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ABSTRACT This article studies the problem of cooperative fault-tolerant output regulation of leader-
follower multi-agent systems with sensor faults. To compensate for the faults existing in the followers,
distributed observers based on relative output estimation errors are firstly designed. Then an adaptive
fault-tolerant output regulation framework is built by solving the regulator equation. It is shown that stability
of the closed-loop system can be ensured and that all tracking errors will converge to zero under the designed
fault-tolerant controller. Finally, simulation results demonstrate the effectiveness of the proposed control law.

INDEX TERMS Fault-tolerant control, output regulation, multi-agent systems, sensor faults.

I. INTRODUCTION
In recent years, cooperative control for multi-agent sys-
tems (MASs) has become a hot spot in the field of control,
which has also been applied in multi-sensor networks [1],
satellite networks [2] and cooperative vehicle infrastructure
systems [3], etc. Output regulation theory [4] is used to solve
several classes of consensus problems of MASs, which are
also called as the cooperative output regulation problems
(CORPs).

With the increasing complexity of MASs, the occurrence
of faults is inevitable, such as actuator faults and sensor
faults [5]–[8]. As pointed out by [9], it will lead to vari-
ous problems such as system instability, inaccurate tracking,
information distortion, resultant erroneous decision making
and so on. For MASs formed by networking, the normal
operation of the actuator and sensor of each agent enables the
system to keep stable and consensus. If there exist faults in
one or more agents, it will do harm to stability and consensus
of the whole system. There are many studies of traditional
fault diagnosis for sensor faults, e.g., [10]–[12]. Moreover,
many studies [13]–[16] have been made in fault-tolerant
consensus of MASs with faults. Most of them need the fault
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diagnosis process [15] or only work for undirected commu-
nication topologies [16], which impose great limitations on
practical applications.

In the control field, the main aim of CORP is to deal
with a class of trajectory tracking problems such that all
followers can retain stability and asymptotically track the
leader, which is also called exosystem. If faults occur in
parts of agents in CORP, the corresponding problem can
be called fault-tolerant output regulation problem (FTORP).
The main challenge of FTORP is how to find an appropriate
solution of linear regulator equation as the feedforward infor-
mation. Various results have been obtained to solve FTORP
of MASs based on distributed control protocol [14]–[18].
Deng and Yang [15] studied the FTORP of linear MASs with
faults by designing a distributed adaptive fault-tolerant con-
trol law. Zhang et al. [16] studied the similar FTORP of linear
MASs with an undirected topology and multiple leaders, and
adaptive observers were designed to estimate states and faults
of followers. Note that these studies are based on an undi-
rected graph and can not be used for directed topology. There
are also some results for FTORP under directed topology. For
example, Deng et al. [17] considered the FTORP of linear
MASswith actuator faults and directed communication topol-
ogy. Zhang et al. [18] considered the FTORP of linear MASs
with process faults and directed topology by introducing
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adaptive observers. It should be noted that the above studies
mainly focused on the FTORP of MASs with actuator faults
or process faults. In particular, Qin et al. [14] studied the
FTORP of linear MASs with sensor faults by introducing
p-copy internal model principle. However, the result in [14] is
under an undirected graph and it needs the fault diagnosis pro-
cess. Zhang et al. [10] studied the problem of fault estimation
and designed adaptive observer. Xiao et al. [11] studied the
fault tolerant control for aircraft engine with sensors faults.
However, they work for a single system.

As mentioned above, we will try to solve the FTORP of
linear multi-agent systems with sensor faults and directed
communication topology. The salient features of this article
lie in three aspects:

(1) A distributed fault-tolerant control framework for
directed topology is constructed, which is different from
the existing results under undirected communication envi-
ronment [15], [16]. Moreover, the fault detection process
in [14] is not needed in this article by introducing distributed
real-time fault observers.

(2) An adaptive observer is introduced to estimate the state
of exosystem and provide the feedforward information. The
limitation of global condition depending on the eigenvalues
of Laplacian matrix associated with the network topology can
be overcome by replacing the fixed parameters with adaptive
gains.

(3) The fault-tolerant control problem of linear MASs is
transformed into the FTORP of an augmented system by
introducing an auxiliary system, which can also be extended
to solve some similar tracking control problems of MASs
without faults.
Notations: In this article, Rn and Rn×m represent the

real sets of n-vectors and n × m matrices, respectively.
diag{a1, . . . , an} denotes the diagonal matrix composed by
the entries ai, i = 1, . . . , n. A > 0 denotes that the matrix A is
a symmetric positive definite matrix, whereas A < 0 denotes
that A is a symmetric negative definite matrix. The n-vectors
1n has the same elements being 1. In is the n-dimensional
real identity matrix. The term λ(A) denotes the spectrum of
a square matrix A. In particular, λmin(A) is the minimum
eigenvalue of A and λmax(A) is the maximum eigenvalue of A.
The symbol ⊗ denotes the Kronecker product.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. PRELIMINARIES
In this article, we use a diagraph to represent the commu-
nication between the agents in MASs. Now we consider a
digraph G = (V, E,A), which consists of V = {1, 2, . . . ,N }
and E ⊆ V × V . V = {1, 2, . . . ,N } is the set of nodes rep-
resenting the agents and E ⊆ V × V is the set of edges rep-
resenting the information transmission. In order to describe
the composition and structure of the system, we introduce
the nonnegative adjacency matrix A = (aij)N×N , if there
exists a path from node j to node i, i.e., (j, i) ∈ E , then
aij > 0, which is usually set to 1, and node j is called a

neighbor of the node i. If there is no information transmission,
i.e., (j, i) /∈ E , then aij = 0. Moreover, aii = 0, which means
that each node has no self-loop. In particular, for an undi-
rected graph, A is a symmetric matrix. Furthermore, we can
also introduce the Laplacian matrix to describe the property
of graph. Based on the definition of adjacency matrix, the
Laplacian matrix of G can be defined as L = D −A, where

D = diag{d1, d2, . . . , dN }with elements di =
N∑
j=1

aij is called

degree matrix. As mentioned above, aij are elements of A.
If there exists a directed sequence (i, i1), (i1, i2), . . . , (ik , j) ∈
E , where il, l = 1, 2, . . . , k represent nodes in the graph, then
we call there exists a directed path from node i to node j.
If there exists a path between any two nodes, we call the graph
a connected one. In addition, if there exists a root node with
paths between it and any other nodes, the graph contains a
spanning tree.

B. PROBLEM STATEMENT
Consider the following linear MAS including one leader and
N followers with sensor faults{

ẋi(t) = Axi(t)+ Bui(t)

yi(t) = Cxi(t)+ Dfi(t),
i = 1, 2, . . . ,N (1)

where xi(t) ∈ Rn, ui(t) ∈ Rm and yi(t) ∈ Rp are the state,
input and output of the ith follower, respectively. fi(t) ∈ Rr

is the sensor fault in the ith follower. In particular, if fi = 0,
there is no fault in the system. In this article, it is assumed that
the sensor faults are constants, i.e., ḟi = 0, i = 1, 2, . . . ,N .
A,B,C , and D are known real matrices with appropriate
dimensions and it is assumed that the matrix D is of full
column rank.

The dynamics of the leader can be expressed as follows{
v̇(t) = Sv(t)

yr (t) = Crv(t)
(2)

where v(t) ∈ Rd and yr (t) ∈ Rp are the state and output
of the leader, and v(t) represents the signal to be tracked.
In the output regulation problem, the leader is also called
exosystem. S and Cr are known real matrices of appropriate
dimensions.

Then the following definition of the fault-tolerant output
regulation problem is given.
Definition 1: Consider a linear MAS composed by (1)

and (2) under a directed topology G. If there are sensor
faults in followers, the FTORP is solved under a distributed
fault-tolerant control law u(t) so that all tracking errors
between followers and leader converge to zero as time goes
to infinity, i.e.,

lim
t→∞

(yi(t)− yr (t)) = 0 (3)

Similar to [10], define a new form of state xsi(t) ∈ Rp to
represent a filtered version of yi(t). Then the fault vectors are
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transferred to the following state equation

ẋsi(t) = −Asxsi(t)+ AsCxi(t)+ AsDfi(t) (4)

where the matrix −As ∈ Rp×p is stable.
By introducing an auxiliary system, an augmented system

is established. Denote x̄i(t) = (xTi (t), x
T
si (t))

T and ȳi(t) =
xsi(t), and thus the augmented system can be written as{

˙̄xi(t) = Āx̄i(t)+ B̄ui(t)+ D̄fi(t)

ȳi(t) = C̄ x̄i(t)
(5)

where Ā ∈ R(n+p)×(n+p), B̄ ∈ R(n+p)×m, C̄ ∈ Rp×(n+p) and
D̄ ∈ R(n+p)×r , and their specific forms are as follows

Ā =

[
A 0

AsC −As

]
, B̄ =

[
B

0

]
,

C̄ =
[
0 Ip

]
, D̄ =

[
0

AsD

]
.

Since (A,C) is observable, it can be obtained that (Ā, C̄) is
also observable.

Denote the state, output, input and fault of the whole
system as follows

x̄(t) = (x̄T1 (t), x̄
T
2 (t), . . . , x̄

T
N (t))

T

ȳ(t) = (ȳT1 (t), ȳ
T
2 (t), . . . , ȳ

T
N (t))

T

u(t) = (uT1 (t), u
T
2 (t), . . . , u

T
N (t))

T

f (t) = (f T1 (t), f T2 (t), . . . , f TN (t))T

From (5), the following closed-loop system is obtained{
˙̄x(t) = (IN ⊗ Ā)x̄(t)+ (IN ⊗ B̄)u(t)+ (IN ⊗ D̄)f (t)
ȳ(t) = (IN ⊗ C̄)x̄(t)

(6)

To solve the problem of fault-tolerant consensus of
multi-agent systems with sensor faults, some basic assump-
tions are given.
Assumption 1: (A,B) is stabilizable.
Assumption 2: (A,C) is observable.
Assumption 3: S has no eigenvalues with negative real

parts.
Assumption 4:

rank(B̄, D̄) = rank(B̄).

Assumption 5: Linear matrix equation{
XN (IN ⊗ S) = ĀNXN + B̄NU
0 = C̄NXN − Cr

(7)

has a solution pair (XN ,U ).
Assumption 6: The communication topology contains a

spanning tree and node 0 is the root.
Remark 1: These are standard assumptions to solve the

output regulation problem. Assumption 1 ensures that the
system can be stabilized by a state feedback control law.
Assumption 2 guarantees the existence of the observer. Since

in fact equation (7) is Sylvester equation, Assumption 3 is
made tomake sure that the linearmatrix equation has a unique
solution pair without loss of generality. Assumption 4 means
that there exists a matrix B̄∗ that satisfies (I − B̄B̄∗)D̄ = 0,
and details of the proof is presented in [19]. In Assump-
tion 5, the equation (7) is called regulator equation which
can guarantee the solvability of cooperative output regulation
problem. Assumption 6 is a necessary condition for solving
the FTORP.

Next the following lemma is given to solve the FTORP in
this article.
Lemma 1 [4]: Consider the following system

xc = Acxc + Bcu+ Ecw
e = Ccxc + Dcu+ Fcw
ẇ = Sw

(8)

Assume that S satisfies Assumption 3 and Ac is Hurwitz,
then

lim
t→∞

e(t) = 0 (9)

if and only if there exists a unique matrix Xc that satisfies the
following matrix equation{

XcS = AcXc + BcU + Ec
0 = CcXc + DcU + Fc

(10)

Remark 2: Equation (10) is the regulator equation in out-
put regulation theory. Based on this, Lemma 1 is an important
lemma to solve the output regulation problem. It means the
output regulation problem can be solved by using the tool of
linear algebra theory. It will be seen later that the equation
required in the given system is a special form of (10).

III. MAIN RESULTS
A. OBSERVER DESIGN
To estimate the states and outputs, we design the following
observer{
˙̂xi(t) = Āx̂i(t)+ B̄ui(t)+ D̄f̂i(t)− L(ŷi(t)− ȳi(t))
ŷi(t) = C̄ x̂i(t)

(11)

where x̂i(t) ∈ Rn is the observer state, ŷi(t) ∈ Rp is the
observer output and f̂i(t) ∈ Rr is the estimation of fi(t).
Since (Ā, C̄) is observable, we can design the gain matrix
L ∈ R(n+p)×p so that Ā − LC̄ is stable. Define the following
vector errors of states, outputs and faults

exi(t) = x̂i(t)− x̄i(t) (12)

eyi(t) = ŷi(t)− ȳi(t) (13)

efi(t) = f̂i(t)− fi(t) (14)

From (6) and (11), we have{
ėxi(t) = (Ā− LC̄)exi(t)+ D̄efi(t)
eyi(t) = C̄exi(t)

(15)
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Define

x̂(t) = (x̂T1 (t), x̂
T
2 (t), . . . , x̂

T
N (t))

T

ŷ(t) = (ŷT1 (t), ŷ
T
2 (t), . . . , ŷ

T
N (t))

T

f̂ (t) = (f̂ T1 (t), f̂ T2 (t), . . . , f̂ TN (t))T

ex(t) = (eTx1(t), e
T
x2(t), . . . , e

T
xN (t))

T

ey(t) = (eTy1(t), e
T
y2(t), . . . , e

T
yN (t))

T

ef (t) = (eTf 1(t), e
T
f 2(t), . . . , e

T
fN (t))

T

and the error dynamics of the whole system is obtained as
follows{

ėx(t) = (IN ⊗ (Ā− LC̄))ex(t)+ (IN ⊗ D̄)ef (t)
ey(t) = (IN ⊗ C̄)ex(t)

(16)

The derivative of error vector ef (t) with respect to time is as
follows

ėf (t) =
˙̂f (t)− ḟ (t) (17)

To solve the FTORP in this article, the following lemma is
needed.
Lemma 2 [20]: Given a scalar µ > 0 and a symmetric

positive definite matrix P, then the inequality holds

2xT y ≤
1
µ
xTPx + µyTP−1y, x, y ∈ Rn. (18)

Based on above analysis, now we are ready to present the
following observer of the fault-tolerant consensus problem.
It provides the estimation of the sensor faults for control law.
Theorem 1: Under Assumptions 1−6 and given scalars

σ,µ > 0, if there exist matrices Y ∈ R(n+p)×p, F ∈ Rr×p

and symmetric positive definite matrices P ∈ R(n+p)×(n+p)

and G ∈ Rr×r so that the following two conditions hold[
611 612
∗ 622

]
< 0 (19)

D̄TP = FC (20)

where

611 = IN ⊗ (PĀ+ ĀTP− Y C̄ − C̄TY T )

612 = −
1
σ
(IN ⊗ (ĀPD̄− C̄TY T D̄)

622 = −
2
σ
(IN ⊗ D̄TPD̄)+

1
σµ

(IN ⊗ G)

and Y = PL and * denotes the symmetric elements, then,
the fault estimation algorithm

˙̂f (t) = −(IN ⊗ 0F)(ėy(t)+ σey(t)) (21)

can realize convergence of ex(t) and ef (t), where 0−1 =
diag(r1, r2, . . . , rq) and positive constant ri represents the
learning rate.

Consider the following Lyapunov function

V (t) = eTx (t)(IN ⊗ P)ex(t)+
1
σ
eTf (t)(IN ⊗ 0

−1)ef (t) (22)

Form (16), (17) and (21), the derivative of (22) with respect
to time is

V̇ (t) = ėTx (t)(IN ⊗ P)ex(t)+ e
T
x (t)(IN ⊗ P)ėx(t)

+2
1
σ
eTf (t)(IN ⊗ 0

−1)ėf (t)

= eTx (t)(IN ⊗ (P(Ā− LC̄)+ (Ā− LC̄)TP))ex(t)

−
2
σ
eTf (t)(IN ⊗ F)(ėy(t)+ σey(t))

−
2
σ
eTf (t)(IN ⊗ 0

−1)ḟ (t)

+2eTx (t)(IN ⊗ PD̄)ef (t) (23)

From (16), (20) and (23), we have

V̇ (t) = eTx (t)(IN ⊗ (P(Ā− LC̄)+ (Ā− LC̄)TP))ex(t)

−
2
σ
eTf (t)(IN ⊗ D̄

TP(Ā− LC̄))ex(t)

−
2
σ
eTf (t)(IN ⊗ D̄

TPD̄)ef (t)

−
2
σ
eTf (t)(IN ⊗ 0

−1)ḟ (t) (24)

By Lemma 2, we can obtain that

−
2
σ
eTf (t)(IN ⊗ 0

−1)ḟ (t)

≤
1
σµ

eTf (t)(IN ⊗ G)ef (t)

+
µ

σ
ḟ T (t)((IN ⊗ 0−1G−10−1)ḟ (t)

≤
1
σµ

eTf (t)(IN ⊗ G)ef (t)

+
µ

σ
f 21 λmax(IN ⊗ 0−1G−10−1) (25)

From (24) and (25), we have

V̇ (t) ≤ ζ T (t)6ζ (t)+ δ (26)

where

6 =

[
611 612
∗ 622

]
611 = IN ⊗ (P(Ā− LC̄)+ (Ā− LC̄)TP)

612 = −
1
σ
(IN ⊗ (Ā− LC̄)TPD̄)

622 = −
2
σ
(IN ⊗ D̄TPD̄)+

1
σµ

(IN ⊗ G)

ζ (t) = (eTx (t), e
T
f (t))

T

δ =
µ

σ
f 21 λmax(IN ⊗ 0−1G−10−1)

f1 = ḟ (t)

Since D̄ is of column rank, we can obtain V̇ (t) ≤

−ε||ζ T (t)||2 + δ when 6 < 0, where ε = λmin(−6). Thus,
if ε||ζ T (t)||2 ≥ δ, V̇ (t) ≤ 0. By Lyapunov stability theory,
ex(t) and ef (t) converge to zero, which means the estimation
errors of states and faults are bounded.
Remark 3: From (26), if ḟ (t) = 0, i.e., f1 = 0, then

the designed observer can also estimate the state and fault.
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So it should be noted that the observer is valid for constant
faults. Furthermore, by integration we can know that the fault
estimation combines proportional term and integral term

f̂ (t) = −(IN ⊗ 0F)(ey(t)+ σ
∫ t

tf
ey(τ )dτ ) (27)

where the proportional term plays an important role in
improving the speed of fault estimation.
Remark 4: Now we consider how to solve the FTORP

under the two conditions in Theorem 1. Equation (19) is
a linear matrix inequality (LMI) and it is easy to solve by
Matlab LMI Solvers. However, it is difficult to solve (20) at
the same time. Therefore, we can transform this problem to
an optimization problem as follows:

Minimize a subject to (19) and[
aI D̄TP− FC

(D̄TP− FC)T aI

]
> 0 (28)

B. FAULT-TOLERANT CONTROLLER DESIGN
In order to compensate for the impact of faults on the system
and due to the fact that not all followers can directly get infor-
mation from the leader, the following distributed adaptive
fault-tolerant controller and exosystem observer are given

ui(t) = K1x̂i(t)+ K2ηi(t)− B̄∗D̄f̂i(t)
η̇i(t) = Sηi(t)+ µi(t)φi(t)

φi(t) =
∑
j∈Ni

aij(ηj(t)− ηi(t))+ ai0(v(t)− ηi(t))
(29)

where K1 ∈ Rm×n and K2 ∈ Rm×d are gain matrices to
be designed, ηi(t) ∈ Rd is the estimation of v(t), µi(t) is a
positive function representing adaptive gain,Ni are neighbors
of the node i, aij is the element in Laplacian matrix LG of
G, and ai0 represents the information transmission between
the ith follower and the leader. If there exists information
transmission, ai0 = 1, otherwise ai0 = 0.

Let

B̄∗N = I ⊗ B̄∗

v̂(t) = 1N ⊗ v(t)

H = LG +1

1 = diag(a10, a20, . . . , aN0)

η(t) = (ηT1 (t), η
T
2 (t), . . . , η

T
N (t))

T

K1N = diag(K1,K1, . . . ,K1)

K2N = diag(K2,K2, . . . ,K2)

then the controller (29) can be rewritten as

u(t) = K1N x̂(t)+ K2Nη(t)− B̄∗N D̄N f̂ (t)
η̇(t) = ((IN ⊗ S)− µ(t)(H ⊗ Id ))η(t)
+µ(t)(H ⊗ Id )v̂(t)
µ(t) = αφT (t)(H ⊗ Id )φ(t)
φ(t) = −(H ⊗ Id )(η(t)− v̂(t))

(30)

Let ĀN = IN ⊗ Ā, B̄N = IN ⊗ B̄, C̄N = IN ⊗ C̄ and D̄N =
IN ⊗ D̄, then the system (6) can be rewritten as{

˙̄x(t) = ĀN x̄(t)+ B̄Nu(t)+ D̄N f (t)
ȳ(t) = C̄N x̄(t)

(31)

From (30) and (31), we have

˙̄x(t) = ĀN x̄(t)+ B̄Nu(t)+ D̄N f (t)

= ĀN x̄(t)+ B̄N (K1N x̂(t)+ K2Nη(t)

− B̄∗N D̄N f̂ (t))+ D̄N f (t)

= (ĀN + B̄NK1N )x̄(t)+ B̄NK1N ex(t)

+ B̄NK2Nη(t)− D̄N ef (t) (32)

Define xc(t) = (x̄T (t), ηT (t))T and ξf (t) = (eTx (t), e
T
f (t))

T .

From (30) and (32), it is obtained that

ẋc(t) = Acxc(t)+ Bcξf (t)+ Ccv̂(t) (33)

where

Ac =
(
ĀN + B̄NK1N B̄NK2N

0 (IN ⊗ S)− µ(t)(H ⊗ Id )

)
,

Bc =
(
B̄NK1N −D̄N

0 0

)
, Cc =

(
0

µ(t)(H ⊗ Id )

)
.

Now we prove that ηi(t) is the estimation of v(t), and the
adaptive gain µ(t) approaches to constant as time goes to
infinity and the system is stable.
In order to prove that the whole system is stable,

the dynamics of φ(t) is given as follows

φ̇(t) = −(H ⊗ Id )(((IN ⊗ S)− µ(t)(H ⊗ Id ))η(t)

+ µ(t)(H ⊗ Id )v̂(t)− (IN ⊗ S)v̂(t)

= −(H ⊗ Id )((IN ⊗ S)− µ(t)(H ⊗ Id ))(η(t)− v̂(t))

= −((IN ⊗ S)− µ(t)(H ⊗ Id ))(H ⊗ Id )(η(t)− v̂(t))

= ((IN ⊗ S)− µ(t)(H ⊗ Id ))φ(t) (34)

Define µ̃(t) = µ(t) − µ, where µ is a constant to be deter-
mined. We can construct the following Lyapunov function

V1(t) =
1
2
φT (t)φ(t)+

1
2α

N∑
i=1
µ̃2
i (t) (35)

then the derivative of V1(t) with respect to time is

V̇1(t) = φT (t)((IN ⊗ S)− µ(t)(H ⊗ Id ))φ(t)

+
1
α

N∑
i=1
µ̃i(t)µ̃i(t)

= φT (t)((IN ⊗ S)− µ(t)(H ⊗ Id ))φ(t)

+µ̃(t)φT (t)(H ⊗ Id )φ(t)

= φT (t)((IN ⊗ S)− µ(H ⊗ Id ))φ(t)

−φT (t)µ̃(t)(H ⊗ Id )φ(t)+ µ̃(t)φT (t)(H ⊗ Id )φ(t)

= φT (t)((IN ⊗ S)− µ(H ⊗ Id ))φ(t) (36)

The eigenvalues of (IN ⊗ S) − µ(H ⊗ Id ) are λi(S) −
µλj(H ), i = 1, 2, . . . , d, j = 1, 2, . . . ,N , where λi(S) and
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λj(H ) are the eigenvalues of S and H , respectively. The real
parts of λj(H ) are positive, so there exists a sufficient large
constant µ so that V̇1(t) < 0. Thus, when t → ∞, it can be
obtained that φ(t)→ 0 and µ̃(t) = µ(t)−µ→ 0. Therefore
η(t) is the estimation of v̂(t) and µ(t) converges to constant.

According to Assumption 1, we know that (Ā, B̄) and
(ĀN , B̄N ) are stabilizable. Thus, there exists K1N so that
ĀN + B̄NK1N is stable. As proved before, φ(t)→ 0, so (IN ⊗
S)−µ(t)(H⊗ Id ) is stable. Since the block (2,2) in Ac has the
same structure with φ(t), we can conclude that the system is
stable.
Remark 5: In some existing studies such as [21], the gain

matrix in control law depends on eigenvalues of Laplacian
matrix, which contains a global information. In this article,
the global information is not needed by giving adaptive gain.
Thus, even if all the information of the system can not be
obtained, the controller can still be designed.

Next, we consider how to solve the FTORP with tracking
errors under sensor faults using output regulation theory.
Remark 6: Since (ĀN , B̄N ) is stabilizable, we choose K1N

that makes ĀN + B̄NK1N stable. Select K2N as

K2N = U − K1NXN (37)

From (7) and (37), we have

XN (IN ⊗ S) = ĀNXN + B̄N (K1NXN + K2N )

= (ĀN + B̄NK1N )XN + B̄NK2N (38)

Based on the above analysis, we have provided control
law with gain matrices and control gains from the regulator
equation, then the following theorem is given:
Theorem 2: Based on Assumptions 3 to 5, select K1N such

that ĀN + B̄NK1N is stable and K2N as (37), then the FTORP
can be solved by the controller (30).

The output of the leader is

yr (t) = Cr v̂ (39)

Then the tracking error can be expressed as

e(t) = ȳ(t)− yr (t)

= C̄N x̄(t)− Cr v̂ (40)

In this article, faults are assumed to be constants, i.e., ḟ (t) =
0, then from (16), (17) and (21), the derivative of ζ (t) with
respect to time is

ζ̇ (t) = Dcζ (t) (41)

where

Dc =
(

IN ⊗ (Ā− LC̄) IN ⊗ D̄
−IN ⊗ 0FC̄(Ā− LC̄)+ σ I −IN ⊗ 0FC̄D̄

)
Define x̃(t) = (xTc (t), ζ

T (t))T , and then from (33) and (41)
it is obtained that

˙̃x(t) = ARx̃(t)+ BRv̂(t) (42)

where

AR =
(
Ac Bc
0 Dc

)
and BR =

(
Cc
0

)
.

FIGURE 1. Communication topology.

The tracking error can be expressed as

e = CRxc(t)− Cr v̂ (43)

where

CR = ( C̄N 0 )

Thus, the system can be written as{
˙̃x(t) = ARx̃(t)+ BRv̂(t)
e(t) = CRxc(t)− Cr v̂

(44)

Let XI = (XT1 , 0)
T , then

ARXI + BR =
(
AcX1 + Cc

0

)
(45)

where X1 = (XTN , I )
T , and

AcX1 + Cc =
(

(ĀN + B̄NK1N )XN + B̄NK2N
(IN ⊗ S)− µ(t)(H ⊗ Id )+ µ(t)(H ⊗ Id )

)
=

(
XN (IN ⊗ S)
IN ⊗ S

)
= X1(IN ⊗ S) (46)

CRX1 − Cr = C̄NXN − Cr = 0 (47)

Hence according to Lemma 1, XI is a solution to the
matrix equation corresponding to (44). Furthermore, based on
Assumption 3, (IN⊗S) and AR have no common eigenvalues,
so X1 is the unique matrix satisfying (46) and then XI is the
unique solution. Thus, XI is the unique solution to the matrix
equation corresponding to (44). By Lemma 1, lim

t→∞
e(t) = 0.

IV. SIMULATION
In this section, simulation results are given to verify the
validity of the algorithm. Consider the following multi-agent
system including one leader and three followers

A =
(
0 1
0 −0.5

)
, B =

(
0
1

)
, C =

(
1 0

)
,

D =
(
0
1

)
, S =

(
0 0.05
−0.05 0

)
, Cr =

(
1 0

)
.

The communication topology is shown in Fig.1. The adja-
cency matrix and the diagonal matrix representing commu-
nication information between the leader and followers are as
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FIGURE 2. Estimations of sensor faults.

follows

A =

 0 0 1
1 0 0
0 1 0

 , 1 =

 0 0 0
0 0 0
0 0 1

 .
Consider the following sensor faults

f1(t) =

{
0 0 < t < 5
2 t ≥ 5

f2(t) =

{
0 0 < t < 15
0.5 t ≥ 15

f3(t) =

{
0 0 < t < 25
1.5 t ≥ 25

The initial values of system and observer are

v(t) =
(
0.1
0.1

)
, x1(t) =

 0.6
0.5
0.4

 , x2(t) =
 0.8
0.9
0.6

 ,
x3(t) =

 0.1
0.2
0.3

 , x̂1(t) = x̂2(t) = x̂3(t) =

 0
0
0

 ,
η1(t) = η2(t) = η3(t) =

(
0
0

)
,

f̂ (t) =

 2.1
1.3
2.8

 , µ(t) =

 1.2
0.8
0.3

 .
Let σ = 1, then by solving equations (7) and (37), the gain

matrices can be selected as follows:

L =

 1.7218
−0.0214
2.1167

 ,
K1 =

(
−28.1640 −9.1570 −16.5341

)
,

K2 =
(
16.5341 0.0000

)
.

The results are shown in Figs. 2-5. Fig. 2 shows the esti-
mation results of followers subject to sensor faults, which can

FIGURE 3. Adaptive gains.

FIGURE 4. Tracking errors.

FIGURE 5. Outputs of the leader and followers.

converge to the real values of faults. Fig. 3 shows the adaptive
gains, and it can be seen that they will converge to some
constants. Fig. 4 shows that all tracking errors will converge
to zero as time goes to infinity. Fig. 5 is the outputs of
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FIGURE 6. Fault-tolerant output regulation scheme.

the leader and followers. From the above simulation results,
we can conclude that the outputs of followers can track the
leader and then the consensus is achieved under sensor faults
and directed topology.

V. CONCLUSION
This article has investigated the distributed FTORP of lin-
ear leader-follower MASs with sensor faults under directed
topology via output regulation theory. Fig. 6 shows the
fault-tolerant output regulation scheme. We have constructed
an augmented system by introducing an auxiliary system, and
the fault-tolerant output regulation framework has been pro-
posed based on the augmented system. Distributed observers
have been designed to estimate the state and fault, which
can compensate for effects of sensor faults existing in
the followers. It has been proved that the designed dis-
tributed fault-tolerant controller can guarantee the stability
and convergence of tracking errors regardless of sensor faults.
Finally the simulation results have verified the validity of
the algorithm. In the future, we will consider the distributed
fault-tolerant control problem of nonlinear leader-follower
MASs with time-varying faults.
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