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ABSTRACT Remotely Operated underwater Vehicles (ROVs) are growing in importance in the ocean
environment for observation and manipulation tasks, particularly when used to maintain offshore energy and
offshore renewable energy assets. Many such tasks require the dynamic positioning of ROV in challenging
sea conditions with multiple disturbances resulting from the effects of waves, currents and turbulence. This
work presents a novel, nonlinear, model predictive dynamic positioning controller that accounts for such
complex stochastic disturbances. These external disturbances are modelled as 6-degree of freedom forces
and moments within the nonlinear ROV dynamic and propulsion model. A nonlinear model predictive
dynamic positioning strategy based on the nonlinear model predictive control (NMPC) is proposed for the
disturbance rejection in this work. A numerical water tank model is used to test the performance of the
strategy using hardware in-the-loop simulation. The results of the simulation have been compared against
baseline proportional-integral-derivative (PID) and linear quadratic regulator (LQR) controllers tested under
wave and current conditions in the FloWave basin. A quantitative comparison of the controllers is presented.
The resulting controller is shown to maintain a small root mean squared error (RMSE) in position when
subjected tomultiple directional disturbance, withminimal control effort. This study contributes an important
insight on future theoretical design of model predictive disturbance rejection controllers and illustrates their
practical implementation on real hardware.

INDEX TERMS Remotely operated vehicle (ROV), nonlinear model predictive control (NMPC), dynamic
positioning (DP), disturbance rejection, offshore renewable.

I. INTRODUCTION
Remotely Operated Vehicles (ROVs) are type of unmanned
underwater vehicles connected to the surface through a teth-
ered cable. ROVs can perform a wide range of tasks that are
important in underwater environment such as inspecting off-
shore platform [1], collecting sentiment samples from deep
ocean [2], and underwater interventions [3]. Many of those
tasks need the ROV to keep stationary and stable in the water
during the operation. Dynamic positioning (DP) strategies are
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often employed to control the position of the ROV against the
disturbance.

The proportional–integral–derivative (PID) controller pro-
posed by [4] is a model-free feedback DP strategy. The
PID controller driven by the error between the current and
desired position is simple to implement but the quality of
the control deteriorate when dealing with highly nonlinear
systems or disturbance. However, the dynamics of the ROV
is nonlinear at higher speed and often subject to the dis-
turbance due to the ocean current, wind, and wave. The
nonlinear model-free strategy sliding mode control (SMC)
[5]–[7] treat the disturbance as uncertainty and switching
between the mode for the error compensation. As a variable
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structure controller, it has the advantage over PID in non-
linear system control under disturbance [8], [9] but suffers
the chattering issue that control signal has to oscillate at
high frequency when switching between the modes. This
will increase the energy consumption and cause excessive
wear of the propellers that is not favourable in the ocean
environment.

The attempt on the economic DP strategy start from the
optimal control theory and the early work on linear quadratic
regulator (LQR) have been applied to the ROV control prob-
lem [10]. Both quality and cost of the control are optimised in
a single cost function with a linearised ROV dynamic model.
Non-linearity and disturbance issues are not addressed by the
native open-loop LQR controller. The modern development
of model predictive controller (MPC) attracts the attention
from researchers [11] that both non-linearity and disturbance
can be included in the internal prediction model. But due to
the high computational cost and the difficulty in implemen-
tation, current work only use a simplified model such as the
linearised state space model [12], reduced order model [13]
and linearised model with nonlinear residual [14]. The major
challenge in economic DP is that the ROV dynamics is highly
nonlinear and propulsion characteristic has to be included in
the model. It is already difficult to solve the optimal control
problem in real-time, not to mention the disturbance is con-
sidered in this work.

Recent advances in high performance embedded comput-
ing and solver such as the High-performance interior-point-
method (HPIPM) [15] shed a new light on efficient nonlinear
model predictive DP. Fast modular controller frameworks
[16] build on top of those solvers allow the real-time embed-
ded nonlinear optimal control.

In this paper, we present the design and validation of
the state-of-art nonlinear predictive DP controller for ROVs
under complex disturbances. This controller included the
nonlinear ROV dynamics and propulsion in the prediction
model. Multiple degree of freedom (DOF) disturbance is con-
sidered while dynamically positioning the ROV. The results
show that the proposed controller achieved a smaller posi-
tioning error with lower control cost compared to base-
line controllers. This work contributed to the design of
disturbance rejection NMPC for a wide range of underwater
missions.

A. NONLINEAR ROV DYNAMIC MODEL
The dynamics of the ROV is described by the differen-
tial equation on the position and velocity of the vehi-
cle. Reference position ηηη is the pose of the vehicle
ηηη = [x, y, z, φ, θ, ψ]T relative to the fixed global reference
system where x, y, z are the location shown in Figure 1,
and φ, θ, ψ are orientation that follows the right hand rule.
Similarly, the velocity ννν = [u, v,w, p, q, r]T consists of
linear and angular velocity is relative to the body of ROV
where u, v,w is the rate of translations and p, q, r is the rate
of rotations.

FIGURE 1. States of the system: position of the vehicle ηηη in the earth
fixed global reference system, speed of the vehicle ννν in the body fixed
reference system.

We consider a six degree of freedom nonlinear ROV
dynamics model in this study

Mν̇νν + C(ννν)ννν + D(ννν)ννν + g(ηηη) = τττ + τττ d (1)

where M is mass matrix, C is Coriolis matrix, D is damping
matrix and g is the gravitation force vector. τττ is force and
moment from propellers and τd is the disturbance.
The termMν̇νν accounts for the force and moment due to the

acceleration of ROV (rigid body mass) and the water (added
mass) around the vehicle M = MRB + MA. The rigid body
mass matrix

MRB =


m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz
mzg 0 −mxg −Iyx Iy −Iyz
−myg mxg 0 −Izx −Izy Iz

 (2)

where m is the mass of the ROV, xg, yg, zg are position of
centre of gravity. Ii is the moment of inertia with respect to
i axis and Iij is the product of with respect to i, j plane that
measures the imbalance of mass distribution. The added mass
matrix

MA =


Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 0
0 0 Zẇ 0 0 0
0 0 0 Kṗ 0 0
0 0 0 0 Mq̇ 0
0 0 0 0 0 Nṙ

 (3)

include the force and moment due to the acceleration of fluid
around the ROV.As the force andmoment in Eq 1 is described
in a rotational body fixed reference frame, the inertial Coriolis
force will act on the ROV depends on the rate of rotation.
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Coriolis force matrix also consists of rigid body and added
mass term C(ννν) = CRB(ννν)+ CA(ννν),

CRB(ννν) =


0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq

−mw 0 mu −Izr 0 Ixp
mv −mu 0 Iyq −Ixp 0

 (4)

and the added mass Coriolis force matrix for the fluid volume

CA(ννν) =


0 0 0 0 Zẇw 0
0 0 0 −Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0

 (5)

where Xu̇,Yv̇,Zẇ,Kṗ,Mq̇,Nṙ are added Coriolis force coef-
ficients.

ROV also experiences fluid resistance in the water as the
hydrodynamic damping D. Linear skin friction generated by
the laminar flow effects is considered for the ROV model.

Dl =


Xu 0 0 0 0 0
0 Yv 0 Yp 0 Yr
0 0 Zw 0 Zq 0
0 Kv 0 Kp 0 Nr
0 0 Mw 0 Mq 0
0 Nv 0 Np 0 Nr

 (6)

where Xu,Yv,Zw,Kp,Mq,Nr are linear hydrodynamic damp-
ing coefficients. High freqency damping including the turbu-
lence on the boundary layer and the vortex shedding damping
are modelled by the nonlinear model.

Dnl
= diag(Xu|u||u|,Yv|v||v|,Zw|w||w|,Kp|p||p|,Mq|q||q|,Nr|r||r|)

(7)

where Xu|u|,Yv|v|,Yv|v|,Kp|p|,Mq|q|,Nr|r| are nonlinear
hydrodynamic damping coefficients. Restoring force is the
net buoyancy where W = mg is the weight of the ROV, B
is buoyancy. In most case, the robot is positively buoyant
W < B so that the vehicle could surface up if propulsion
is lost.

g(η) =


(W − B)sθ
−(W − B)cθsφ
−(W − B)cθcφ

−
(
ygW − ybB

)
cθcφ +

(
zgW − zbB

)
cθsφ(

zgW − zbB
)
sθ +

(
xgW − xBB

)
cθcφ

−
(
xgW − xbB

)
cθsφ −

(
ygW − ybB

)
sθ

 (8)

where c(·) = cos(·), s· = sin(·) and xb, yb, zb are position of
the buoyancy centre.

We also considered the propeller characteristics for a
more realistic ROV dynamics model. The BlueROV 2 is
controllable in four degrees of freedoms – surge, sway,
heave and yaw – by the combination of six propellers. Nor-
malised controller inputs ui ∈ [−1, 1] are received by the

ROV’s lower level controller and the control inputs vec-
tor uuu = [u1, u2, u3, u4]T are corresponding to the surge,
sway, heave and yaw of the vehicle. Control inputs are
then allocated to each propellers through the allocation
matrix. For the BlueROV2, the control allocations aaa =
[a1, a2, a3, a4, a5, a6]T is

aaa = Auuu =


−1 1 0 1
−1 −1 0 −1
1 1 0 −1
1 −1 0 1
0 0 −1 0
0 0 −1 0

uuu (9)

where aaai is the allocated control for propeller i and the layout
of six propellers is shown in Figure 2.

FIGURE 2. BlueROV2 propellers layout, propeller 1,2,3 and 4 are
configured at a π/4 thrust angle, propeller 5,6 are vertical thrust only.

The datasheet on propeller thrust force on the allocated
control signal was provided by the manufacturer. For each
propeller, thrust ti by propeller i is approximated from the
allocated control signal aaai,

ti = p(ai) =
80

1+ exp(−4a3i )
− 40 (10)

and thrust vector ttt = [t1, t2, t3, t4, t5, t6]T represents propul-
sion force produced by all propeller. This thrust model also
embedded the constraint on the control signal that maximum
thrust is limited by exponentially decreasing.

Given the thrust force of each propeller, the total force and
moment applied to the ROV is

τττ = Kttt (11)

where K ∈ R6×6 is the propulsion matrix which is deter-
mined by the layout of all propellers. The material in the
Appendix described how to derive the propulsionmatrix from
the ROV’s geometry.

The nonlinear ROV dynamics model include the propul-
sion system under disturbance is

Mν̇νν + C(ννν)ννν + D(ννν)ννν + g(ηηη) = Kp(Auuu)+ τττ d . (12)
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This model captures the nonlinear dynamics of the ROV
with a generalised disturbance. Since there is no explicit
assumption on the disturbance τττ d , the ROV could reject any
types of disturbance (or a combination of them e.g. ocean
current, wind and wave) as long as controller derived from
the model is stable. The ROV dynamics is implemented as a
parameterised symbolic model that allows a fast and accurate
computation through Automatic Differential (AD) on its first
and second derivatives.

B. ROV KINEMATIC MODEL
The kinematic model describes the motion of ROV as a
relation between the velocity in body frame and position in
the earth fixed frame.

η̇ηη = J (ηηη)ννν (13)

where J (η) ∈ R6×6 consists of transformation to the body
velocity in the inertial reference frame.

J (ηηη) =
[
RRR(ηηη) 03×3

03×3 T (ηηη)

]
(14)

where R(η) ∈ R3×3 is transformation matrix of linear veloc-
ity

R(ηηη) =

 cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ


(15)

and T (ηηη) ∈ R3×3 transformation matrix of angular velocity.

T (ηηη) =

 1 sψsθ/cθ cφsθ/cθ
0 cφ sφ
0 sφ/cθ cφ/cθ

 (16)

the matrix may experience singularity when the pitch angle is
θ = π/2. However, the ROV rarely operate in that pitch angle
and it also has a weight distribution that centre of gravity is
lower than the centre of buoyancy, the vehicle is self-balanced
around the neutral pitch angle θ = 0.

C. NONLINEAR STATE SPACE MODEL
From the ROV dynamics and kinematics model, the state
of the system is selected as the position and velocity of
the vehicle. Due to the non-linearity in both dynamics and
kinematics of the ROV, a nonlinear state space model is used
to represented model the the dynamic positioning controller.
For the state x ∈ R12,

xxx =
[
ηηη

ννν

]
(17)

the first order derivative is a function of the state, the control
input and the disturbance.

ẋxx =
[
η̇ηη

ν̇νν

]
= f (xxx,uuu, τττ d , t)

=

[
J (η)ννν

M−1[Kp(Auuu)+ τd − C(ννν)ννν − D(ννν)ννν − g(ηηη)]

]
(18)

A linearised dynamics positioning strategy often approximate
the model around the operation point and represent the distur-
bance a noise,

ẋxx = AAAxxx +BBBuuu+ωωω (19)

where ωωω is process noise and A = ∂f (xxx,uuu,τττ d ,t)
∂xxx |xxx=xxxo and B =

∂f (xxx,uuu,τττ d ,t)
∂uuu |uuu=uuuo that xxxo,uuuo are operational state and input of

the ROV.
In practice, the model is linearised around several com-

mon operation points to overcome the issue when controlling
a nonlinear system with approximated dynamics. However,
the linearisation process is non-trivial and requires expert
decisions to select operational points. Besides, there is noway
to include disturbance prediction in the model.

In contrast to the dynamic positioning strategy using a
linear model, this approach does consider the prediction of
disturbance and the non-linearity in the vehicle dynamics.

II. NONLINEAR MODEL PREDICTIVE DYNAMIC
POSITIONING
A. CONTROLLER ARCHITECTURE
The architecture of the nonlinear disturbance rejection model
predictive controller is shown in Fig. 3. For the dynamic
position task, the nonlinear MPC is a position controller
accepts the referenced pose ηref as input.

FIGURE 3. Controller architecture of nonlinear MPC controller under both
measured and unmeasured disturbance.

In this control architecture,the inputs are referenced tra-
jectory ηref, current state η, ν and the measured disturbance
τd . The output of the controller is u, the normalised control
actions in surge, sway, heave and yaw. When the reference
trajectory is a single set-point, the controller is in station
keepingmode. The trajectory can also follow amoving object
in the ocean while rejecting the disturbance. Trajectory can
be updated online for keep stationary near a new set-point or
follow a different path.

When the disturbance acting on the ROV dynamics, a pre-
diction of those disturbances is also feed into the nonlinear
controller. A control trajectory is planned through nonlinear
optimisation given the information on the referenced posi-
tion, measured disturbance and current state of the system.
The control signal u is normalised thruster commands in
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the body-fixed reference frame. Lower level controller run-
ning real-time operating system transforms those commands
into low-level control signal such as pulse width modula-
tion (PWM) wave to thrusters and eventually become the
propulsion forces and moments τ . The unmeasured distur-
bance is usually difficult [17] to deal with only predictive
model. This controller handle the unmeasured disturbance
by closed loop feedback when a new state of the ROV is
observed.

B. CONTROLLER PREDICTION MODEL
Nonlinear MPC optimises the control trajectory using an
internal prediction model from the nonlinear system dynam-
ics. The nonlinear state space model described in Equation 18
is an ODE in the form of the current state, input and distur-
bance.

ẋxx = f (xxx,uuu, τττ d , t) (20)

For nonlinear system dynamics, there is no general
closed-form expression for the discrete-time dynamics. From
the continuous time nonlinear ROV dynamics, the state xt+1
need to be obtained from numerical integration. On a small
discrete time interval 1t , the next state can be found using
explicit Runge-Kutta (RK) method.

xxx t+1 = fd (xxx t ,uuut , τττ d , t) = xxx t +1t · f (xxx,uuu, τττ d , t) (21)

Higher order RK methods have a significant better numerical
accuracy at a similar computation cost. We employed the
explicit fourth order RK method (RK4) as our controller
prediction model.

xt+1 = fd (xt , ut , τd , t) = xt +
1
6
(k1 + 2k2 + 2k3 + k4)

k1 = 1t · f (xt , ut , τd )

k2 = 1t · f
(
xt +

k1
2
, ut , τd

)
k3 = 1t · f

(
xt +

k2
2
, ut , τd

)
k4 = 1t · f (xt + k3, ut , τd ) (22)

The nonlinear property in the ROV dynamics is captured
when predicting the model at every time step. Besides,
the prediction is based on the actual state and control xt , ut
instead of operation point xo, uo. This gives a natural advan-
tage of nonlinear MPC over other control strategy based
on a linear approximated model. In addition, the controller
prediction model inherent the propeller characteristics and
the disturbance from the ROVdynamicsODE.Hence, the dis-
crete model fd has the power to predict the nonlinear ROV
dynamics in the presence of 6-DOF disturbance.

C. CONTROL OBJECTIVES AND COST FUNCTION
The nonlinear MPC can be formulated as an optimisation
problem over the state trajectory xτ = x0, x1, · · · , xT and

control trajectory uτ = u0, u1, · · · , uT−1.

min
xτ ,uτ

J =
T−1∑
t=0

[
xt − xref
ut − uref

]T [Q 0
0 R

] [
xt − xref
ut − uref

]
+

√
||m� (xT − xref,T )||2 + α2

s.t. x0 = xinit
xt+1 = fd (xt , ut , τd , t)

− 1 ≤ ut ≤ 1 (23)

where Q ∈ R12×12 and R ∈ R4×4 are the weight matrices on
the state and control, m ∈ R6 is the weight on the terminal
state xT , α is smooth factor for the numerical optimisation
stability and � denote element-wise multiplication between
two vectors.

The constraint optimal control problem is designed for
the nonlinear ROV dynamic positioning in the presence of
disturbance. There are multiple control objectives that the
nonlinear MPC would like to achieve at the same time.

First of the all, the cost function is aimed to reduce
the steady state error to keep the ROV as close and sta-
ble as possible to the reference position. Intermediate cost
penalise the difference between current state and reference
state by the term

∑T−1
t=0 (xt − xref)TQ(xt − xref). Final cost√

||m� (xT − xref,T )||2 + α2 discourage the ROV for begin
far away from the reference position. We found the final
cost in the form of absolute smooth norm result is faster
to optimise compared to the quadratic final cost for set
point dynamic positioning. This is due to the gradient on
the quadratic final cost descent slower on quadratic final
cost making it hard to converge when the ROV closer to the
reference position.

Secondly, the optimal controller is designed to reduce the
total effort of the control. Intermediate cost on the control∑T−1

t=0 (ut−uref)
TR(ut−uref) is the sum of all control actions.

The optimal control strategy u∗τ from the nonlinear MPC
save the ROV energy consumption by minimising the inter-
mediate cost on the control. On the selection of reference
uuuref, the intermediate cost of control is the sum of the all
control action when uuuref = [0, 0, 0, 0]T . Most ROVs are
positive buoyant and selecting a nonzero normalised control
reference u3 in z direction help the vehicle to counterbalance
the buoyancy and maintain the depth.

Last but not the least, there are three constraints for the
optimal controller. The first two equality constraints let the
optimised trajectory xτ , uτ follows the nonlinear dynamics
of the ROV from the initial state xinit. Since the disturbance
is included in the controller prediction model fd (xt , ut , τd , t),
the optimal control will reject them by design. The inequality
constraints on the normalised control vectors limits the max-
imum thrust to optimise a feasible control signal.

Nonlinear MPC model in Equation (23) is optimised on
every time step and only the first control signal in u∗τ is
applied to the ROV. New control trajectory of the system will
be optimised on a receding horizon manner. For example,
the prediction horizon shift from [0,T ] to [t, t + T ] after
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the first control signal is sent to the ROV. During the shift,
the new observation on the state and disturbance is also made
to update the optimisationmodel.We can gradually shrink the
prediction horizon T to Tt as the control time t approaching
to T for a faster response.
As a summary, the dynamic position task is formulated as

a nonlinear MPC optimisation problem under the presence
of disturbance. The controller is designed for a stable station
keeping near the reference position with an optimised control
effort.

D. SOFTWARE AND HARDWARE IMPLEMENTATION
Despite the advantage of nonlinear MPC in dynamic posi-
tioning with disturbance rejection, the computation load is
heavy when the system must continuously compensate the
nonlinear dynamics in real time. To achieve real-time control,
the software and hardware of the system have to be carefully
designed and optimised. The control software is written by
a combination of Python / C++ code and ROS middle-
ware is used for communication. The nonlinear MPC model
f (x, u, τd , t) is prototyped symbolically withSymPy package
and exported as C++ code. A numerical integration routine
is applied to the exported nonlinear MPC model for the
discrete controller prediction model fd (xt , ut , τd , t). The core
optimisation algorithm is then implemented in C++ with
control-toolbox [18] for better performance. Multiple
shooting algorithms provided by the toolbox use HPIPM as
solver. The solver was then built for the ARMv8 architecture
of the onboard computer.

The hardware configuration of our experiment platform
BlueROV2 is shown in Figure 4.

FIGURE 4. Hardware configuration of BlueROV2.

The original Raspberry Pi single-board computer that
comes with the BlueROV2 is replaced by the Jetson Nano sin-
gle board computer. The nonlinear MPC algorithm is running
on the Jetson Nano onboard computer. Main control algo-
rithms are running on Jetson Nano and the onboard computer
communicate to the mission control computer through an
Ethernet tether cable. The onboard computer also estimates
the state of the ROV from multiple sensors for the con-
troller. Mission control computer does not directly send any
low-level control command to the ROV, but it only updates

the measured position from the motion tracking system and
forwards the reference position to the vehicle. In the case of
an emergency, the joystick could override the autonomous
controller and allow the human operator to navigate the vehi-
cle manually.

We also implemented a numerical water tank (shown
in Figure 5) to simulate the ROV dynamics. The numeri-
cal ocean tank provides a convenient software simulation
environment to develop the controller without the hardware.
After the control is designed in the numerical ocean tank,
the nonlinear MPC can be deployed to the real hardware
without much effort.

FIGURE 5. Numerical tank: the 3D visualisation on the ROV dynamics and
real time plotting tools are also available for the operation.

III. EXPERIMENTAL SETUP
A. SYSTEM IDENTIFICATION
System identification is conducted to acquire the parameters
for the nonlinear MPC model by experiment. The experi-
ment setup is shown in Figure 6, with the ROV fixed in
an open steel frame by eight strings. The setup takes the
advantage of FloWave Ocean Energy Research Facility at
the University of Edinburgh which is capable of generating
directional ocean current up to 1 m/s. Compared with driv-
ing the ROV at a constant speed, forced water flow in the
tank allows the steady state measurement in a much longer
period.

Strain gauges are connected to the end of the string to
measure the force when the water flow through the ROV.
A reflective ball is also attached to the string for the motion
tracking system to record the 3D position of one end point.
Position of the other end is found through motion tracking
on the ROV body. In this way, the direction of the string can
be calculated to find the total force and moment measured by
eight strain gauges. Experiment procedure [19] and data [20]
for the parameter identification was open sourced.
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FIGURE 6. System identification experiment setup, strain gauge is shown
inside the red dashed circle, reflective ball is pointed by the red arrow.

On each degree of freedom i, the generalised dynamic
motion model is given by

miv̇+ div+ di|i|v+ g(η) = τi (24)

where v is the velocity, mi is mass matrix term, and di and
di|i| are linear and nonlinear hydrodynamic damping, τi is
total force/moment in the degree. Least squares minimisation
is used to estimate those parameters from force samples
collected in every direction and for various flow speeds.

B. BASELINE CONTROLLERS
Two baseline dynamic positioning controllers are imple-
mented and their performance is evaluated in the FloWave
Ocean Energy Research Facility.

The first baseline controller is the proportional-integration
limited (PILIM) controller proposed in [21]. The control
diagram of the PILIM controller is shown in Figure 7.

FIGURE 7. Control diagram on PILIM controller.

PILIM is a dual loop controller with the outer loop controls
the position and inner loop controls the velocity of the ROV.
For the position loop a proportional controller plans the refer-
enced velocity based on the error between target position and
current position

νref = KPηJ−1(η)(η − ηref) (25)

where KPη is the proportional gain, J−1(η) transforms posi-
tion error from inertia reference frame to body fixed frame.

The inner velocity loop is a proportional-integration con-
troller with reference velocity generated by the outer loop.
The controller output

u = KPν(ν − νref)+ KIν

∫ t

0
(ν − νref)dt (26)

where KPν and KIν are proportional and integration gain on
the error of body referenced velocity. The outputs of the
controller are limited to [-1, 1] to ensure the control signal
does not saturate any of the thrusters.
Another baseline controller is the linear–quadratic regula-

tor (LQR) based on a linearised ROV dynamics model. The
linear state space model

ẋ = Ax + Bu (27)

is found through the numerical derivative near the operation
point xo, uo.

A =
∂f (x, u, τd , t)

∂x

∣∣∣∣
x=xo

, B =
∂f (x, u, τd , t)

∂u

∣∣∣∣
u=uo

(28)

A common operation point on the state of the vehicle during
the dynamic positioning is at low linear and angular velocity
close to zero. The operational state xo can also be selected as
a zero vector because the pitch and roll angles are near to zero
thanks to the self-balanced ROV design. Themodel linearised
near the operational point could also include the common
case that the vertical thrusters have to counterbalance the
positive buoyancy during the operation. A non-zero term on
the normalised thrust command is picked uo = [0, 0, 0.2, 0]
as the operational point.

LQR controller minimise the infinite horizon discrete time
cost

J =
∞∑
t

xTt Qxt + u
T
t Put (29)

with the optimal control sequence

ut = −Fxt . (30)

F is found by the solution on Discrete-time Algebraic Riccati
Equation (DARE) of Q and P. The optimal is limited to [-1,
1] by saturation for a realistic control signal.

In the baseline controllers experiment, the state of the ROV
is observed by the external Qualisys motion tracking system.
Three reflective balls are attached to the left and right side of
the ROV to allow real-time motion tracking. Mission control
computer bridge the Qualisys tracking system in the ROS
network and pass the real-time pose estimation to the ROV as
a PoseStamped message. Mission control computer also
forwards the setpoint as a reference state to the ROV. Similar
to our nonlinear MPC implementation, both controllers are
running on the Jetson Nano onboard computer.
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FIGURE 8. Topside view of the ROV during the baseline controller
experiment.

C. HARDWARE IN-THE-LOOP SIMULATION
A hardware in-the-loop (HIL) simulation was designed to
evaluate the performance of all controllers under the presence
of disturbance. In the HIL experiment, the configuration
is exactly the same as the hardware experiment shown in
Figure 4 except that the dynamic is simulated in the numer-
ical ocean tank. Control algorithms are also running at the
on-board computer for a consistent real-time computation
capability comparison. The ROV dynamics model for the
numerical ocean tank is tuned against the result from the
baseline controller experiments.

In the numerical tank, the 6-DOF external forces
and moments can be generated to simulate the external
disturbance. The ability to generate both single and multiple
directional disturbance helps us to assess the performance of
nonlinear MPC in a complex environment. The advantage of
the HIL implementation is that it allows rapid controller pro-
totyping and design throughmultiple tests under a wide range
of conditions, which would be expensive and time consuming
if done in a physical water tank. Once a satisfactory perfor-
mance is achieved through numerical simulations, physical
experiments can be used to further validate the designed
controller.

IV. RESULTS
A. DYNAMIC POSITIONING WITHOUT DISTURBANCES
We first present the dynamic positioning results without
disturbance. In this case, the depth of the ROV has to be
maintained at 1 meter where the ROV is fully submerged.

The position, velocity and the normalised control of three
controllers are shown in Figure 9. The time starts with the first
given reference state xref. Two optimal controllers, LQR and
MPC controller, have a similar response in the first 2 seconds.
However, the linear optimal controller has a steady state
error because of the linearised model approximation. This
is a common drawback in using linearised model to control
nonlinear dynamics. A way to mitigate the steady state error
is to use the integral term in the controller as a compensation
to the error. The baseline PID controller has an integration

FIGURE 9. Dynamic positioning without disturbance, PID: PILIM
controller, LQR: linear optimal controller, MPC: nonlinear model
predictive controller.

term in the velocity loop to deal with this issue. As the error
aggregates, the velocity controller gradually response to the
integral term and finally reach 1 meter depth with less than
1 % steady state error.

Compared to the nonlinearMPC, dynamic positioningwith
linear system and integration term in the controller is slower
because it needs time to accumulate the error. LQR controller
has a similar response to the nonlinear MPC in the first
3 seconds. The steady state error in LQR after that, however,
pose a challenge to the operation when an accurate position-
ing is needed. Nonlinear MPC has the advantage of quicker
response time and higher dynamics positioning accuracy (less
steady state error) among three controllers.

All controllers reach their steady state after 15 s and they
find the normalised control that counterbalances the positive
buoyancy at that time. Since the positive buoyancy is can-
celled by the downward propulsion force, the speed of the
vehicle stays at zero archiving a dynamically stable state.
Nonlinear MPC is the first controller to reach such state and
LQR comes after. PID controller is the slowest as the ROVhas
to correct the steady state through enough aggregated position
error. In terms of control quality, both nonlinearMPC and PID
achieved a less than 1 % steady state error.

B. DYNAMIC POSITIONING WITH DISTURBANCE
IN A SINGLE DIRECTION
The second result on the dynamic positioning shows the
performance of all controllers under the presence of distur-
bance in a single direction. Figure 10 illustrates how three
controllers response to the disturbance after the ROV reached
the dynamic stable state.

From 20s to 22s, a downward external disturbance with a
peak of 1 N is applied to the ROV. This is a relatively large
disturbance as the counter buoyancy force produced by the
propellers is only about 5 N. The sudden rise on the external
disturbance is close to 20 % of its current control force that
requires a rapid response from the controller.

As it can be seen in Figure 10, the PID response to the
disturbance is slower than the LQR and MPC. The error on
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FIGURE 10. Dynamic positioning with single direction disturbance.

the depth is propagated to the controller through the position
loop which makes it slow to compensate when it is small.
Unless the error in the position is large enough, the ref-
erenced velocity of the ROV is small. Normalised control
issued by the PID controller would be slow when the ROV
experience the sudden disturbance. LQR is a position and
velocity controller response to both error faster than the PID
controller. This can be also be observed in the maximum
transit state position error in the depth. PID controller has a
maximum position error at 0.04 m from it steady state and
LQR controller is only 0.02 m. However, the steady state
error caused by the linear approximation of LQRpersists. PID
controller has less RMSE on the depth with a better steady
state performance.

Nonlinear MPC considers the disturbance in the model and
the normalised control is adjusted as soon as the external
force is applied to the ROV. It takes the advantage of velocity
and position controller. Both depth and velocity of ROV have
maintained as long as they changed. Thanks to the predictive
power of the model, nonlinear MPC achieved a good perfor-
mance in response time, error in position and cost on control.

TABLE 1. Control performance summary under z disturbance.

Table 1 summarises the root mean squared error (RMSE)
on the position and root mean squared (RMS) value on the
normalised control between 15s and 30s. Nonlinear MPC
rejects the external disturbance with the smallest RMSE on
depth at a controlled cost lower than all baseline controllers.
This result is promising to the ROV depth control when
subject to the external disturbance.

C. DYNAMIC POSITIONING WITH DISTURBANCE IN TWO
DIRECTIONS
The experiment results on two direction disturbances are
shown in Figure 11. In this experiment, the external distur-
bance on both x and z direction is applied to the ROV at the
same time. The disturbance is peaked at 1 N on the x direction
and the 1.5 N on the z direction. The set-point is at the origin
x = y = z = 0 where the ROV is still fully submerged at
the centre of the tank (the origin is 1 meter to the surface of
water).

In this case, the external disturbance on depth is 30 %
of the steady state buoyancy. On x direction, the external
disturbance is more challenging as there was no control at
all. The PID controller deals with the error in the position
and velocity on each direction separately. On the x direc-
tion, the disturbance causes the ROV to move forward as
far as 0.15 meter. The error in the position is corrected by
the proportional controller through velocity reference to the
inner loop. As the velocity caused by the disturbance rises,
the velocity controller increases the normalised control to
reduce the error. Similarly, the PID controller compensates
the disturbance on z direction only when there is sufficient
error in the position and velocity of the ROV.

LQR controller has a faster response time compared to the
PID controller as both position and velocity error are consid-
ered at the same time. Moreover, the LQR controller deal the
dynamic positioning problem in all degrees of freedom that
the error in x and z are considered at the same time. Although
there is a steady state error in depth, LQR outperforms PID in
smaller RMSE on x direction. The maximum position error
of the LQR controller is also smaller than the PID controller.

For the nonlinear MPC, the disturbance in both directions
are included in the prediction model. Normalised control in x
direction is more aggressive than the PID and LQR controller.
A fast response to the disturbance in these directions keep the
ROV stationary in the water. The dynamic positioning in x
direction is hard for the PID and LQR under the disturbance
due to two reasons. Firstly, the non-linearity of the system
exist in both propulsion and ROV dynamics. For example,
the nonlinear propulsion model shows the dead-zone when
the normalised control is small. It is difficult for the controller
to capture the such dynamics from linearised model or mit-
igate by error aggregation. Secondly, the disturbance is not
included in the structure of PID and LQR controller. Both
controller only react to the disturbance after it cause the error
in the referenced position and velocity. Nonlinear MPC has
the advantage over those controllers that both non-linearity
and disturbance are embedded in the model.

Similar depth holding performance is repeated by the non-
linear MPC under two directional disturbances. The con-
troller maintains a fixed depth and velocity when the external
disturbance is applied to the ROV.

The predictive power of nonlinear MPC helped ROV to
reduce the RMSE on x and z and RMS control. Although the
control is more aggressive in the beginning, the disturbance
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FIGURE 11. Dynamic positioning under multi-directional disturbance.

TABLE 2. Control performance summary under x, z disturbance.

rejection is faster than the PID and LQR controller so the
overall control cost is lower. The nonlinear MPC achieved
the smallest RMSE in two directions with the lowest con-
trol cost. In practice, this means the nonlinear MPC could
increase accuracy and save energy while dynamically posi-
tioning in ocean environment subject to multiple directional
disturbance.

D. DYNAMIC POSITIONING WITH DISTURBANCE IN
THREE DIRECTIONS
The final experiment on the dynamic positioning perfor-
mance of nonlinear MPC extends the disturbance to all three
dimensions. Figure 12 shows the result of three controllers
when subject to the external disturbance in x, y and z direc-
tion. This is particularly challenging for the ROV as the
normalised control in x and y direction are coupled. In order to

move forward or side-way, the directional thrust force needs
to allocated to propellers 1 to 4 to let them work together.

Nonlinear MPC has the natural advantage that the con-
troller allocation is considered in the nonlinear state space
model. This motivates the nonlinear MPC to optimise a
shared normalised control to deal with a disturbance in x and
y direction. LQR that linearised from the nonlinear state space
model also benefit from this. They both outperform the PID
controller in the x and y direction but MPC with nonlinear
prediction response faster and more accurate.

Good depth hold performance is confirmed again
in Table 3. Comparing to the baseline controllers, nonlinear
MPC produces the best performance in dynamic positioning
under single and multiple direction disturbance. Nonlinear
MPC achieved a sub centimetre RMSE in all directions when
subject to 3DOF disturbance.

TABLE 3. Control performance summary under x, y, z disturbance.
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FIGURE 12. Dynamic positioning under multi-directional disturbance.

Nonlinear MPC with multiple direction disturbance rejec-
tions would allow the ROV to keep stable in a more com-
plex ocean environment. The ROV could account for the
combination of ocean current, wind and wave disturbance
and optimised control enable energy-efficient and accurate
dynamic positioning in a challenging environment.

On the Jetson Nano (1.4 GHz quad ARM cores) on-board
computer, the nonlinear MPC algorithm running on 4 threads
reaches 35Hzwhich is faster than the control frequency 20Hz.
This allows a real-time nonlinear dynamic positioning and
disturbance rejection control without external computation
resources. The performance of the nonlinear MPC would
depend on the correct prediction on the external disturbance.
Our future work would focus on the prediction of multiple
direction disturbance in the ocean environment. The devel-
opment of disturbance prediction method would ultimately
improve the performance of nonlinear MPC.

V. CONCLUSION
In this article, a nonlinear model predictive dynamic position-
ing strategy was developed for the ROV in the challenging
ocean environment. The controller is based on the 6 DoF

nonlinear ROV dynamic and propulsion models. The exter-
nal disturbance is included as forces and moments in the
nonlinear state space model. The ROV dynamic positioning
task is formed as an optimal control problem and solved by
numerical optimisation in a receding time horizon manner.

From the tank test and the HIL simulation result, it is clear
that nonlinear MPC could reject a complex disturbance better
and station keeping around the set-point with minimal control
effort compared with PID and LQR baseline controllers.
The real-time performance confirmed in the HIL simulation
suggests a greater development possibility for disturbance
prediction in the future. The design of the nonlinear con-
troller and the result of the study is important for the future
development stable ROV in the observation and manipulation
tasks.

APPENDIX
A. PROPULSION MATRIX
Let lxi as the distance between the centre of propeller i to the
centre of the gravity in x direction (where positive value is
at the front of the vehicle) and txi as force projection to x
direction. Taking the propeller 1 as an example, the forces
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and moments produced are

τ1 =


tx1
ty1
tz1

tz1ly1 − ty1lz1
tx1lz1 − tz1lx1
ty1lx1 − tx1ly1

 =


t1 cosα
−t1 sinα

0
t1 sinα · lz1
t1 cosα · lz1

t1(− sinα · lx1 − cosα · ly1)



=


cosα
− sinα

0
sinα · lz1
cosα · lz1

− sinα · lx1 − cosα · ly1

 t1 (31)

where α is the orientation of the propeller. Using the value
α = π/4 and lx1 = 0.156 , ly1 = 0.111 , lz1 = 0.072 for
propeller 1, the first column in K can be obtained.

K =


[r]0.707 0.707 −0.707 −0.707 0 0
−0.707 0.707 −0.707 0.707 0 0

0 0 0 0 1 1
0.051 −0.051 0.051 −0.051 0.111 −0.111
0.051 0.051 −0.051 −0.051 0.002 −0.002
−0.167 0.167 0.175 −0.175 0 0


B. BASELINE CONTROLLER PARAMETERS
Parameters on the PILIM baseline controller are shown
in Table 4.

TABLE 4. PILIM baseline controller parameters.

Parameters on the LQR baseline controllers are:

Q = diag(10, 10, 26, 1, 1, 1, 17, 14, 18, 0, 0, 3)

and

R = diag(3, 3, 3, 3)

reference control

uuuref = [0, 0, 0.2, 0]T
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