameter values of the
focal loss. From Fig. 6, it can be seen that the segmentation
is the best when α = 0.3, γ = 3.5. In the dataset of the
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FIGURE 6. Hyperparameter adjustment of the focal loss with the
improved network in the ChestX-ray8 dataset. First we fix γ = 2 and
adjust α, when α = 0.3, we get the highest dice coefficient. Then we fix
α = 0.3 and adjust γ , when γ = 3.5, we get the highest dice coefficient.
Therefore, we regard α = 0.3, γ = 3.5 as the optimal hyperparameter in
Focal loss.

FIGURE 7. Adjustment of cascading coefficient of cascading loss function
in the ChestX-ray8 dataset. βFL− log(WSDice) has the best perfoemance
when β = 7 and βFL− log(Dice) get the highest dice coefficient when
β = 8.

pneumothorax segmentation used in this paper, we fix the
values of the hyperparameter of the focal loss as 10 to the
weight of maintaining the balance of the two loss functions.
Starting from this weight, finetuning is performed in the up
and down directions. It can be seen from Fig. 7 that the
optimal weights of the combination of the focal loss and dice
loss and the combination of the focal loss and weighted dice
loss are 8 and 7, respectively.

To demonstrate the effectiveness of our method, we used
a variety of loss function training models for comparing the
approaches in the U-net and improved U-net cases, the exper-
imental results are presented in Table 1, and we can observe
the segmentation results of different loss functions fromFig 8.
Our method can increase the dice coefficient by approxi-
mately 10.6%. Due to the critical imbalance of the positive
and negative sample distribution in the data, the performance
of the cross entropy loss is the worst. Compared with that of
the model of the cross entropy loss training, the performance
of the focal loss is considerably improved. Because dice loss
is less affected by the seriously unbalanced distribution of the
positive and negative samples in the image, and its perfor-
mance is considerably better than that of the cross entropy
loss. However, a large number of small lesion regions is

TABLE 1. Comparison of performance of different loss functions on
vanilla U-net and improved U-net in the ChestX-ray8 dataset, where
α = 0.3, γ = 3.5 in Focal Loss, v1 = 0.15, v2 = 0.85 in WSDice Loss,
β = 8, α = 0.3, γ = 3.5 in βFL− log(Dice), and β = 7, α = 0.3, γ = 3.5
v1 = 0.15, v2 = 0.85 in βFL− log(WSDice).

TABLE 2. Comparison of pneumothorax segmentation performance of
different papers on ChestX-ray8 dataset.

present in the dataset. When the segmented objective regions
are too small, the prediction error has a significant impact
on the dice loss, which easily destabilizes the training and to
some extent affects the performance of the dice loss approach.

In addition, the dice loss can avoid the distribution imbal-
ance of the negative and positive samples, but it also leads to
considerable information loss, which affect the performance
of the dice loss approach. The results in Table 1 indicate that
the performance of the improved dice loss is considerably
higher than that of the dice loss approach, which proves the
effectiveness of the method used in this paper.

Although our method can solve the problem of the dice
loss, the segmentation object considered in this paper is
extremely small, and thus, the effect of the focal loss is better
than that of the proposed method when segmenting extremely
small objects. Moreover, the use of the dice loss can solve the
problem of the unbalanced distribution of the negative and
positive samples, and the focal loss can better segment small
objects. Considering the characteristics of these two different
loss functions, we formulated a weighted combination of the
two loss functions [26]. As seen from Table 1, the perfor-
mance of the combination of the focal loss and dice loss is
better than that of the individual focal loss and dice loss func-
tions. Besides, the combination of the focal loss and weighted
soft dice loss is better than that of the focal loss and dice
loss. This result further demonstrates the effectiveness of the
proposed weighted soft dice loss. Moreover, Table 1 indicates
that the improved network has a satisfactory segmentation
effect, which demonstrates the excellent performance of the
improved network.

We investigated some representative papers published
from 2017 to 2020. All of these papers were involved
in the research of pneumothorax region segmentation and
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FIGURE 8. The segmentation results of different loss functions. The mask is overlaid on the image, so the area with deep color is the lesion area.

TABLE 3. The results of different loss function with the improved U-net in the JSRT dataset, where α = 0.26, γ = 2.3 in Focal Loss, v1 = 0.1, v2 = 0.9 in
WSDice Loss, β = 10, α = 0.26, γ = 2.3 in βFL− log(Dice), and β = 8, α = 0.26, γ = 2.3, v1 = 0.1, v2 = 0.9 in βFL− log(WSDice).

experiments are performed on ChestX-ray8 dataset. The
comparison result of the performance reported in those paper
with the performance of our method is shown in Table 2.
The score of our method in the table is obtained by using
the combination of WSDice Loss and Focal Loss and the
improved U-net structure.

In order to prove the generalization of the method pro-
posed in this paper, we use the JSRT dataset, which contains
247 chest X-ray images and 5 kinds of segmentation object
masks, to conduct experiments. We divide the training set,
validation set and test set according to the ratio of 6 : 2 : 2.
In our experiment, the epoch is 50, the initial learning rate
is 0.005, and the learning rate schedule is gradual warmup,
the warmup time is 1 epoch, the cosine learning rate schedule
was used after warmup. Similar to the previous experiments,
we use the default parameters in the RAdam optimizer,
the backbone was pre-trained in ImageNet and we freeze the
first three blocks. The experimental results are recorded in the
Table 3.
It can be seen that the area of the clavicle is small,

the unbalanced data distribution is more serious than other
targets, so Focal loss improves the dice coefficient more
than the cross-entropy loss function. The segmentation target

in the JSRT dataset is larger than the pneumothorax in the
ChestX-ray8 dataset, the data distribution of JSRT is more
balanced compared to the ChestX-ray8, so the Dice loss
obtains a better performance than Focal loss. The area of
the segmentation target in JSRT dataset is large, the edge is
clear, so it is easy to segment. Dice loss get a good score and
the average dice of the five categories can reach 0.9549, but
the WSDice loss, proposed in this paper, still improves the
average dice to 0.9606. This means that WSDice loss mines
some background information and our method is effective.
In addition, the cascaded loss function can still improve the
segmentation score, and the performance of Focal loss and
WSDice loss cascade is better than the performance of Focal
loss and Dice loss cascade, which can further prove that the
cascade loss function can make the model optimize the model
from different direction to improve the performance. It also
further illustrates the effectiveness of WSDice loss.

V. CONCLUSION
In this paper, we improve the dice loss in the form of the
weighted soft dice loss to solve the problem of the imbalance
between the positive and negative samples in the medical
image segmentation and the disadvantage that the dice loss

VOLUME 8, 2020 167947



L. Wang et al.: Improved Dice Loss for Pneumothorax Segmentation

only focuses on positive samples and ignores negative sam-
ples. The loss function uses the labels to generate weights,
and the negative samples of the image are included in the
calculation of the dice loss according to this weight. Owing
to this process, the model can fully exploit the features of the
negative sample regions and retain the characteristics of the
dice loss of not being affected by the distribution imbalance
of the negative and positive samples.

Besides, we use the pneumothorax segmentation dataset
ChestX-ray8 to perform the experiments, build a U-net model
with the SE-ResNeXt-50 as the backbone network, improve
the U-net, make better use of the features of different scales
of the U-net decoder module, and use a variety of different
loss functions for the training and comparison. The exper-
iments show that the proposed method can achieve better
performance.

The focal loss and weighted soft dice loss are combined as
the loss function of the model. The method proposed in this
paper is simple and effective. Model training is performed
on the dataset, and the hyperparameters of the focal loss
are set as the best value of the experimental results. Various
hyperparameters settings are tested for the loss function.
The experimental results show that the network segmentation
effect is the best when v1 = 0.15 and v2 = 0.85.
However, the proposed approach has some disadvantages.

First, the use of the weighted soft dice loss introduces hyper-
parameters v1 and v2, which need to be carefully adjusted
during use. Compared to the dice loss, the weighted soft dice
loss is more inconvenient to implement. For this shortcoming,
we can use Neural Architecture Search (NAS) [33] to search
for the optimal parameters automatically. Second, ourmethod
does not solve the problem of the dice loss error being sensi-
tive to the calculation of the loss function when it is used to
segment small objects. This problem may cause fluctuations
in the training process and affect the performance of the
model. Finally, the improved dice loss has some defects when
segmenting small objects, and the effect is not as satisfactory
as that of the focal loss. For the last two weaks, we can use
cascade loss function to solve them.
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