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ABSTRACT In today’s age of industrialization, sensor devices installed on equipment generate a vast
amount of data. One of the engineers’ main jobs is utilizing these data to provide better solutions to
industrial problems. This availability of extensive data partly led to the creation of predictive maintenance
(PdM). In PdM, existing and previous conditions of devices are used to predict their future behavior for
optimal maintenance. Most of these PdM approaches are typical time-series predictions. Machine learning
tools like Recurrent Neural Networks (RNNs) are excellent tools for time-series predictions. However,
most RNNs suffer from training issues due to the unstable gradient problem. Thus, networks such as
the Echo State Network (ESN), were designed to solve them. The ESN solves the gradient problem by
training only the output weights using simple linear regression. Despite this ease, the selection of ESN
parameters and topology is a considerable design challenge. This problem is often formulated as a typical
optimization problem. Metaheuristic algorithms are known to be excellent tools for solving optimization
problems. Hence, in this work, we design an improved Grasshopper Optimization Algorithm (GOA) based
ESN. The proposed technique uses a new solution representation with a simplified attraction and repulsion
mechanisms to enhance performance. Our target application is to predict the Remaining Useful Life (RUL)
of turbofan engines. The method outperforms the Cuckoo Search (CS), Differential Evolution (DE), Particle
Swarm Optimization (PSO), Binary PSO (BPSO), the original GOA, the classical ESN, deep ESN, and
LSTM. We have provided all implemented codes and data at the GitHub repository. https://github.com/bala-
221/Airplane-fault-prediction

INDEX TERMS Artificial neural networks, airplanes, echo state network, evolutionary algorithms,
grasshopper optimization algorithm (GOA), metaheuristics, maintenance, prediction, remaining useful life
(RUL), turbofan engine.

I. INTRODUCTION
Complexities in engineering design and manufacturing, com-
bined with changing operating and environmental conditions,
have led to substantial reliability issues in the industry.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu Liu .

To overcome these challenges, Prognostics and Health Man-
agement (PHM) was invented. PHM’s primary aspect is
‘‘prediction,’’ which consists of the use of present and past
component states of any dynamic system to estimate its future
behavior. Engineers can use the prediction results for two
purposes. Firstly, it serves as a reliable alarm system to stop
machine efficiency degradation, machine malfunctioning,
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or even disastrous system failure [1]. Secondly, it can be
employed to schedule maintenance appropriately, resulting
in a significant reduction in down-times. Moreover, it also
has potential maintenance cost savings since there is a shift
from preventive to predictive maintenance [2].

Generally, there are two approaches to prognostics: model-
based methods and data-driven methods [3]. In model-based
methods, we require an understanding of the physics of the
system. This information is then used to create mathematical
formulae that explain the system’s dynamics. We then use the
equations to estimate the system’s future health. However, for
complex dynamic systems, it is often challenging to obtain
a correct analytical model of the system, especially if the
system is operating in noisy and unpredictable environments.

In contrast, data-driven methods employ the use of
machine learning and pattern recognition to create a link
between operation signals and the health state of systems.
This is then used to detect changes in the system as well as
predict future behavior. The classical data-driven techniques
for non-linear system prediction are non-deterministic such
as projection pursuit [4], multivariate adaptive regression
splines [5], and, Autoregressive Integrated Moving Aver-
age (ARIMA) models [6]. These methods depend on state
patterns of similar previous systems to forecast future states.
They are more suitable when the general first principle
of a system is not available, or when it is significantly
complicated, that finding the accurate analytical model is
extremely costly. Data-driven methods have shifted over the
years towards the use of adaptive system models like fuzzy
neural systems and neural networks [7]. These systems have
provided better performance compared to classical prediction
methods.

One of the powerful types of neural networks is Recurrent
Neural Network (RNN). These networks have cyclic con-
nections within them that loop back previous signals within
the network. This architecture makes the RNNs particularly
suitable for sequential data prediction. However, most RNNs
have complicated training schedules and suffer from unstable
gradient problem [8]. Gated networks such as the Long Short
Term Memory (LSTMs) and Gated Recurrent Units (GRUs)
have been efficiently used to solve the vanishing and explod-
ing gradient problem of RNNs. Despite their extensive and
successful application, they are more complex than the ESN
in terms of architecture and implementation. The ESN solves
the unstable gradient problem by applying the simple least
square regression training of the output weight connections.
Despite its simplicity, the ESN has been shown to perform as
well or even better than LSTMandGRUonmultivariate time-
series prediction tasks [9]. This work is also compared with
the deep LSTM network [10]. In the next section, we discuss
the classical ESN.

A. ECHO STATE NETWORK
ESN is a relativelymodernRNN,which substitutes a dynamic
reservoir for the hidden layer of RNNs. Some of its unique
characteristics include:

(i) The randomly generated connection of weights within
the reservoir is used as an information processing unit.

(ii) The randomly generated reservoir serves as a feature
space in which the inputs are mapped to.

(iii) Only its output weights require training. Other weights
are often generated randomly.

(iv) Readout weight connections are often learned through
a simple linear regression technique.

A schematic of the classical ESN is shown in Figure 1.
It has 3 levels: input, reservoir, and a readout layer. Moreover,
it usually has an input bias unit that is excluded here for
clarity. General guidelines for designing a good ESN are pro-
vided in [11], [25]. They suggested the design of a random,
large, and sparsely connected reservoir layer. Thus, the units
within the ESN’s reservoir could be hundreds to thousands
depending on task complexities.

FIGURE 1. The ESN layout with dotted lines denoting optional weight
connections [26].

The connection weights are mostly obtained via a uni-
form distribution with symmetry around zero. In this work,
we use a discrete ESN with J inputs. These J input neurons
receive inputs of I(t) = [I1(t), I2(t), . . . IJ(t)]T at each time
interval (t). Additionally, it has K reservoir units depicted
as: x(t) = [x1(t), x2(t), . . . xK(t)]T. Finally, it has L output
units represented as [O1(t),O2(t), . . .OL(t)]T that provide
the prediction results. From Figure 1, the reservoir update
equation is:

x(t) = f (W inI(t)+W rx(t − 1)+W backO(t − 1)) (1)

Additionally, the output equation is:

O(t) = g(W inoutI(t)+W outx(t)+W outoutO(t − 1)) (2)

where f and g are the input and output activation func-
tions (AFs) respectively.WhileW in(J×K ) is the input weight
matrix connections from the inputs to the reservoir, and
W r (K × K ) is the reservoir connection weights. Moreover,
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W back (L × K ) is the optional feedback weights from the
output back to the reservoir. Additionally, other voluntary
connections are: weights between inputs and output units
W inout (J × L), output cycle weightsW outout (L × L) and bias
to output weights W biasout (1 × L). As already stated, only
the output weights require training, and all remaining weight
connections are usually generated randomly and often stay
constant throughout the ESN training. If W outGen denotes all
weight connections to the output, then (2) can be transformed
to:

O(t) = g
(
W outGen [I(t); x(t);O(t − 1)]

)
(3)

with [;;;] representing matrix concatenation. The main goal
of the training is to find the W outGen. If we assume that the g
in (3) is invertible, then the equation may be formulated as:

Y = W outGen [I(t); x(t);O(t − 1)] (4)

with Y = g−1O(t). We calculate the output weight (W outGen)
by employing the least square linear regression technique,
which minimizes the variance between the target value and
the network’s actual output.

One important feature of the echo state network is the
echo state property (ESP) [27]. ESP posits that the impact
of previous states and initial inputs on future states should
decrease over time and not continue or grow. The ESP is
often ensured in practical applications if reservoir weight is
scaled so that its spectral radius (SR), which is the highest
absolute eigenvalue ofW r , is set to amagnitude of less than 1.
However, several works have proven that since the inputs to
the ESN also affect its ESP, it is possible to attain ESP even
if SR is greater than one for certain inputs.

Summary of ESN training:

Main Inputs: An input/output sequence:
[I(1),O(1); I(2),O(2); . . . . . . ; I(T ),O(T )]
Main Output: Learned output weights (W outGen)

Step 1: The number of reservoir units K , spectral radius of
the reservoir (SR), and the washout time (To) are initialized.
The washout time is the number of training samples in which
the reservoir activations are not collected but are discarded.
It is required so that the impact of initialized random weights
is reduced. After the initial parameters are set, the weights are
randomly generated while ensuring ESP.

Step 2: Collection of reservoir activations:
• Setting ESN’s zero states. i.e., O(0) = 0 & x(0) = 0,
which are used to find x(1).

• Computing the reservoir states x(t) of the T time steps
after washout using (1).

• The reservoir sates x(t), input I(t) and output O(t − 1)
for t = To, . . . ,T are collected in a matrix called S with
size (J + K + L)× (T − To + 1).

Step 3: The output weights are then computed by using the
following definition from (4).

W outGen
= (S−1Ydesired )ᵀ (5)

with Ydesired denoting the desired output of the training data.
The Moore-Penrose pseudoinverse method is used to find
inverse of (5). This marks the end of the training, and the ESN
is now ready for prediction by applying inputs and forecasting
the outputs using (1) and (2). Moreover, as a means to reduce
over-fitting, regularization may be applied to the output as:

W outGen
= (SS ′ + reg.I )−1(S ′Ydesired ) (6)

where reg represents the regularization term and I an identity
matrix.
Since the ESN inception, different types have been pro-

posed [26]. However, ESNs with leaky integrator neurons in
their reservoir called Leaky Integrator ESNs (LI-ESN) have
been proven to give impressive performance [28]. The leaky
neurons perform a leaky integration of its activation from
previous time steps. Thus, (1) is transformed to:

x(t) = (1− a)x(t − 1)+ af
(
W inI(t)+W rx(t − 1)

+W backO(t − 1)
)

(7)

with a as the leakage/decay rate with value often in the range
[0, 1]. This value is set so that a neuron neither retains nor
leaks more activations than it had. The leakage rate has been
shown to control the ‘‘velocity’’ of the reservoir dynamics.
Throughout this article, we use LI-ESN.
Despite its easy training, ESN parameter and topology

selection is a significant challenge. Initial studies have pro-
vided guides on ESN designs [11]. However, these sug-
gestions depend on the target application and are often
fuzzy. Thus, more recently, many works have employed
metaheuristics techniques to select the ESN’s design
parameters [12], [29].
In this work, we develop a grasshopper optimization algo-

rithm (GOA) based method to optimize the ESN [13]. This
algorithm has proven to have excellent performance com-
pared with Particle Swarm Optimization (PSO), Differential
Evolution (DE), and Genetic Algorithm (GA) on selected
mathematical benchmark functions. We test our technique on
fault prediction of turbofan engines. The main contributions
of the work include.
• Development of a new solution representation for ESN
optimization.

• Design of an improved Grasshopper Optimization Algo-
rithm (GOA) with simplified attraction and repulsion
schedules.

• Testing the optimized ESN on the remaining useful
life (RUL) prediction of turbofan engines.

The remaining portions of the paper are as follows:
Section II discuses a review of works related to this arti-
cle. In Section III, the Grasshopper Optimization Algo-
rithm is introduced. Section IV, outlines the methodology
of our research. The RUL prediction of the turbofan engine
is explained in Section V. While Section VI discusses the
results of our study. In Section VII, we discuss some of the
challenges of ESN. Finally, Section VIII gives concluding
remarks.
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II. RELATED WORK
This section briefly discusses some selected works that use
metaheuristics (MAs) to optimize the ESN. For a general
review, we refer the reader to Bala et al. [12]. One of the pio-
neering works in the application of MA in ESN optimization
is Ferreira and Ludermir [14]. They employed the famous GA
to tune the ESN. In their further work [15], they proposed a
new technique called RCDESIGN, that employs GA to select
the appropriate ESN parameters and topology.

Additionally, Ma et al. [16] developed a deep ESN for
time-series forecasting. The GA was used to tune the values
of leaky rate, spectral radii, and reservoir sizes of the stack
of ESNs within the deep ESN. Moreover, a GA optimized
double reservoir ESN (DRESN) was developed by Zhong
et al. [17]. The technique was better than the PSO optimized
ESN for turbofan engine RUL estimation.

The PSO has also been successfully used to fine-tune the
ESN. For instance, Wang and Yan [18] proposed a binary
PSO (BPSO) for ESN optimization. They define the output
weights connections as a feature binary selection problem.
Subsequently, the BPSOwas used to select appropriate output
connections. In [19], a PSO based tuning of ESN was devel-
oped. The method selects a fraction of the reservoir weights
and then tunes their values using PSO. They highlighted that
the technique is less mathematical since the spectral radius
does not have to be computed. Chouikhi et al. [20] extended
the work in [19]. Here, together with the fraction of reservoir
weights, a fraction of input weights and feedback weights are
also chosen for the PSO optimization. The method outper-
formed the one in [19].

Additionally, Amaya and Alvares [21] proposed an ESN
tuning based on an artificial bee colony algorithm. The
method was tested on the RUL prediction of turbofan engines
and was better than the classical ESN. Moreover, cuckoo
search optimization was used to optimize the ESN [22], [23].
The method was found to outclass classical ESN and other
methods. In recent research, Wang et al. [24] used the DE
algorithm for ESN tuning. The method was found to outper-
form the GA optimized ESN on the prediction of electricity
consumption. In the next section, we present the classical
GOA algorithm.

III. THE GRASSHOPPER OPTIMIZATION ALGORITHM
TheGrasshopper Optimization Algorithm (GOA) is a swarm-
based metaheuristic developed in 2016 [30]. It copies the nat-
ural swarming culture of grasshoppers and locusts [31]. Even
though grasshoppers can be found as isolated individuals,
they are mostly organized in one of the fascinating swarms
available in nature. One exciting thing about these swarms is
that they can exist in both the larva and adult phases of the
grasshopper development. The larva swarm is characterized
by slow and little steps of movements. In contrast, adult
swarms consist of long steps of movement with abrupt jumps.
The authors mimicked this behavior to fit the exploitation and
exploration techniques required to form most metaheuristics.
Thus, the exploration is like the adult swarm movement, and

the exploitation copies the larva swarms [30]. They modeled
the location of a grasshopper within the swarm as [32]:

Xi = Si + Gi + Ai (8)

where Xi represents the location of the ith grasshopper. Si is
the social relationship of grasshopper i with other grasshop-
pers within the swarm. Ai is the wind advection affecting
the ith grasshopper. Finally, Gi is the gravitational pull on
grasshopper i. The main engine of the GOA is the social
interaction between the grasshoppers (Si) given as [30]:

Si =
M∑

j= 1, j 6= i

Z(dij)d̂ij (9)

where dij is the distance between grasshopper i and j given as:
dij = |xj − xi|. The Z is a function representing the power of

social forces on grasshopper i. While d̂i,j =
Xj − Xi
dij

is a unit

vector from the ith to the jth grasshopper. The Z function is
given as [32]:

Z(d) = f exp(−d/l)− exp(−d) (10)

with f denoting the attraction strength and l, the attractive
length scale. The Z function elicits forces of attraction and
repulsion between the grasshoppers.

A plot of the function is shown in Figure 2. One can
observe from the figure that when the distance is in the range
[0, 2.079], the grasshoppers/agents repel each other to avoid
impact. However, there is no attraction nor repulsion when
the difference is exactly at 2.079, and agents are said to be
in the comfort zone. As the distance extends beyond 2.079,
the function keeps increasing till the distance reaches a value
of around 4. This range [2.079, 4] is called the attraction
phases. Here, the grasshoppers cooperate to reach the food
source. Different values of f and l would give variant zones
of repulsion, comfort, and attraction. However, for the GOA,
the values of f = 0.5 and l = 1.5 are used. Despite the
excellent modeling of the different zones by (10), it gives
a value of almost zero when the distance goes beyond 10,
(Figure 2). Thus, to solve this issue, the distances between
the agents are projected to the range [1, 4].

A schematic of the different agent movement zone is fur-
ther given in Figure 3. From the figure, when the distance of
a grasshopper and the target (a grasshopper at food source)
is less than the comfort zone, the repulsion force on the
grasshopper is greater than that of attraction. While, when
the distance is at the comfort zone, there is an equal force of
repulsion and attraction. As the grasshopper travels outside
the comfort zone, the forces of attraction become more sig-
nificant than the forces of repulsion.

Equation (8) is slightly modified. The gravity force is
dropped. Moreover, the direction of wind is assumed to be
towards the target. Thus, the new position of a grasshopper i
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FIGURE 2. The Z function with l = 1.5 & f = 0.5 [13].

FIGURE 3. The forces of attraction and repulsion acting on a grasshopper
[13].

is modeled as [30]:

Xdi =c

 N∑
j=1,j6=i

c
(
uBd − lBd

2

)
Z
(
|xdj −x

d
i |

) xj − xi
dij

+Td
(11)

where lBd and uBd as the lower bound and upper bound
values on the d th dimension accordingly. While, Td is the
value of the d th dimension in the target (best solution met).
Moreover, c is a reducing coefficient set to minimize the
repulsion, comfort, and attraction zones with iterations. Its

value is computed as [30]:

c = cmax − l
(
cmax − cmin
maxIter

)
(12)

with maxIter denoting the maximum iteration number and
l the present iteration number. The constants are: cmin =
0.00001, cmax = 1.

The basic GOA is shown in Algorithm 1. It commences
by initializing the algorithm constants like: the maximum
iteration (maxIter), number of grasshoppers in the swarm
(m), cmax and cmin. Next, the initial random population/swarm
is generated. Subsequently, the fitness/cost of each agent
within the population is found by using an evaluation function
(line 3). The best agent within the swarm is set as target (T )
in line 4. The main GOA iteration starts at line 5. Within
the loop, the value of c is updated by using (12). Then, for
each search agent, its distance from other agents is found
and normalized into the range [1,4]. In line 9, the position
of the present agent is updated by (11). If the new position
extends beyond boundary conditions, they are brought back
(line 10). The fitness of each new position is found. Then the
best new position of the search agent is compared with that
of the target. If it is better than the target, it replaces it. The
algorithm keeps iterating till the maximum iteration count is
reached and the target is returned.

IV. IMPROVED GOA ALGORITHM
The methods developed in this research are discussed here.
Inspired by the grasshopper optimization algorithm (GOA)
we develop a new hybrid version. We take motivation from
many othermetaheuristics to come upwith this improved one.

The procedure is shown in Algorithm 2. It proceeds as
follows: firstly, algorithm parameters such as maximum gen-
eration (maxGen), size of the population, and the number
of children (numChildren) are set. Then, the population is
initialized, the cost of each agent is found, and the best agent
is saved. In line 7, we begin the main loop of the algorithm
which will be repeated maxGen times. In this loop, the first
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Algorithm 1 The GOA Algorithm [13]
1: Fix algorithm parameters
2: Fix the grasshopper population Xi {i = 1, 2, . . . ,m}
3: Find the cost of each grasshopper
4: T ← best grasshopper
5: for l = 1 to maxIter do
6: Update c using (12)
7: for each Xi in the swarm do
8: Normalize the distances between the swarm agents

in [1,4]
9: Update the position of the current agent using (11)
10: If new position goes out of search boundary, return

it back
11: Find the fitness of new positions
12: end for
13: Update T if better solution is found
14: end for
15: Return the T as best agent.

task is to divide the population into two groups. The best
25% form the best group and the remaining 75%make up the
bottom group. Subsequently, in lines 10-28, we create chil-
dren from the initial population. In this for-loop, we perform
a selection process like that of the genetic algorithm (GA).
For the first parent called hopperOne, we run a rand function
which generates a random number evenly distributed from
0 to 1. If the number generated is less than 0.7, we select
the first parent (hopperOne) from a random position in the
top group (line 12). Otherwise, we choose hopperOne from
a random point in the bottom group in line 15. This would
make the first parent more likely to come from the best group.
However, for the second parent (hopperTwo), we reverse the
case above, thus, making the second parent more probable to
come from the bottom group lines 13 and 16.

Next, we find the absolute difference between the two
parents (diff ). For each of the genes in diff that is less than 3,
we perform a repulsion. The repulsion is like the case where
grasshoppers have come too close in flight, and need to repel
each other to avoid collision. However, if the gene difference
is greater than or equal to 7, we perform an attraction showing
the case where the two grasshoppers are too far apart and may
miss the source of food. Thus, they need to attract each other.
The procedures depicting attraction and repulsion are given
in Algorithm 3 and 4 respectively.

In the attraction Algorithm 3, for each of the genes were Ki
is greater than 7, we calculate a ratio term as in line 2.We then
add this ratio to the inferior parent’s gene as in lines 4 or 6 and
we return the child.

In contrast, Algorithm 4 shows the repulsion procedure and
it proceeds as follows. For each gene where Ki is less than or
equal to 3, we generate a val term. Next, we run a randi(2)
function which gives a value of 1 or 2, so we randomly add
this val term to the gene of parent one or two and then return
the child.

We then return to Algorithm 2 line 25, where other genes
of the child are obtained by randomly choosing from either

Algorithm 2 The Hybrid GOA Algorithm
1: Start algorithm parameters
2: Start the grasshopper swarm Xi {i = 1, 2, . . . ,m}
3: Find the cost of each grasshopper
4: T ← best grasshopper
5: goldenRatio← 1.62
6: A← 1
7: for gen = 1 to maxGen do
8: α = A/(

√
gen)

9: Divide the population into top and bottom group
10: for Xi = 1 to numChildren do
11: if rand < 0.7 then
12: Select random top agent as hopperOne
13: Select random bottom agent as hopperTwo
14: else
15: Select random bottom agent as hopperOne
16: Select random top agent as hopperTwo
17: end if
18: diff = abs(hopperOne− hopperTwo)
19: for each Ki gene in diff do
20: if Ki < 3 then
21: Simulate repulsion
22: else if Ki > 7 then
23: Simulate attraction
24: end if
25: Get other genes by randomly choosing from hop-

perOne or hopperTwo
26: end for
27: Find the cost of new child and save it
28: end for
29: Merge parents and children and sort them by cost
30: 50% of next population come from best merge
31: Other 50% are chosen randomly from the remaining

merged population
32: Update T , if better solution is found
33: end for
34: Return the T as best agent.

the gene of parent one or two. The new child is validated for
out of bounds and then saved. This similar approach is done
for all children. They are then merged with their parents and
sorted. We then proceed to create the next generation. 50% of
the subsequent generation of the population is selected from
the fittest of the merged population as in line 30. While the
other 50% are selected randomly from the remaining merged
population. The best agent is updated if a better solution
is found. The outer loop keeps repeating till the maxGen
iterations are reached and we report the final best agent.

A. SOLUTION REPRESENTATION
Six parameters of the ESN are optimized: reservoir size,
reservoir connectivity, leaky rate, spectral radius, regu-
larization term, and, input scaling. However, the reader
should note that for the input scaling (scaling of the input
weight connections), all the 14 inputs (in the Commercial
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Algorithm 3 The Attraction
1: for each Ki gene in diff where Ki ≥ 7 do
2: ratio = (Ki/goldenRatio)
3: if Cost(hopperOne) > Cost(hopperTwo) then
4: child[i] = ratio + hopperOne[i]
5: else
6: child[i] = ratio + hopperTwo[i]
7: end if
8: end for
9: Return the child

Algorithm 4 The Repulsion
1: for each Ki gene in diff where Ki ≤ 3 do
2: val = 0.2 ∗ (1− rand)−α

3: if randi(2) == 1 then
4: child[i] = val + hopperOne[i]
5: else
6: child[i] = val + hopperTwo[i]
7: end if
8: end for
9: Return the child

Modular Aero-Propulsion System Simulation data) and the
bias connections are scaled differently. Thus, making the total
number of parameters as 20. Moreover, each parameter range
is divided into 10 parts as follows:
resSize = [100, 300, 450, 600, 750, 900, 1050, 1200, 1350,

1500]

resCon = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

spectRad = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0]

leaky = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

regTerm = [1E-9, 1E-8, 1E-7, 1E-6, 1E-5, 1E-4, 1E-3,
1E-2, 1E-1, 1.0]

inScaling = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0]

A typical solution/agent can be {1, 4, 6, 7, 8, 9, 10, 4, 8,
9, 2, 4, 5, 6, 7, 8, 1, 2, 1, 4}. We then use these values to
index into the arrays of the parameters. Thus, this solution
would be transformed into reservoir size = 100, reservoir
connectivity = 0.3, spectral radius = 1.2, leaky rate = 0.7,
etc. The usefulness of this unique solution representationmay
not be apparent here, until we discuss how we perform the
repulsion and attraction in Section IV-D.

B. INITIAL POPULATION
To obtain the initial population, we select a random integer
from 1 to 10 for each agent’s gene. This is then repeated to
get each initial member of the population.

C. OBJECTIVE FUNCTION
We adopt the mean squared error (MSE) of the validation data
as cost function. Thus, for each agent, we set aside a part
of the train data for validation. Then, we select parameters

and train the ESN. The MSE of the trained ESN on the
validation data is taken as the cost of the agent. The MSE
cost function is shown in (13). For the input scaling, each
column of the input weight matrix is normalized by dividing
it with its absolute highest singular value and then scaled to
the parameter. While, for the spectral radius, the reservoir
matrix is normalized by dividing it by the absolute highest
eigenvalue, before it is scaled to the spectral radius.

MSE =
1
n

n∑
i=1

(Oi − Ôi)2 (13)

whereO and Ô respectively as the desired and actual output.

D. CHILD CREATION
Assuming the procedure from lines 11 to 17 of Algorithm 2
gave us hopperOne as [10, 3, 10, 6, 3, 5, 7, 10, 9, 4, 5, 10,
8, 3, 5, 9, 6, 2, 5, 5] and hopperTwo as [8, 2, 7, 9, 6, 8,
2, 8, 3, 9, 8, 8, 4, 1, 7, 5, 7, 4, 2, 9]. We then proceed to
find diff on line 18. The value of diff is [2, 1, 3, 3, 3, 3, 5,
2, 6, 5, 3, 2, 4, 2, 2, 4, 1, 2, 3, 4]. Since there is no value
of diff that is greater than 7, we do not have an attraction
in this case. We then proceed to perform repulsion for each
value of diff that is ≤ 3. We generate the val term and add
it to either gene of hopperOne or hopperTwo. The resulting
child after repulsion is: [8.33, 2.20, 7.24, 9.29, 6.33, 9.33, 0,
8.44, 0, 0, 8.32, 8.25, 0, 1.23, 7.21, 0, 7.27, 4.23, 2.31, 0].
Subsequently, the zero genes of the child are taken randomly
from either hopperOne or hopperTwo. The consequent child
is: [8.33, 2.20, 7.24, 9.29, 6.33, 9.33, 7, 8.44, 9, 4, 8.32, 8.25,
8, 1.23, 7.21, 9, 7.27, 4.23, 2.31, 5]. Next, we round-off these
values and fix out of bounds by setting the value of any gene
above 10 as 10. The final child is [8, 2, 7, 9, 6, 9, 7, 8, 9, 4, 8,
8, 8, 1, 7, 9, 7, 4, 2, 5] and its cost is found as 705.01.

E. STOPPING CRITERION
The maximum iteration count which is set as 100 is the
stopping condition adopted here.

V. TURBOFAN ENGINE DEGRADATION PREDICTION
This section explains the turbofan engine degradation pre-
diction. Figure 4 shows a pictorial view of the prediction
procedure. The main element of the method is the turbofan
engine (shown in Figure 5). It is responsible for providing
the driving thrust to most modern airplanes. Its main parts
include a fan, low-pressure compressor (LPC), high-pressure
compressor (HPC), low-pressure turbine (LPT), and high-
pressure turbine (HPT).

The engine degradation dataset is obtained from the prog-
nostic data center of the National Aeronautics and Space
Administration (NASA) of the United States [33]. It is
simulated with the NASA-developed Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) program.
To produce the C-MAPSS data, identical turbofan engines
were driven in different operating conditions, and then faults
of varying magnitudes were inserted into each engine unit
until the system failed. These faults were injected by varying
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FIGURE 4. Firstly, we extract run-to-failure sensor signals from the turbofan engine. The data is then preprocessed
(Filtering & Normalization), and fed to the echo state network (ESN) for training. In the linear regression training
process, our proposed algorithm is used to select the right parameters for the network. After training, the ESN is now
ready for deployment. In this mode, it can provide the predicted remaining useful life of an engine when it receives a
certain sensor signal.

FIGURE 5. A turbofan engine with its different components [34].

the inputs of the C-MAPSS software. These inputs are
presented in Table 1. As the inputs (faults) and operating
conditions are varied, sensor output signals shown in Table 2
are measured at a regular frequency. The engine keeps run-
ning until it fails to meet the healthy state criterion deter-
mined by the health index parameters given at the bottom of
Table 2. These health index parameters are represented by
margins. First, they are normalized to the range [0, 1], where
1 indicates a healthy machine, and 0 denotes an engine with
stall margin reduced to a defined limit (which represents an
unhealthy state). The limits are set as 15% for LPC, HPC, and
fan stall margins, and, to 2% for the EGT margin. The health
index of an engine is taken as the minimum of HPC, LPC,

fan, and EGT margins. The varying operational conditions
and the injected faults are the sole cause of engine failure.
More details on this can be found in [33].

The data has some interesting properties and is an outstand-
ing research benchmark for modern prognostic approaches.
For instance, it includes a multi-dimensional output from a
dynamic system (the turbofan engine), and the simulation
incorporated measurement and process noise. This dual-state
noise inclusion creates a delicate noise feature often associ-
ated with real data.

As shown in Table 3, the data consists of the follow-
ing columns: engine identifier, cycle number, 3 indices that
define operational settings, and 21 run-to-failure signals
(defined as s1-s21). The operational settings are different
combinations of Mach number (0-0.84), altitude (0-42K ft.),
and throttle resolver angle (20-100).

The C-MAPSS data is partitioned into four parts,
as depicted in Table 4. The table also shows the operational
modes and the type of injected faults for each of the data. The
fault types are HPC and fan degradation. Moreover, each data
part is additionally subdivided into a training and a testing
set. However, signals of the test set are intentionally truncated
several periods before failure. Hence, the prediction job is to
find the test set’s RUL. To verify the found RUL, the real RUL
is provided within the datasets for comparison. Since this
study is a comparison of different optimization techniques of
the ESN, we make use of only the training samples of the
C-MAPSS data and then further divide the same (train set)
into train/validation/test data.
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TABLE 1. Input to C-MAPSS [33].

A. RUL APPROXIMATION
The subsequent job is to estimate each machine’s RUL from
the dataset. An excellent approximation is to use the time
steps before failure as the engine’s RUL. So that if the engine
fails at time cycle 234, for example, then at the start of the
signal, the RUL will be set as 234, and the RUL at failure
will be set to 0. This is a good estimate [35]. However,
as discussed in [36], for most cases, the deterioration in the
engine does not start to indicate prominence until some time
cycles have passed. They highlighted from experiments they
conducted that it will be unwise to find the RUL of the engine
before it begins to show any sign of wear. This will be like
finding a new engine’s RUL. So most authors commence
the RUL forecast only after a certain time cycle has passed
[37]. To achieve this, the RUL is held constant for the initial
step until a certain time has elapsed. The value of this time
is set to 125 in [35], [36], [38]. Figure 6 shows an example
of the RUL plot. It compares the old RUL estimate with the
new RUL having a constant value at the beginning of each
machine run.

B. SIGNAL PREPROCESSING
Likemostmachine learning processes, particularly thosewith
noisy data, the input signal may require preparation before
being added to the network. This preprocessing may involve
noise reduction, collection of features, and normalization.
It was observed that some signal values of the C-MAPSS
stayed unchanged during run-to-failure simulation from the
21 sensor signals. Since they do not reflect system failure,
we remove such signals. We select Fourteen signals from the
current 21 sensor signals. These are: (2, 3, 4, 7, 8, 9, 11, 12,
13, 14, 15, 17, 20, 21) as done in [36], [37], [39]. We also
performed normalization to fit the data in the span [−1, 1] of

TABLE 2. Output sensor signals of C-MAPSS [33].

TABLE 3. C-MAPSS Data set overview.

our tanh squash function. The equation for normalization is:

dnormi,j =

2
(
di,j − dminj

)
dmaxj − dminj

− 1, ∀i, j, (14)
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FIGURE 6. A graph showing series of the old RUL approximation of four engines in (a) and the transformed estimate in (b) with a constant RUL of 125 at
the beginning. With E1, E2, E3, and E4 denoting turbofan engines 1 to 4. Note that vertical lines on the graph are not part of the plot but serve as a
partition between the RUL of the engines.

TABLE 4. Characteristics of the turbofan engine data.

with di,j denotes the ith data of signal j and dnormi,j is its
normalized form. dminj and dmaxj represent the maximum
and minimum values of the original sensor data of sensor
j accordingly. After normalization, a Gaussian filter is then
used to smooth the signals.

VI. RESULTS AND DISCUSSIONS
This section outlines the study’s research findings.
We employ the LI-ESN in all simulations, and we assumed
that all ESNs had no feedback weights. Also, a washout time
of 300 cycles was used. Moreover, both the input and reser-
voir weight values were randomly initialized between [−1, 1]
of our tanh squashing function. Additionally, the codes were
run on MATLAB R2018b on an OptiPlex 7060 Dell PC with
Intel R© CoreTM i5-8500 CPU @ 3.00GHz (6 CPUs) running
on Windows 10 Pro 64-bit (10.0, Build 18362).

A. MACKEY-GLASS SERIES
Here, the deepESN [40], [41] is applied to predict the next
time-series data on the Mackey-Glass (MG) synthetic time-
series. This experiment’s main aim is to compare two versions

of the deepESNs with the shallow (classical) ESN and deter-
mine which is the best. The deepESN is a type of ESN with
many layers. Both ESNs used to predict the next time step of
the Mackey-Glass (MG) time-series. The series was devel-
oped in 1977 by Michael Mackey and Lean Glass to explain
physiological control systems. The sequence is known for its
nonlinear random characteristics. The series with the values
of constants assigned to their most common numbers are
given in Equation (15). This work uses the value of τ as 17.
Figure 7 shows a typical graph of the trajectory of this series.

y(t + 1) =
0.2y(t − τ )

1+ y(t − τ )10
− 0.1y(t) (15)

The training length was set to 14000-time steps and the
test length as 6000. Moreover, we use reservoir connectivity
of 0.01 and a spectral radius of 1.25 for each network. Addi-
tionally, we set the reservoir size to 500 for the shallow ESN.
While for the deep ESNs, the reservoir size was set to the total
reservoir size divided by the number of layers. For example,
for a five-layered network, each reservoir would have a size
of 100, i.e., 500/5. We implement two types of deepESNs.
The first (deepESNv1), has the same reservoir and interlayer
weights for all the layers. In contrast, the second (deep-
ESNv2) has distinct reservoir weights and interlayer weights
for each layer. Each ESNwas trained and tested twenty times,
and the average, standard deviation, best and worst means
squared error (MSE) is reported. Additionally, the average
run times of each network are also reported. Initially, we run
the deepESNs with different layers (3-20), and we found
that the layer number of 3 was the best because the results
deteriorated as the number of layers increased beyond 3.
Table 5 shows the results of the experiments. From the table,
the shallowESNoutperformed the deepESNs. This shows that
for this prediction task, there is no advantage of layering.
Additionally, the deepESNv2 with different reservoir and
inter-layer weight was better than the deepESNv1 with a
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FIGURE 7. A typical plot of the Mackey-Glass series.

FIGURE 8. A typical plot of actual RUL Vs predicted RUL for two machines from FD001.

TABLE 5. Table showing the means squared error (MSE) prediction for
the Mackey-Glass series time-series.

fixed weight values. Regarding time complexity, on average,
the deepESNs took more than twice the time needed to train
and test the shallowESN.

From results in this section and our preliminary implemen-
tation of the deepESN for turbofan engine RUL prediction

(See Table 6), we discover that the deepESN offers no advan-
tage at least for our type of test cases. Thus, all subsequent
experiments were done on the shallow ESN and performed
on the C-MAPSS data.

B. RUL PREDICTION OF TURBOFAN ENGINES
This section provides the experimental findings for apply-
ing the optimized ESN for the RUL prediction of
turbofan engines. The proposed method is compared
with other existing works on the same task. Also,
we use all the train data in C-MAPSS in this work.
For train_FD002 and train_FD004 the train/validate/test
sequence are 24, 500/10, 500/15, 000 samples. While for
train_FD001 and train_FD003 the sequence is 9800/4200/
6000 samples. This division makes sense since from Table 4,
we can see that FD001 and FD003 have approximately
20,000 train samples, while FD002 and FD004 have an
estimate of 50,000 train samples each.
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TABLE 6. Average Test MSE for deepESN with different # of layers.

1) ALGORITHM PARAMETER SETTINGS
Table 7 presents the best settings for the implemented algo-
rithms. The values of these parameters were set by carefully
considering suggestions from existing literature. For each of
the population-based algorithms, we set the population size
to 20 and the maximum iteration to 100.

2) AVERAGE RESULTS
Table 8 shows the average test MSE for each algorithm.
The table shows the average of 10 trials. We can deduce the
following from the table:
• In terms of average test MSE, the proposed improved
GOA outperforms other methods in three out of the four
case studies, i.e., FD001, FD002, and FD003. Moreover,
even in the fourth case (FD004), where it lags, it came
very close to the best (DE).

• Concerning average timings, the proposed algorithm is
faster than three of the methods (CS, GOA, BPSO, and
PSO). However, it is slower than DE, classical ESN,
deepESN, and LSTM.

• On average, we can also observe that the metaheuristic-
based optimized ESNs are better than the classical ESN.
This shows that optimizing the ESN with such algo-
rithms can significantly enhance prediction accuracy.
Nonetheless, the GOA and PSO come short of the
classical ESN in many cases. The PSO was inferior
because the authors in [20] did not attempt to optimize
the reservoir’s spectral radius, and thus, the ESN had no
echo state property (ESP). In contrast, the GOA algo-
rithm produced many outliers that pulled the average
MSE high.

• To further put things into perspective, we have plotted
the predicted RUL versus the actual RUL of some
selected machines in Figure 8. Without loss of gener-
ality, this is for the FD001 data set, and the predicted
path is that of our proposed method. The graph shows
how the predicted values closely follow the actual path.

3) STATISTICAL SIGNIFICANCE
To further test for the statistical significance of our work,
we conducted the Wilcoxon rank-sum non-parametric test.

We need this test since statistics such as mean and standard
deviation of Table 8 may have resulted due to chance. Ten
trials of our proposed method are compared with that of
other techniques. The Wilcoxon rank-sum null hypothesis
is that the two trial groups are from continuous distribu-
tions having equal medians. This may loosely translate that
the two groups are not significantly different. In contrast,
the alternative hypothesis is that they are not, and our results
are statistically significant. Table 9 shows such comparison.
Each entry in the table is a comparison of the ten trials of
proposed improved GOA with other methods at 5% signifi-
cance level. From the low P-values (mostly < 0.05), we can
categorically say that the null hypothesis is rejected in 30 of
the 32 tests.

4) CONVERGENCE PLOTS
Graphs in Figure 9 show the cost (validation MSE) per iter-
ation for each case study. Each data point is the average of
the ten conducted trials. Here we compare the convergence
of the proposed algorithm with other methods. From the
graphs, we can see that our proposed method has the fastest
convergence in 3 out of the 4 cases. These graphs also reflect
the results obtained in Table 8.

Additionally, in each iteration of the proposed algorithm,
we collect the average cost of the population. The graphs of
Figure 10 show such an average for each case study. Again,
the data is the mean of the ten conducted trials. It can be
vividly seen the values rise and fall as the execution of the
algorithm proceeds. This is possible because we occasionally
accept inferior solutions into our population (see Algorithm 2
line 31). This is a hill-climbing behavior that helps most
metaheuristics escape local optima.

5) SENSITIVITY ANALYSIS
In this case, we test the reaction of the proposed algorithm to
adjustments of its parameters. The test was conducted on the
FD004 test case without loss of generality. The parameters
we varied were: the number of children numChildren (Alg. 2
line 10), percentage of agents in the bottom group (Pa) (see
Alg. 2 line 9), and a parameter we call takingFrom (see Alg. 2
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TABLE 7. Initial algorithm parameter settings.

line 30). Table 10 shows the average of 10 runs for each
setting.

Regarding the numChildren, it can be observed that as
the number of children increases, the performance of the

TABLE 8. Test MSE of the turbofan RUL prediction.

algorithm improves. However, this comes at the expense of
increased time.

Considering the percentage of worst agents, we see that
as the percentage improves, the performance follows. This
shows that there is value in keeping more agents in the
bottom agents’ category. In the takenFrom rows, we can
see that taking 25% was the best compared to taking
from 75% or 50%.
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FIGURE 9. A plot of average best validation MSE per iteration for 10 trials of each case study. Comparing the convergence of the algorithms.

TABLE 9. Wilcoxon rank-sum test P-values.

VII. CHALLENGES OF ESN
It is worth noting that for real big data predictions, the ESN
may suffer from instability and high computation cost.

A. INSTABILITY
Since the data is very large, there exists a huge reservoir state
(reservoir with many units). The instability often occurs due
to multicollinearity between the reservoir state values [44].
Multicollinearity is a situation where there is an almost lin-
ear relationship between the independent variables (reservoir
states). This means that some of the reservoir units are redun-
dant. This problem often causes the matrix S to be ill-posed,
making the output weights too sensitive to changes in S and
Y . This leads to inaccurate estimates of the output weights
and thus limits the generalization ability of the network.

To remedy this problem, we use regularization techniques
such as the Tikhonov regularization (ridge regression) [44],
[45] instead of the ordinary least squares method. The
ridge regression adds a small bias that breaks the correla-
tions between the state values (please see equation (6)) and
thus decreases the variance of the predicted output weights.
Another technique used to solve the collinearity problem is
the Principal Component Analysis (PCA) [16].
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FIGURE 10. A plot of average population validation MSE per iteration for 10 trials (The mean value for the 10 trials are taken).

TABLE 10. Sensitivity analysis. B. HIGH COMPUTATIONAL COST
Again, this is caused by the considerable size of the reser-
voir. Thus, causing the linear regression to take a longer
time. This is because it often involves either the multipli-
cation of larger matrices and finding its inverse, its Sin-
gular Value Decomposing (SVD), or QR decomposition.
The following methods may be employed to reduce the
computational costs.

One of the proposed solutions is the use of Principal
Component Regression (PCR) [46]. PCR runs the regression
only on some selected principal components of the design
matrix S. Another interesting method of ridge regression is
the divide and conquer kernel ridge regression of [47], [48].
Here, the design matrix is partitioned into batches, and
the kernel ridge regression is run on each subset. The
final global predictor is obtained from the mean of local
regressions. Thirdly, if the above solutions prove abortive,
the ridge regression may be formulated as an optimization
problem, and the stochastic gradient descent (SGD) may be
applied [28].
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VIII. CONCLUSION
We provided an improved Grasshopper Optimization Algo-
rithm (GOA) based optimized echo state network (ESN)
for predicting the remaining useful life (RUL) of turbofan
engines. To improve the original GOA, we developed a
new solution representation that gave birth to a simplified
attraction and repulsion of grasshopper agents. Additionally,
we compare the proposed technique to methods such as the
Cuckoo Search (CS), Particle Swarm Optimization (PSO),
Binary PSO (BPSO), Differential Evolution (DE), original
GOA, the classical ESN, deep ESN, and LSTM with inter-
esting results. Since this improved algorithm is entirely new,
it would be interesting to investigate how it will perform on
other optimization problems as future work.

CODE AVAILABILITY
All programming codes and data generated in the exper-
iments are available publicly at the GitHub repository.
https://github.com/bala-221/Airplane-fault-prediction
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