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ABSTRACT This paper deals with an admissibilization problem of singular systems with uniform input
quantization. The aim is to design a controller to guarantee the admissibility of the closed-loop system.
To achieve this, this paper proposes a proportional-derivative state-feedback controller which includes
non-linear control part to reject the effect of uniform input quantization. Based on the proposed controller,
sufficient conditions are obtained in terms of linear matrix inequalities. Two examples show the feasibility
of the proposed controller.

INDEX TERMS Singular system, input quantization, admissibility, linear matrix inequalities.

I. INTRODUCTION
In the field of control theory, to effectively handle the
problems such as stability analysis or controller synthesis,
the dynamic systems are generally modeled as the state-space
systems which consist of the first-order differential equations
of the system states. In the real world, however, there are
many cases where algebraic equations as well as differen-
tial equations are required to model the practical systems.
For example, since the interconnection of system states can
be represented as algebraic equations, both differential and
algebraic equations are required when modeling the dynamic
systems in which interconnection of system states exist such
as large-scale power systems [1].

Singular systems, which are also referred to as differential-
algebraic equation systems or descriptor systems, include
both differential and algebraic equations. For this reason,
the singular systems have drawn extensive consideration of
researchers and have been used in many practical systems
[2]–[4]. Apart from their practical importance, they are of
theoretical significance and have attracted a lot of attention
due to the fact that there is a fundamental difference from the
state-space systems. Based on the state-space system theory,
many researches have been actively extended to the singular
systems, such as stability analysis [5], [6], controller synthe-
sis [7], H∞ control [8], H∞ filtering [9], and dissipativity
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analysis [10]. At this time, the important thing in the study
of the singular systems is to ensure admissibility: regularity,
impulse-freeness, and stability.

In modern control theory, on the other hand, there are
systems that require analog-to-digital and digital-to-analog
converters or encoders and decoders, such as network con-
trol systems (NCSs), cyber-physical-systems (CPSs). These
cause quantization errors which are closely related to the gen-
eral performance of the systems. Sometimes these can also
cause stable closed-loop system unstable [11]. For this rea-
son, the stabilization problems of the systems with quantized
input have been widely studied for various systems [12]–[16].
In the existing studies, there are two main types of static
quantizers: logarithmic and uniform. The authors of [12]
introduced the sector bound approach to state- and output-
feedback control for linear systems with logarithmic quan-
tizer. On the other hand, a simple but powerful method for
eliminating the effect of uniform input quantization via state-
feedback control was introduced in [17]. Also, the authors
of [18] proposed dynamic output-feedback control for linear
system with uniform input quantization. Obviously, a study
considering input quantization for the singular systems is
necessary, and such studies have been recently researched.
In [19], network-based event-triggered control for singular
systems with logarithmic quantization was introduced. The
authors of [20] proposed state-feedback control for singu-
lar Markovian jump systems with input quantization. The
proposed controller in [20] guarantees that the closed-loop
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system is regular and stable. To the best of our knowledge,
however, there is no related articles considering the admis-
sibilization conditions for the singular systems with uniform
input quantization which is the motivation behind this study.

This paper proposes the state-feedback control for the
singular systems with uniform input quantization. The pro-
posed controller comprises the main and nonlinear control
parts. The main control part is designed as a proportional-
derivative (PD) state-feedback controller for guaranteeing the
admissibility of the closed-loop system and the nonlinear
control part leads to eliminate the effect of uniform quantiza-
tion. Based on the proposed controller, the admissibilization
conditions are obtained in terms of LMIs. Finally, two exam-
ples are provided to demonstrate the validity of the proposed
PD state-feedback control with additional nonlinear control
part.

The notations used in this paper are fairly standard. For
vector or matrix x, the superscript T denotes its transpose.
For the symmetric matrices X and Y , X > (≥)Y means that
X−Y > (≥)Y is positive (semi-) definite. The notationHe{·}.
means the sum of itself and its transpose, i.e., He{Z } = Z +
ZT . The notation (∗) represents an ellipsis of the terms which
can be induced by symmetry. The notation ek indicates a unit
vector with a single non-zero entry at the kth position, i.e.
ek , [ 0 · · · 1{kth-component} · · · 0 ]T .

II. PROBLEM STATEMENT
Consider a singular system such that

Eẋ(t) = Ax(t)+ BQ(u(t)), (1)

where x(t) ∈ Rn, u(t) ∈ Rm denote system state, control
input, respectively, and matrix E is supposed to be singular,
i.e., rank(E) = r < n. Further, Q(·) is the quantization
operator defined by a function round(·) that rounds a number
to the nearest integer, i.e.

Q(u(t))
4
= εu round(u(t)/εu), (2)

where εu(> 0) is called a quantization level and Q(·) is
the uniform quantizer with the fixed εu. We note that the

quantization error∇u(t) is defined as∇u(t)
4
= Q(u(t))−u(t).

From the definition of Q(u(t)) and ∇u(t), it can be seen that
each component of ∇u(t) at time t is bounded by the half of
the quantization level εu, i.e.,

‖∇u(t)‖∞ ≤ εu/2. (3)

Also, the system (1) can be described by

Eẋ(t) = Ax(t)+ B(u(t)+∇u(t)). (4)

The definition below generalizes the concept of admissibility
for descriptor systems.
Definition 1 [3]:
a. The singular system (1) is said to be regular if, for

all Ex(0−) and U (s), the state x(t) can be uniquely
determined thatmeans det(sE−A) is not identically zero.

b. The singular system (1) is said to be impulse-free if,
the unique solution x(t) does not have any Dirac impulse
function δ(·) that is equivalent to deg(det(sE − A))=
rank(E).

c. The singular system (1)is said to be stable if, for any
x0 ∈ Rn, there exists a scalar M (x0) > 0 such that∫

∞

0
‖x(t)‖2 dt|x0 ≤ M (x0). (5)

d. The singular system (1) is said to be admissible if it is
regular, impulse-free and stable.

The aim of this paper is to design a PD state-feedback
control which has the following form:

u(t) = Kx(t)− KDẋ(t)+ uc(t) (6)

where uc(t) is an additional nonlinear control part to reject the
effect of quantization error. From (1) and (6), the closed-loop
system can be described as

(E + BKD)ẋ(t) = (A+ BK )x(t)+ B(uc(t)+∇u(t)) (7)

Remark 1: If the derivative matrix (E + BKD) is nonsin-
gular, then the closed-loop system (7) can be rewritten as

ẋ(t) = (E + BKD)−1

× [(A+ BK )x(t)+ B(uc(t)+∇u(t))] (8)

Since the system (8) has unique a solution for any initial
condition, (8) is regular system. Besides, since all the eigen-
values of the system (8) are finite value, the system (8) is
impulse-free. Therefore, if the system (8) could be stable with
nonsingular matrix E+BKD, then the closed-loop system (8)
is admissible.

III. MAIN RESULTS
In this section, the admissibilization problem of the singular
system (1) with uniform input quantization is considered.
First, the admissibility conditions for the closed-loop system
(7) will be introduced. Then, the LMI conditions for the
obtained admissibility conditions will be derived in the next
subsection.

A. ADMISSIBILITY ANALYSIS FOR CLOSED-LOOP SYSTEM
To facilitate the derivation of the following theorem, we rede-
fine the closed-loop system as

Ē ẋ(t) = Āx(t)+ B(uc(t)+∇u(t)) (9)

where Ā = A+ BK , Ē = E + BKD. Also, for slack matrices
S1 and S2 with appropriate dimensions, it follows from (9)
that

S(t) 4= He
[
(S1ẋ(t)+ S2x(t))T

×
(
Ē ẋ(t)− Āx(t)− B(uc(t)+∇u(t))

)]
≡ 0. (10)

Theorem 1: The singular system (1) with quantized input
is admissible via the PD state-feedback controller (6), if there
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exist symmetric matrix P ∈ Rn×n and matrices K ∈ Rm×n,
KD ∈ Rm×n, S1 ∈ Rn×n and S2 ∈ Rn×n such that

0 < P, (11)

0 >
[
611 612
(∗) 622

]
(12)

where

611 = He(−ST2 (A+ BK )), (13)

612 = P− (A+ BK )T S1 + ST2 (E + BKD), (14)

622 = He(ST1 (E + BKD)). (15)

Further, each component of the nonlinear control part uc(t)
is defined as

eTk uc(t) = −εusgn(e
T
k σ (t)) max(0, sgn(σ T (t)∇u(t))) (16)

where

σ (t)
4
= −BT (S1ẋ(t)+ S2x(t)). (17)

Proof: Let us choose a Lyapunov function candidate
V (t) = xT (t)Px(t), where P is a positive definite matrix (11).
Combining the condition (10) and the derivative of V (t) with
respect to time gives

V̇ (t) = 2ẋT (t)Px(t)+ S(t) (18)

= xT (t)611x(t)+He(xT (t)612ẋ(t))

+ ẋT (t)622ẋ(t)+ 2σ T (t)(∇u(t)+ uc(t)). (19)

Using the conditions (3) and (16), it is shown that uc(t)
ensures that the last term in (19) is negative, i.e.,
• σ T (t)∇u(t) ≤ 0

2σ T (t)(∇u(t)+ uc(t)) = 2σ T (t)∇u(t) ≤ 0, (20)

• σ T (t)∇u(t) > 0

2σ T (t)(∇u(t)+ uc(t))

=

m∑
k=1

2eTk σ (t)
(
eTk ∇u(t)+ e

T
k uc(t)

)
=

m∑
k=1

2eTk σ (t)
(
eTk ∇u(t)− εusgn(e

T
k σ (t))

)
≤

m∑
k=1

{
εu|eTk σ (t)| − 2εu|eTk σ (t)|

}
=

m∑
k=1

−εu|eTk σ (t)| < 0. (21)

Then, the derivative of V (t) can be rewritten as

V̇ (t) ≤
[
x(t)
ẋ(t)

]T [
611 612
(∗) 622

] [
x(t)
ẋ(t)

]
. (22)

Therefore, the stability criterion is given by (12). Further,
as explained in Remark 1, the stability of the system (8)
guarantees the admissibility of the closed-loop system. Thus,
the PD state-feedback controller (6) with the conditions
(11) and (12) ensures the admissibility of the closed-loop
system (7).

B. LMI CONDITIONS
Theorem 2: Suppose that there exist symmetric matrix

P̄ ∈ Rn×n and matrices S̄1 ∈ Rn×n, S̄2 ∈ Rn×n, K̄1 ∈ Rm×n

and K̄2 ∈ Rm×n such that

0 < P̄, (23)

0 >
[
He(S̄2) S̄1 + P̄AT − S̄T2 E

T
+ K̄T

2 B
T

(∗) −He(ES̄1 + BK̄1)

]
. (24)

Then, the closed-loop system (9) is admissible. Further,
the proposed PD state-feedback controller is constructed
as u(t) = Kx(t) − KDẋ(t) + uc(t), where K = (K̄2 +

K̄1S̄
−1
1 S̄2)P̄−1 and KD = K̄1S̄

−1
1 . In addition, each compo-

nent of the nonlinear control part uc(t) is defined as (16).
Proof: Performing a congruent transformation to (12)

by [
P̄ S̄T2
0 S̄T1

]
(25)

yields

0 >
[
6̄11 P̄612S̄1 + S̄T2 622S̄1
(∗) S̄T1 622S̄1

]
, (26)

where

P̄ = P−1, (27)

S̄1 = −S
−1
1 , (28)

S̄2 = −S
−1
1 S2P−1, (29)

6̄11 = P̄611P̄+He(P̄612S̄2)+ S̄T2 622S̄2. (30)

From (27)-(30), the inequality (26) can be represented as

0 >
[
He(S̄2) S̄1 + P̄ĀT − S̄T2 Ē

T

(∗) −He(Ē S̄1)

]
. (31)

Let K̄1 = KDS̄1 and K̄2 = KP̄ − KDS̄2; then, (31) can be
rewritten as (24). Hence, (23)-(24) imply (11)-(12).
Remark 2: It is worth mentioning that state-feedback con-

trol method has been reported in [20] for singular systemwith
uniform input quantization. Previous research has designed
state-feedback control which guarantees regular and stable
of the closed-loop system with uniform input quantization.
However, the state response of the singular system may have
impulse terms which may destroy the system and may cause
saturation of control. Hence, ensuring the impulse-freeness is
important in stabilizing the singular systems. Compared with
the result in [20], the main contribution lies in that the pro-
posed PD state-feedback control guarantees the admissibility
of the closed-loop system even if uniform input quantization
effect exists.
Remark 3: As explained in Remark 1, the admissibility of

the closed-loop system (7) is guaranteed by the stability
of (8). However, it is difficult to obtain the stability conditions
of (8) in terms of LMIs. To solve this problem, the constraint
(10) is utilized with slack matrices S1 and S2 and the congru-
ent transformation with (25) is performed to (12). From this,
we could successfully obtain the admissibilization condition

VOLUME 8, 2020 160067



S. Y. Lee, N. K. Kwon: PD State-Feedback Control for Singular Systems With Input Quantization

FIGURE 1. State trajectories of unforced singular system.

FIGURE 2. State trajectories of closed-loop system with input
quantization.

for the singular system with uniform input quantization (1) in
terms of LMIs.
Remark 4: From (3) and (4), it can be seen that the system

has a bounded matched disturbance. At this time, the pro-
posed nonlinear control part provides an effective and robust
means of controlling dynamic systems with bounded and
matched disturbance [14]. That is, the nonlinear control part
enables us to eliminate the energy in the sense of Lyapunov
function caused by the quantization error ∇u(t).

IV. EXAMPLES
In this section, two examples will be given to verify the
validity of the proposed PD state-feedback controller (6).
Example 1: Consider the singular system (1) with input

quantization, whose system matrices are

A =
[
0.5 0
1 2

]
, B =

[
0.5
1

]
, E =

[
1 0
0 0

]
. (32)

Also, it is assumed that the quantization level εu is given as
0.01. The state trajectories of the unforced system are shown
in Fig. 1. It can be known that the unforced system is unstable.
On the other hand, by Theorem 2, the controller gain matrices
are obtained as

K =
[
1.2868 2.3286

]
, (33)

KD =
[
−4.3392 2.1942

]
. (34)

Fig. 2 shows the state trajectories of the closed-loop sys-
tem. It can be seen that all of the states go to zeros, which

FIGURE 3. State trajectories of closed-loop system with input
quantization.

FIGURE 4. Quantized control input.

guarantees that the proposed controller successfully stabilizes
the singular system with input quantization.
Example 2 (Practical Example): In this example, we will

consider an oil catalytic cracking process [21], [22] as
follows:{

ẋ1(t) = R11x1(t)+ R12x2(t)+ B1Q(u(t)),
0 = R21x1(t)+ R22x2(t)+ B2Q(u(t)),

(35)

where x1(t) denotes a state vector to be regulated, such as
blower capacity, regenerate temperature, or valve position;
x2(t) denotes a state reflecting business benefits, adminis-
tration, etc.; u(t) denotes regulation value. Let R11 = 0.6,
R12 = 0, R21 = 0.4, R22 = 0.5, B1 = −1.1, and
B2 = 0.9. Using the above parameters, the system (35) can
be expressed as

Eẋ(t) = Rx(t)+ BQ(u(t)), (36)

where

x(t) =
[
x1(t)
x2(t)

]
, E =

[
1 0
0 0

]
,

R =
[
0.6 0
0.4 0.5

]
, B =

[
−1.1
0.9

]
.

Also, it is assumed that the quantization level εu is given
as 0.01. By Theorem 2, the controller gains are obtained as
follows:

K =
[
−44.3236 −12.7626

]
, (37)

KD =
[
6.1939 4.4000

]
. (38)
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Fig. 3 illustrates the state trajectories of the closed-loop
system and Fig. 4 presents the quantized control input for
the proposed PD state-feedback controller. From the figures,
it can be seen that the proposed controller effectively stabi-
lizes the oil catalytic cracking process system with uniform
input quantization.

V. CONCLUSION
This paper has considered the PD state-feedback control for
singular system with uniform input quantization. In contrast
to the previous research work about quantized feedback con-
trol for singular systems, the proposed controller guarantees
the admissibility of the closed-loop system in spite of the
error of uniform quantizer. Two examples were provided to
demonstrate the validity of the proposed controller. In the
future work, we will extend our research into two perspec-
tives. The first is to change the type of the controller such as
output-feedback control, and the second is to design a con-
troller applicable to the stochastic systems such as singular
Markovian jump systems.
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