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ABSTRACT At present, text spotting in natural scenes has become one of the research hotspots. Among
them, curvilinear text and long text are the main difficulties of text spotting in natural scenes. To better
solve these two types of problems, we propose a novel end-to-end text spotting model. The model includes
three parts: shared convolution module, text detector module and text recognizer module. For the problem of
long text, we adopt the corner attention mechanism to extract the features of long text more effectively.
For the problem of curve text, we feed the rectification feature map into the SA-BiLSTM decoder to
recognize the curve text more effectively. More importantly, the joint optimization strategy realizes the
mutual promotion function of the text detection task and the text recognition task. Experimental results
on TotalText, ICDAR2015, ICDAR2013, CTW1500, COCO-Text and MLT datasets prove that our method
achieves excellent performance and robustness in text spotting tasks based on end-to-end natural scenes.

INDEX TERMS Natural scene text spotting, SA-BiLSTM, end-to-end, joint optimization.

I. INTRODUCTION
Text spotting in natural scenes has high research value and a
wide range of application scenarios, and has become one of
the hot topics of research. On the one hand, text is an impor-
tant carrier for the spread of human civilization; On the other
hand, rich high-level semantic information helps us under-
stand the world better. More importantly, text information in
natural scenes has a very wide range of application scenarios,
such as image search, instant translation, robot navigation,
blind assisted reading, and industrial automation. Therefore,
text spotting in natural scenes has important research value.
However, the inherent feature of text in natural scenes
increase the difficulty of text spotting. First of all, the diver-
sity of text, such as text in different languages, fonts, font
sizes, shapes, etc., as shown in Figure l.a; In addition,
the complexity of the text background, the background may
contain many objects similar to the text, such as leaves,
bricks, windows, fences, etc., as shown in Figure 1.b; Finally,
unsatisfactory data quality, imperfect imaging conditions
often lead to low data quality, such as low resolution, distor-
tion and blur, as shown in Figure 1.c.
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FIGURE 1. Characteristics of text in natural scenes. (a) Text diversity.
(b) Complex background. (c) Poor image quality.

Traditional OCR (optical character recognition) processing
methods generally decompose text spotting in natural scenes
into two independent subtasks: text detection task and text
recognition task [1]. The text detection is used to detect
whether there is a text instance in the picture; text recognition
is to recognize the content of text. The OCR processing
method has achieved good results in text spotting problems
in natural scenes. However, this method ignores the inherent
connection between text detection and text recognition. First,
the accumulation of training errors, the errors in the text
detection stage will be passed to the text recognition process,
which will lead to a worse text recognition performance;
second, the text detection task and the text recognition task
cannot be optimized at the same time.
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To address the issues of current OCR methods, end-to-
end OCR processing has been proposed by Li et al. [2],
Liu et al. [3], He et al. [4], Sun et al. [5] and Lyu et al. [6].
Their common idea is that the text detection branch and the
text recognition branch share a feature extraction network.
Therefore, the text detector and the text recognizer can be
optimized jointly, which can effectively solve the problem of
error accumulation.

The end-to-end method proposed by Li er al. [2] can
achieve good performance on horizontal text datasets,
but it cannot handle curvilinear text problems in natural
scenes well. In order to better deal with curvilinear text,
Liu et al. [3], He et al. [4] and Sun et al. [5] proposed similar
solutions. Their common ideas are: first, the feature extrac-
tion network extracts the features of the text area; second,
rectify feature maps; finally, feed the rectified feature maps
into the text recognizer.

Although Lyu et al. [6] can improve the performance of
text detection, it has lost the potential order information
between characters. On the one hand, even if each char-
acter is detected correctly, it is difficult to connect them
into words correctly. On the other hand, the author’s default
text is recognized from left to right, so it cannot handle
non-traditional text directions. The paper [7] adopts a joint
optimization strategy which makes good use of the potential
internal connection between text detection and text recog-
nition, but it cannot well avoid the interference of complex
backgrounds.

In order to better solve the above problems, we propose
a novel end-to-end text spotting framework, which uses a
joint optimization strategy to effectively utilize the inherent
connection between text detection tasks and text recogni-
tion tasks. Firstly, the text detector uses a corner attention
mechanism [8], which can better solve the problem of long
texts; Secondly, the TPDM (Text Point Detection Module)
can better avoid the interference of complex backgrounds.
In addition, a feature rectification network is used to rectify
the feature maps, and then the rectified feature maps is fed
into the recognizer, which is beneficial to the recognition
of curve text. Most importantly, SA-BiLSTM (spatial atten-
tion mechanism with BiLSTM) is a text recognition model
based on the combination of spatial attention mechanism
and BiLSTM, which can more effectively extract semantic
information between characters.

Il. RELATED WORK

A. TEXT DETECTION IN NATURAL SCENE

The main difficulty of text detection in natural scenes is
caused by the characteristics of texts in natural scenes, such
as the diversity of text directions and the diversity of text
languages. The paper [9] transformed the text detection task
into a series of text box detection and introduces RNN (recur-
rent neural networks) to improve the effect of text detec-
tion. It has a significant effect on detecting horizontal text
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data, but it is not suitable for non-horizontal text. The thesis
[10] first be cut each word into more directional small text
segments that are easier to detect, and then connects each
small text block into a word with a neighboring link, which
is conducive to recognizing a wide range of lengths with
directions Words and lines of text. The paper [11] first uses
a FCN (fully convolutional network) to generate multi-scale
fusion feature maps, and then directly performs pixel-level
text block prediction on this basis, supporting two types of
text area annotations: rotating rectangle box and arbitrary
quadrilateral.

B. TEXT RECOGNITION IN NATURAL SCENE

Natural scene text recognition includes two categories: the
CTC-based method and the method based on the attention
mechanism. The paper [12] used the CTC-based method for
the first time in recognition system and achieved good results.
The papers [13], [14], [15], [16] and [17] also adopted the
improved CTC method to further verify the effect of CTC
method. Paper [18] first proposed the attention mechanism
to solve the problem of machine translation, and it is now
widely used in text recognition task in natural scenes. Paper
[19] proposed an attention mechanism based on encoding and
decoding, which can better adapt to the problem of text recog-
nition. For irregular text recognition (warped and curved
text), the paper [20] proposed a combination of attention
mechanism and spatial transformation network to improve
the performance of irregular text recognition.

C. TEXT SPOTTING BASED ON END-TO-END IN

NATURAL SCENE

Text detection and text recognition are often regarded as two
independent sub-problems, ignoring the intrinsic connection
between text detection and text recognition. Therefore, end-
to-end text spotting has become one of the research trends.
The paper [21] uses a text detector based on SSD (single
shot multibox detector) [22] and a text recognizer based on
CRNN (convolutional recurrent neural network) [23]. Paper
[2] uses a text detector based on RPN (Region Proposal
Network) [24] and a text recognizer based on the attention
LSTM (long short-term memory) mechanism. Papers [2]
and [7] use a strategy based on joint optimization of text
detectors and text recognizers to achieve overall performance
improvement.

We propose the advantages of an end-to-end text spotting
framework as follows. First, the joint optimization model
effectively uses the potential internal connection between the
two tasks of text detection and text recognition to improve
the overall performance. Second, the corner attention mech-
anism can better solve the problem of long texts; in addition,
the TPDM can better avoid the interference of complex back-
grounds. Finally, the rectified feature map is fed into the SA-
BiLSTM recognizer, which can more effectively extract the
semantic information between characters and is conducive to
text recognition.
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lll. MODEL DESIGN

A. MODEL

We propose a text spotting model based on end-to-end natural
scenes. The model consists of three parts: shared convolu-
tional network, text detector and text recognizer. The scene
text spotting flow chart is shown in Figure 2. First, feed the
preprocessed image into the shared convolutional network
to extract the shared feature maps. Then feed the shared
feature maps into the text detector and text recognizer, and the
text detector and text recognizer promote each other through
Boxes and TPDM. Finally, a joint optimization strategy is
used to make full use of the inherent connection between the
text detection task and the text recognition task to improve
the overall performance of text spotting in natural scenes.

Scene text spotting flow chart

Test phase

Test picture

3 7Y
R

Well-trained
model
Recognizer

|
|
|
- = ) B
QUL

PUBLIC

Training phase

Detector

| Joint
optimization

Shared
convolutional
network

Data set

FIGURE 2. Scene text spotting flow chart.

B. MODEL FRAMEWORK

This paper proposes an end-to-end text spotting framework
structure, as shown in Figure 3. It includes three parts: shared
convolution feature extraction network, text detector and text
recognizer. First, the picture is fed into the shared convo-
lution feature extraction network for feature learning, and
the obtained feature map is input to a text detector and a
text recognizer. The IRM (Text Regressor Module) in the
paper [8] can better adapt to the detection of long texts.
In addition, the text detector uses boundary points to rep-
resent text instances, which is more suitable for detecting
and recognizing text of any shape than rectangle box. The
text recognition model based on SA-BIiLSTM decoder can
more effectively extract the semantic information between
characters. The following describes each process separately.

1) SHARED CONVOLUTION MODULE

The shared convolution module adopts ResNet-50 [25] struc-
ture to extract shared features. Since texts in natural scenes
usually have different sizes. In order to better adapt to
texts of various sizes, it is necessary to maintain a large
receptive field and richer features. Use dilated convolution
to maintain a larger receptive field. Inspired by FPN (feature
pyramid networks) [26], we use the method of concatenating
low-resolution feature maps and high-resolution feature maps
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to extract richer text features. The size of the final output
feature map is 1/4 of the input picture.

2) TEXT DETECTOR

The text detector is composed of three parts: text regression
module, iterative optimization module and text point detec-
tion module, as shown in Figure 3.

a: TEXT REGRESSOR MODULE
Inspired by [11], TRM (Text Regressor Module) uses a fully
convolutional sub-network as a text regressor. Based on the
shared convolutional feature map, two prediction channels
are output by pixel-wise: text and non-text. We use a similar
approach to others: the pixels in the text area are defined
as positive samples, and the pixels in the non-text area are
defined as negative samples. For each positive sample, there
are 8 channels to predict the four corners of the text box. TRM
has two functions, one is the classification task of text and
non-text, and the other is to locate the text.

For the classification task, we use the scale-invariant dice-
coefficient function proposed in [8], which is defined as
follows:

2 2P
Ly—1- *sum(y y w)

sum (y - w) + sum (9 - w) )

where sum is a cumulative function in a two-dimensional
space, y is a binary label value, y is a predicted value, and
w is a two-dimensional weight space.

For the text localization regression task, due to the better
robust performance of smooth L{[26],we use smooth L; to
optimize the text regression task Lj,..

Therefore, the loss function of TRM is defined as follows:

Ly = Lipe + oLy )

where « is the hyper-parameter. The o parameter is used to
balance the two sub-loss functions. In the experiment, « is set
to 0.01.

b: ITERATIVE REFINEMENT MODULE

To better detect long texts, we adopt the IRM (iterative refine-
ment module) proposed in the paper [8]. Since the position
close to the corner of the text area can obtain more accurate
boundary information in the same receptive field, a corner
attention mechanism is introduced to return to the coordinate
offset of each corner point.

The loss function of IRM is defined as:

K 8 R
Lipm = Ki - ’; ; smoothy1 (¢ +C}) @)

where K represents selecting K detected text boxes from the
output of the TRM step, C‘,/( represents the offset of the j-th

coordinate of the k-th text box, and Ci is the corresponding
predicted value.
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FIGURE 3. Scene text spotting model framework.

c: TEXT POINT DETECTION MODULE

Using ROI-Align to extract the features of the text quadri-
lateral will extract a lot of background noise, which will
affect the recognition network. The use of boundary points
to represent arbitrary-shaped text can effectively avoid such
problems. First, the boundary points can describe the precise
text shape and eliminate the impact of background noise. Sec-
ondly, the boundary points are easy to rectify any shape text
into horizontal text, which is beneficial to the text recognition
network.

TPDM consists of four stacked 3 x 3 convolutional layers
and a fully connected layer. Inspired by RPN where proposals
are regressed based on default anchors, we use a similar
method to set a set of default points for the text boundary.
Specifically, N points are sampled at equal distances on
each long side of the text instance as target boundary points.
The corresponding default points are placed equidistantly
along the long side of the smallest quadrilateral. Instead of
directly predicting the coordinates of the boundary point, the
offset of the default point associated with it is first gener-
ated. The module predicts a 4N -d vector which is coordinate
offsets (2-d) of 2N boundary points. Given the coordinate
offsets (Ax’, Ay'), the boundary points (x, y») can be passed
Calculated:

xp = X + woAx'

4)
Vb =Yy +hoAy

where (x);, y);) is the set default point, wo, ko are the width
and height of the text box output by the IRM, respectively.
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The loss function Ly, of TPDM is defined as:

2N
1 n R
Lipam = N E 1 (Smoothu (xb,,-, xb,,-)—i—SmoothLz (yb,,-, yb,,-))
=

)

where (xp,;, yp.i) 1S the k-th predicted text point,,whose asso-
ciated target boundary point is (Xp i, ¥p.i)-

3) TEXT RECOGNIZER

a: ArbitraryRolAlign

In order to better adapt to the curve text, we use a rectification
network similar to the paper [18] to the features. Specif-
ically, TPS (Thin-Plate-Spline) can rectify the deformed
image (affine, perspective, curve arrangement, etc.) to obtain
the rectified feature map, which is convenient for text
recognition.

b: SA-BiLSTM DECODER

SAM is proposed in the paper [27]. In contrast, we com-
bine the spatial attention mechanism with BiLSTM to better
extract the semantic information between texts. The structure
of SA-BIiLSTM is shown in Figure 4.

Suppose T iterations are needed, and the predicted char-
acter sequence is y = (y1, ..., yr). There are three inputs
at step t: the input feature F, the hidden state s;_; of the
previous iteration and the character category y;_; predicted
by the previous iteration.

Firstly, expand the s;_; vector into a feature map of shape
(V, Hp, Wp,). V represents the size of the RNN hidden layer
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FIGURE 4. SA-BiLSTM module structure diagram.
and is set to 256.
Si—1 = expand_dim (s,,1 , Hy, Wp) (6)
Secondly, calculate the weight o; of attention:
e = Wy x tanh (WyxS—y + Wy x F +b) )

a; (i) = exp (e; (i, )) / le ij; exp (e (7.7)) ®

The shapes of e;, a; are (Hp, W), Wy, Wy, Wy and b are
training weights and bias.
Thirdly, calculate the weighted feature g;:

8 = Z:H:pl ZJZ o (i, j) X F(i, ) 9)

Embed the characters of the character type y;—1 predicted by
the previous iteration and perform a concat operation with g,
to calculate the input r; of the RNN:

f i—1) = Wyxonehot (yi_1, N¢) +by (10)
re = concat(g;.f(i—1)) (1)

Wy, by are weights and bias, and N, is the number of types of
sequence decoders. We set it to 79, including English letter
case, Arabic numerals, and several special characters.

The ry, s;_1 is fed into the RNN (Bi-LSTM):

(x¢, 8¢) = rnn (s;—1, 71) 12)

Finally, the prediction result of the t-th iteration is as
follows:

p () = softmax (Wyxx; + by) (13)
yr ~p ) (14)

The loss function Lyecg 0f the text recognizer is defined as:
1 T
Lrecog = =7 3, logp () (15)

where T represents the length of the tag sequence.
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4) JOINT OPTIMIZATION AND LOSS FUNCTION

Our proposed text spotting framework uses a joint optimiza-
tion strategy: text detection tasks and text recognition tasks
share features and optimize at the same time. it saves comput-
ing time and can make better use of the internal connection
between text detection and text recognition tasks. Therefore,
the loss function L is defined as follows:

L =o0Lyy + ooLipm + U3Ltpdm + U4Lrecag (16)

where o1, 03, 03,04 are used to balance the four sub-
modules, all set to 1.0 in the experiment.

IV. EXPERIMENTAL DESIGN AND ANALYSIS

A. DATA SET

The data set used in our experiment and its related introduc-
tion are as follows:

SynthText is a synthetic data set, contains 800,000 syn-
thetic images and has a large number of multi-directional text
examples.

TotalText is a text dataset of comprehensive scenes. The
dataset contains 1255 training datasets and 300 test datasets,
with a variety of texts such as horizontal, directional and
curved texts. The data set provides word-level annotations.

Different from the TotalText data set, CTW 1500 proposed
in 2017 is a scene text data set containing arbitrary shape
Chinese and English texts, with 1000 training images and 500
test images.

ICDAR2015 is a text dataset of natural scenes proposed
in the ICDAR 2015 competition. These images are multi-
directional text data sets, including 1000 training data sets and
500 test sets. All pictures provide character-level and word-
level annotations.

The COCO-Text dataset has a total of 6368 images, it con-
tains 43686 training data sets and 10,000 test sets.

The ICDAR2013 dataset contains only horizontal text. The
training data set contains 229 images, and the test set contains
233 images. The data set provides both character-level and
word-level annotations.

MLT is a scene text data set in multiple languages. It con-
tains 7200 training data sets, 9000 test sets and 1800 verifi-
cation data sets.

B. EXPERIMENTAL DETAILS

Different from the previous strategy of independent training
or alternating training of text detection and text recognition,
we used joint optimization based on the end-to-end text spot-
ting model. The entire training process includes two stages:
first, pre-training on SynthText dataset, and finally fine-
tuning on actual data (TotalText, ICDAR2015, ICDAR2013,
CTW1500, COCO-Text and MLT).

The experiment uses the SGD optimization algorithm,
the weight attenuation value is 0.0001, and the momentum
value is 0.9. During the pre-training phase, 300K iterative
training was carried out for the model, the default value
of the initial learning rate was 0.01, and in the 150K and
300K iterations, the learning rate dropped by one tenth.
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During the fine-tuning phase, The default value of the initial
learning rate was set to 0.001 and then reduced to one-tenth
in 150k iterations. Fine-tuning process stops at 200k times.
Our experimental model is based on Pytorch.

LabelGeneration Since the training stage requires
equidistant boundary points to train TPDM, we use the
algorithm in [28] to sample on the long side of the text
boundary. N is also set to 7.

C. EXPERIMENTAL ANALYSES

1) CURVED TEXT

We have conducted experiments on the TotalText data set to
verify the effectiveness of the model on arbitrary-shaped text.
In the test phase, the long side of the picture is set to 1100.
To be fair, this article follows the evaluation protocol in the
latest method [29].

The performance of the experimental scheme proposed
in this paper on the Total-Text dataset is shown in Table 1.
As can be seen from Table 1, our method achieved the most
advanced performance in both text detection tasks and end-
to-end text recognition tasks. In particular, compared with
the method in [28], the performance of the method in this
paper is 0.9% and 2.4% higher than that of Boundary in text
detection tasks and end-to-end text spotting (without lexicon)
tasks respectively. Compared with [27], it improved by 3.0%
in text detection tasks. It should be noted that [27] requires
character-level annotations. The reasons for the performance
improvement are as follows, first, the corner attention mech-
anism is conducive to the detection and recognition of long
text; second, the text decoder based on SA-BiLSTM can bet-
ter extract the semantic information of the text; finally, TPDM
can better avoid interference from complex background.

TABLE 1. Results on totaltext.

Method Detection E2E
P R F None Full
Baseline[29] 40.0 33.0 360 - -
Textboxes[21] 62.1 455 525 36.3 489
P. Lyu MaskTextSpotter[6] 87.0 802 834 529 718
M. Liao MaskTextSpotter[27] 883 724 852 653 774
Boundary[28] 889 850 87.0 65.0 76.1
Our(det only) 89.0 864 87.8 - -
Our(end-to-end) 89.2 873 882 674 768

“P”, “R” and “F” mean Precision, Recall and F-measure in detection task
respectively. “E2E” means end-to-end, “None” means recognition without

any lexicon, “Full” lexicon contains all words in test set.

We further verified the effectiveness of our method on
the CTW1500 data set. The experimental results are shown
in Table 2. It can be seen from Table 2 that we have also
achieved very good performance on the CTW1500 data
set. Especially in the text detection task, it is 1.1% higher
than [30].
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2) ORIENTED TEXT

The experimental scheme proposed in this paper was tested
on the ICDAR2015 dataset to confirm the validity of the
oriented text. The results are shown in Table 3. Com-
pared with [28], our method showed an improvement of
1.2% and 3.7% in text detection tasks and the end-to-end
text spotting with strong lexicon, respectively. In addition,
compared with [27], our method improves text detection
performance by 2.8%.

TABLE 2. Results on CTW1500.

Detection E2E
Method

P R F None Full

SegLink[10] 423 40.0 40.8 - -
EAST[11] 49.1 78.8 604 - -
FOTS[3] 79.5 520 62.8 21.1 397
CTD+TLOC[31] 774 69.8 734 - -
TextSnake[32] 679 853 756 - -
TextDragon[30] 845 82.8 83.6 397 724
ABCNet[33] - - - 452 74.1
Our(det only) 852 80.6 82.7 - -
Our(end-to-end) 863 83.1 84.7 389 745

“P”, “R” and “F” mean Precision, Recall and F-measure in detection task
respectively. “E2E” means end-to-end, “None” means recognition without

any lexicon, “Full” lexicon contains all words in test set.

TABLE 3. Results on ICDAR2015.

Detection E2E
Method

P R F S w G
TextBoxes++[34] 872 76.7 81.7 733 659 519
He* et al[4] 87.0 86.0 87.0 82.0 77.0 63.0
P.Lyu MaskTextSpotter[6] 91.6 81.0 86.0 793 73.0 624
TextNet[5] 894 854 874 78.7 749 60.5
FOTS[3] 91.0 85.2 88.0 81.1 759 60.8
Boundary[28] 89.8 87.5 88.6 79.7 752 64.1
M.Liao MaskTextSpotter[27]  86.6 87.3 87.0 83.0 77.7 735
Our(det only) 904 87.0 88.7 - - -
Our(end-to-end) 91.9 87.8 89.8 834 75.1 633

“P”, “R” and “F” mean Precision, Recall and F-measure in detection task
respectively. “S”,“W” and “G” mean recognition with strong , weak and
generic lexicon respectively. “*” denotes that training dataset of MLT2017

is used for training .

TABLE 4. Results on COCO-Text.

Detection E2E
Method

P R F P R F
EAST[11] 50.0 324 395 - - -
WordSup[35] 452 309 36.8 - - -
RRD MS[36] 64.0 57.0 61.0 - - -
Lyu et al [37] 725 529 61.1 - - -
M.Liao MaskTextSpotter[27]  66.8 58.3 62.3 65.8 37.3 47.6
Our(det only) 713 554 624 - - -
Our(end-to-end) 72.8 563 63.5 63.6 39.2 48.5

“P”, “R” and “F” mean Precision, Recall and F-measure respectively.
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On the COCO-Text data set, we further verify the effective-
ness of the oriented text. The results are shown in Table 4.
Compared with [27], our method improves 1.2% and 0.9%
in text detection tasks and end-to-end text spotting tasks,
respectively.

3) HORIZONTAL TEXT

We conducted tests on the ICDAR2013 dataset to verify the
effectiveness of the model on the horizontal text dataset. The
results are shown in Table 5. It can be seen from Table 5
that the method proposed in this paper also achieves good
performance on the horizontal data set. It should be noted that
[27] requires character-level annotations.

TABLE 5. Results on ICDAR2013.

Detection E2E
Method

P R F S W G
TextBoxes++[34] 88.0 74.0 81.0 93.0 92.0 85.0
He* et al[4] 91.0 89.0 90.0 91.0 89.0 86.0
Boundary[28] 93.1 87.3 90.1 88.2 87.7 84.1
P.Lyu MaskTextSpotter[6] 95.0 88.6 91.7 922 91.1 86.5
M.Liao MaskTextSpotter[27]  94.8 89.5 92.1 93.3 91.3 88.2

Our(det only) 93.7 87.4 90.4 - - -
Our(end-to-end) 94.3 88.2 91.1 91.3 90.8 85.8

“P”, “R” and “F” mean Precision, Recall and F-measure in detection task
respectively. “S”,“W” and “G” mean recognition with strong , weak and
generic lexicon respectively. “*” denotes that training dataset of MLT2017

is used for training .

4) MULTI-LANGUAGE

In order to verify the reliability of our method, we con-
duct experiments on MLT data. The experimental results are
shown in Table 6. Our method also achieves good perfor-
mance on the MLT dataset.

TABLE 6. Results on MLT.

Method Det-R E2E-R P
Busta et al.[38] 2+ 68.4 429 53.7
Busta et al.[38] 3+ 69.5 433 59.7
M.Liao MaskTextSpotter[27] 2+ 80.0 479 68.3
M.Liao 82.8 48.5 60.5

MaskTextSpotter[27] 3+

Our 2+ 81.3 48.7 66.2
Our 3+ 82.1 51.3 61.1

“Det-R”: detection recall; “E2E-R”: end-to-end recognition recall, “P”:
precision. “2+” and “3+” mean that words whose length are large than 2 and

3 are counted respectively.

5) VISUALIZATION

Figure 5 is the visualization results of some data. As can be
seen from the first two lines, the model can handle arbitrarily
shaped text well. The third line, due to the complexity of
the text background and the blurred image quality, leads to
misdetection and missed detection.
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TABLE 7. Ablation experimental results.

Datasets Methods Detection 2
P R F None

No-TPDM 869 844 856 62.6

ICDAR2015 SAM 89.2 86.6 879 64.7
FULL 919 87.8 8938 64.5

No-TPDM 84.1 835 838 61.3

Total Text SAM 884 86.1 875 66.1
FULL 89.2 873 882 67.4

“P”, “R” and “F” mean Precision, Recall and F-measure in detection task

respectively. “E2E” means end-to-end, “None” means recognition without

any lexicon.

FIGURE 5. Visualization of results.

6) ABLATION EXPERIMENT
Ablation experiments can better verify our proposed model.

FULL: It is our end-to-end text discovery framework.

No-TPDM: we train a model named ”No-TPDM” which
removes the TPDM part from FULL. It is used to verify the
effectiveness of TPDM.

SAM: We train a model and name it "SAM", using the
SAM proposed in the paper [27] as the text recognizer of
our model. It is used for comparison with our proposed
SA-BiLSTM.

As shown in Table 7, on the ICDAR2015 data set, com-
pared with No-TPDM, FULL has increased by 4.2% and
1.9% in text detection tasks and end-to-end text spotting
tasks, respectively. For the TotalText dataset, compared with
No-TPDM, FULL has increased by 4.4% and 6.1% respec-
tively in text detection tasks and end-to-end text spot-
ting tasks. Therefore, TPDM can effectively share features
between text detection and text recognition, and then make
full use of the inherent relationship between text detection
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and text recognition to improve the overall performance of
text spotting.

We propose a text recognizer based on SA-BiLSTM and
compare it with the text recognizer based on SAM pro-
posed in the paper [27]. As shown in Table 7, our proposed
SA-BILSTM text recognizer achieves good performance.
Especially on the TotalText data set, compared with SAM,
FULL has increased by 0.7% and 1.3% respectively in text
detection tasks and end-to-end text spotting tasks.

V. CONCLUSION

Aiming at the problem of arbitrarily shaped text spotting
in natural scenes, we propose an end-to-end text spotting
framework and adopt a joint optimization strategy. Experi-
ments show that the text decoder based on the SA-BiLSTM
mechanism can better extract the semantic information of
the text, TPDM can better avoid the interference of com-
plex backgrounds. Our method achieves the most advanced
performance in both text detection tasks and end-to-end text
recognition tasks. However, the image background with high
similarity to the text still cannot accurately remove the inter-
ference. Therefore, text spotting in a complex background is
one of the future work in text spotting in natural scenes.

REFERENCES

[1]1 S. Long, X. He, and C. Yao, “Scene text detection and recognition:
The deep learning era,” 2018, arXiv:1811.04256. [Online]. Available:
http://arxiv.org/abs/1811.04256

[2] H.Li, P. Wang, and C. Shen, “Towards End-to-End text spotting with con-
volutional recurrent neural networks,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 5238-5246.

[3] X. Liu, D. Liang, S. Yan, D. Chen, Y. Qiao, and J. Yan, “FOTS: Fast
oriented text spotting with a unified network,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5676-5685.

[4] T. He, Z. Tian, W. Huang, C. Shen, Y. Qiao, and C. Sun, “An end-to-
end textspotter with explicit alignment and attention,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5020-5029.

[51 Y.Sun,C.Zhang,Z. Huang,J. Liu, J. Han, and E. Ding, “TextNet: Irregular
text reading from images with an end-to-end trainable network,” in Proc.
Asian Conf. Comput. Vis. Perth, WA, Australia: Springer, 2018, pp. 83-99.

[6] P.Lyu, M. Liao, C. Yao, W. Wu, and X. Bai, “Mask textspotter: An end-
to-end trainable neural network for spotting text with arbitrary shapes,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 67-83.

[7]1 S. Qin, A. Bissaco, M. Raptis, Y. Fujii, and Y. Xiao, “Towards uncon-
strained end-to-end text spotting,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 4704-4714.

[8] C.Zhang, B. Liang, Z. Huang, M. En, J. Han, E. Ding, and X. Ding, “Look
more than once: An accurate detector for text of arbitrary shapes,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 10552-10561.

[9] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao, “‘Detecting text in natural
image with connectionist text proposal network,” in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 56-72.

[10] B. Shi, X. Bai, and S. Belongie, “‘Detecting oriented text in natural images
by linking segments,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jul. 2017, pp. 3482-3490.

[11] X.Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “EAST:
An efficient and accurate scene text detector,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5551-5560.

[12] A. Graves, M. Liwicki, H. Bunke, J. Schmidhuber, and S. Fernidndez,
“Unconstrained on-line handwriting recognition with recurrent neural
networks,” in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 577-584.

[13] B.SuandS. Lu, “Accurate scene text recognition based on recurrent neural
network,” in Proc. Asian Conf. Comput. Vis. Cham, Switzerland: Springer,
2014, pp. 35-48.

VOLUME 8, 2020

(14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

W. Liu, C. Chen, K.-Y. Wong, Z. Su, and J. Han, “STAR-net: A SpaTial
attention residue network for scene text recognition,” in Proc. Brit. Mach.
Vis. Conf., vol. 2, 2016, p. 7.

B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene text
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11,
pp. 2298-2304, Nov. 2017.

Y. Gao, Y. Chen, J. Wang, M. Tang, and H. Lu, “Reading scene text
with fully convolutional sequence modeling,” Neurocomputing, vol. 339,
pp. 161-170, Apr. 2019.

F. Yin, Y.-C. Wu, X.-Y. Zhang, and C.-L. Liu, “Scene text recognition
with sliding convolutional character models,” 2017, arXiv:1709.01727.
[Online]. Available: http://arxiv.org/abs/1709.01727

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. Int. Conf. Learn. Repre-
sent., 2015, pp. 1-15.

Z. Liu, Y. Li, F. Ren, W. Goh, and H. Yu, “Squeezedtext: A real-time
scene text recognition by binary convolutional encoder-decoder network,”
in Proc. AAAI, 2018, pp. 7194-7201.

B. Shi, X. Wang, P. Lyu, C. Yao, and X. Bai, “‘Robust scene text recognition
with automatic rectification” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 4168—4176.

M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu, “TextBoxes: A fast text
detector with a single deep neural network,” in Proc. 31st AAAI Conf. Artif.
Intell., 2017, pp. 4161-4167.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21-37.

B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene text
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11,
pp. 2298-2304, Nov. 2017.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 2117-2125.

M. Liao, P. Lyu, M. He, C. Yao, W. Wu, and X. Bai, “Mask TextSpot-
ter: An end-to-end trainable neural network for spotting text with arbi-
trary shapes,” IEEE Trans. Pattern Anal. Mach. Intell., early access,
Aug. 26, 2019, doi: 10.1109/TPAMI.2019.2937086.

H. Wang, P. Lu, H. Zhang, M. Yang, X. Bai, Y. Xu, M. He, Y. Wang, and
W. Liu, “All you need is boundary: Toward arbitrary-shaped text spotting,”
in Proc. AAAIL, 2020, pp. 1-9.

C. K. Ch’ng and C. S. Chan, “Total-text: A comprehensive dataset for
scene text detection and recognition,” in Proc. 14th IAPR Int. Conf.
Document Anal. Recognit. (ICDAR), Nov. 2017, pp. 935-942.

W. Feng, W. He, F. Yin, X.-Y. Zhang, and C.-L. Liu, “TextDragon: An end-
to-end framework for arbitrary shaped text spotting,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 9075-9084.

L. Yuliang, J. Lianwen, Z. Shuaitao, and Z. Sheng, “‘Detecting curve text
in the wild: New dataset and new solution,” 2017, arXiv:1712.02170.
[Online]. Available: http://arxiv.org/abs/1712.02170

S. Long, J. Ruan, W. Zhang, X. He, W. Wu, and C. Yao, “TextSnake: A
flexible representation for detecting text of arbitrary shapes,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 19-35.

Y. Liu, H. Chen, C. Shen, T. He, L. Jin, and L. Wang, “ABCNet:
Real-time scene text spotting with adaptive bezier-curve network,” 2020,
arXiv:2002.10200. [Online]. Available: http://arxiv.org/abs/2002.10200
M. Liao, B. Shi, and X. Bai, “TextBoxes++: A single-shot oriented scene
text detector,” IEEE Trans. Image Process., vol. 27, no. 8, pp. 3676-3690,
Aug. 2018.

H. Hu, C. Zhang, Y. Luo, Y. Wang, J. Han, and E. Ding, “WordSup:
Exploiting word annotations for character based text detection,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 4940-4949.

M. Liao, Z. Zhu, B. Shi, G.-S. Xia, and X. Bai, ‘“Rotation-sensitive
regression for oriented scene text detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 5909-5918.

159913


http://dx.doi.org/10.1109/TPAMI.2019.2937086

IEEE Access

G. Wei et al.: Toward Arbitrary-Shaped Text Spotting Based On End-To-End

[37] P. Lyu, C. Yao, W. Wu, S. Yan, and X. Bai, “Multi-oriented scene
text detection via corner localization and region segmentation,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7553-7563.

[38] M. Busta, Y. Patel, and J. Matas, “E2E-MLT—An unconstrained end-
to-end method for multi-language scene text,” 2018, arXiv:1801.09919.
[Online]. Available: http://arxiv.org/abs/1801.09919

GUANGCUN WEI (Member, IEEE) received
the B.S. degree from Shandong University (for-
merly Shandong University of Technology), Jinan,
China, in 1994, and the M.S. degree from the
Shandong University of Science and Technology,
Qingdao, China, in 2006. He is currently an Asso-
ciate Professor with the College of Intelligent
Equipment, Shandong University of Science and
Technology. He has authored over ten articles in
journals and conference proceedings. He has led or
participated in many projects supported by the National Innovation Fund for
Small and Medium-sized Technology-based Firms, the Science Foundation
of Shandong, the Key Research Program of Shandong Province, and other
important projects. His research interests include the Internet of Things,
software engineering, artificial intelligence, and computer vision. He was a
recipient of the Science and Technology Advancement Awards at the Shan-
dong province power, the Soft Science Award at the province, Shandong,
China, and the Google Teacher Award, in 2018.

WANSHENG RONG was born in Shandong,
China, in 1993. He received the B.S. degree from
Liaocheng University, China, in 2018. He is cur-
rently pursuing the M.S. degree with the Shan-
dong University of Science and Technology. His
research interests include image processing and
deep learning.

159914

YONGQUAN LIANG was born in Shandong,
China. He received the B.Sc. degree in applied
mathematics and software from the Shandong
Institute of Mining, in 1989, the M.Sc. degree
in computer software from Beihang University,
in 1992, and the Ph.D. degree from the Institute of
Computing Technology, Chinese Academy of Sci-
ences, in 1999. From 1989 to 1998, he was a Lec-
turer with the Department of Applied Mathematics
and Software, Shandong Institute of Mining. From
1998 to 2001, he was an Assistant Professor with the College Computer
Science and Engineering, Shandong University of Science and Technology,
where he has been a Professor, since 2001, and also the Dean of the College
of Computer Science and Engineering. His research interests include artifi-
cial intelligence, machine learning, data mining, cloud computing, big data
analytics, and decision making.

XINGUANG XIAO was born in Shandong, China,
in 1995. He received the B.S. degree from the
Shandong University of Science and Technology,
China, in 2017, where he is currently pursuing the
M.S. degree. His research interests include image
processing and deep learning.

XIANG LIU was born in Qingdao, China, in 1995.
He received the B.S. degree from the Taishan
Institute of Technology, Shandong University of
Science and Technology, China, in 2018. He is
currently pursuing the M.S. degree with the Shan-
dong University of Science and Technology. His
research interests include deep learning, neural
networks, computer vision, and other artificial
intelligence applications.

VOLUME 8, 2020



