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ABSTRACT In wireless sensor networks, organizing nodes into clusters, finding routing paths and main-
taining the clusters are three critical factors that significantly impact the network lifetime. In this paper, using
a chaotic genetic algorithm, a clustering routing protocol combined with these three features called CRCGA
is proposed to improve the network energy efficiency and load balancing. In CRCGA, the chaotic genetic
algorithm is used to select the best cluster heads (CHs) and to find the optimal routing paths by coding
them into a single chromosome simultaneously. Chaotic genetic operators based on a novel fitness function
considering minimum energy consumption and load balancing along with new determination conditions
make the algorithm converge quickly. Besides, an adaptive round time considering energy and load balancing
is presented to maintain the clusters so as to further reduce energy consumption. Simulation results indicate
that CRCGA is better than LEACH, GECR, OMPFM and GADA-LEACH in terms of convergence speed,
energy efficiency, load balancing, network throughput and lifetime.

INDEX TERMS WSNs, multi-hop routing, chaotic genetic algorithm, clustering, energy and load balancing.

I. INTRODUCTION

With the rapid development of information technology,
wireless sensor networks (WSNs) are widely used not
only in military, disaster prevention, space exploration but
also in environmental monitoring, intelligent transporta-
tion and smart home by means of various sensors built
in nodes [1], [2]. Energy saving that prolongs the net-
work lifespan has always been the most important topic
in WSNs because the nodes are equipped with constrained
energy and limited capabilities. Clustering routing has been
proved to be an efficient, robust and scalable energy saving
method [2]-[5], in which clusters are constructed by organiz-
ing nodes into groups, and cluster heads (CHs) are selected
to manage the clusters. Low-energy adaptive clustering hier-
archy (LEACH) is the pioneering clustering routing protocol
for WSNs [3] with some advantages such as less overhead
by clustering and aggregation, equal chance to be CH by
randomly selecting CHs, less collisions by applying TDMA
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mechanism, and long network lifetime by rotating CHs in
rounds. Meanwhile, some shortcomings are also present in
LEACH such as selecting nodes with low residual energy
as CHs, distributing clusters unevenly, unbalancing energy
consumption and increasing overhead of control messages
due to its random CH selection and fixed round time. So
great efforts have been made to improve the performance of
LEACH from different aspects for clustering routing methods
and expected results have been achieved since then [6]-[10].
Clustering routing method usually contains three main
phases: clustering, routing, maintaining clusters.

Clustering usually consists of CHs selection and clus-
ters formation. Many approaches have been provided for
CHs selection, which can be categorized into probability
based [4]-[6], [11]-[14], weight based [7], [15]-[17] and
heuristics based [9], [10], [18]-[20] approaches. The nodes
are selected as CHs when their threshold values are less
than a random assigned real number between 0 and 1 in
probability based approaches. However, some nodes with
small threshold values may still be selected as CHs, thus
resulting in their premature death. Therefore, in order to
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solve the problem, only nodes with large weight are directly
selected as CHs in weight based approaches. But local deci-
sion as well as neglecting uncertainties and dynamics of
the network, makes it hard to find the optimal solutions for
CHs selection. Moreover, non-deterministic polynomial (NP)
hard problem for clustering has not been solved efficiently
in probability and weight based approaches [1]. Therefore,
heuristics based approaches are used to obtain approxi-
mate solutions to NP hard problems for CHs selection [21].
As a kind of important optimization mehods, heuristic
algorithms can find the proper answers for clustering by
utilizing local or global search. Consequently, fuzzy logic
inference [9], [18], [22], particle swarm optimization algo-
rithm [23], bat algorithm [19], genetic algorithm [10], [20],
differential evolution and harmony search [21] have been
used to find the optimal CHs. Once the CHs are selected,
each of them broadcasts an advertisement message announc-
ing its CH identity, and the normal nodes decide to join
the clusters based on the received signal strength, residual
energy of the CHs and so on in order to form uniform
and energy efficient clusters [5], [11], [12], [15], [21]-[23].
Moreover, a TDMA schedule like in LEACH is used
for intra-cluster communication to further reduce energy
consumption [3]-[23].

Routing is used to find the optimal routing path for each
CH because the CMs only can communicate with their corre-
sponding CHs. When a CH receives all the data from its CMs,
it fuses and forwards the data to the BS directly in single-hop
mode [3]-[6], [19], [22], [23] or indirectly in multi-hop
mode [7]-[18], [24]. Usually, communication between CHs
and BS in single hop mode may expend excessive energy
when the CH appears far away from the BS and undoubtedly
reduce the scalability of the network. Thus, data forwarding
in multi-hop mode gradually becomes a common way for
routing by selecting proper relay nodes to the BS so as to
reduce energy consumption [25]. Similar to cluster selection,
weight-based [7], [11], [18] and heuristics based [8]-[10],
[13], [16], [17], [20], [21], [26] approaches are used for
finding routing paths. Weight based on residual energy of the
next-hop CHs [7], distance to the next-hop CHs [18], and
so on [11] is used to select the nodes with higher weight
values as the next-hop CHs. Similarly, local decision as well
as neglecting uncertainties and dynamics of the network
makes it hard to find the optimal routing paths. Hence, fuzzy
logic [9], particle swarm optimization [8], ant colony opti-
mization [20], [26], genetic algorithm [10], [13], [17], [20]
are utilized to find the optimal routing paths for each CH
so as to achieve balanced energy consumption of CHs and
increased network lifetime. Moreover, they can also alle-
viate hot spot problem caused by hop-by-hop routing to
some extend as other unequal clustering routing methods by
adjusting cluster size, selecting vice CHs, and controlling hop
counts and so on [12], [15], [24], [27].

Maintaining clusters is used to rotate the CHs for even
distribution of the energy consumption among the nodes.
Usually, round is adopted to reconstruct clusters in the
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network like in LEACH, but it is difficult to determine
the most appropriate round time. Moreover, fixed round
time inevitably leads to premature death of CHs with low
residual energy, resulting in interruption of communica-
tion [5], [9], [11], [12], [15], [16], [24]. Especially in the later
period of network operation, this situation is even worse. So
variable round time is proposed to prevent depleting the CHs’
remaining energy and keep the normal communication in the
entire network [5], [9], [11], [24], or CH substitution is used to
replace the CHs whose residual energy is lower than a preset
threshold [12], [16] or hybrid [15]. In this way, the number of
rotations is significantly decreased, and the same time energy
consumption is saved and the network lifetime is extended
accordingly.

In this paper, an improved multi-hop clustering routing
protocol using a chaotic genetic algorithm (CRCGA) is pro-
posed to minimize the network energy consumption and to
balance the network load. To this end, a chaotic genetic
algorithm is used to find the optimal CHs and routing paths
simultaneously, in which chaotic selection, crossover and
mutation operations are adopted to avoid local optimum and
to improve the convergence speed. Real number coding is
used to combine CHs selection and finding routing paths into
a single chromosome so as to significantly decrease its size.
Minimizing the network energy consumption and balancing
the network load are considered as factors in a novel fitness
function. Moreover, a new adaptive round time is presented
to further reduce the energy consumption of the network.
Simulation experiments are carried out to verify the effec-
tiveness of CRCGA, compared with several existing relevant
algorithms in terms of convergence speed, energy efficiency,
load balancing, network throughput and lifetime.

The remainder of this paper is organized as follows. The
related works are described in Section 2, and the system
model is presented in Section 3. In Section 4, the proposed
CRCGA is introduced in detail, and simulation results are
given in Section 5. Finally, Section 6 concludes the paper.

Il. RELATED WORKS

As mentioned above [1], [2], clustering routing protocols
have been widely used to improve energy efficiency and
to extend the network lifetime. Moreover, heuristics based
methods are more likely to get the optimal solutions than
traditional methods [8]-[10], [13], [17], [20]-[23] due to
their capabilities of adaptivity on network dynamics and
uncertainties, and excellent search ability. By simulating
the evolution process of biological populations in nature,
genetic algorithms with low computational complexity can
not only directly operate on the objects, automatically obtain
and guide the optimized search space, but also adaptively
adjust the search direction, quickly converge, and find the
best global solution in the end. So they have been widely
used in the clustering routing methods from CHs selec-
tion [20], [28]-[30] to routing search [13], [17], [31], [32]
or hybrid [10], [33]. Generally, population initialization, fit-
ness function definition, genetic operators and determination
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conditions are the main aspects which need to be considered
in designing genetic algorithms. Consequently, the next intro-
duction only focuses on the clustering routing protocols based
on genetic algorithm that are related to CRCGA from these
mentioned aspects.

Population initialization is used to randomly produce a set
of individuals whose size depends on the specific applica-
tions [10], [13], [20] or the length of chromosomes [29]. Indi-
viduals are represented by chromosomes, and a chromosome
represents a solution for CH selection [20], [28]-[30], [33] or
routing finding [13], [17], [31]-[33] or hybrid [10]. More-
over, a unit in a chromosome is called a gene. Generally,
binary coding and real number coding are used to produce
chromosomes. Examples for chromosomes in different cod-
ing schemes are illustrated in Fig. 1.

D 1 2 3 4 5 6 7 8 9 10
chromosome 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
a gene (a) binary coding
D 1 2 3 4 5 6 7 8 9 10

chromosome

1 2 3 4 5 6 1 3 4
EIENENENENEN [+ ]2 [es]2]
(b1) for CH selection v (b2) for route finding
1 2 3 4 5 6 7 8 9 10
3 | BS | Bs | 2 | i | 3 | 4 | 3 | 1 | 2
Jirst part QP second part N
< » >

for route finding Jor CH selection

(b3) for CH selection and route finding search
(b) real number coding

FIGURE 1. Chromosome representation.

As shown in Fig. 1(a), the authors in [28]—-[30] used binary
value ‘1’ located in a certain unit in the chromosome to
indicate that the corresponding node denoted by its ID is
a CH, while Alshalabi et al. [13] used it to indicate a next-
hop CH. In contrast, ‘O’ means the corresponding node is a
normal node or not included in the routing path. Accordingly,
the CHs {3, 5} or routing path 3—5—BS can be obtained.
Different from binary coding, real number coding uses a
node’s ID in positive integer to indicate this node is the CH
or the next-hop CH of the node located at the corresponding
ID position, as shown in Fig. 1(b). Similarly, Gupta and
Jana [33] represented a chromosome in real number coding,
which is used for CH selection. At the same time, the authors
in [6], [17], [32] used chromosomes in real number coding
for routing search. Moreover, Wang et al. [10] represented
a chromosome in real number coding for CH selection and
routing search. For CH selection, normal nodes and CHs
are represented by their ID sets respectively, a gene with
CH’s ID indicates the CH of the normal node located at the
corresponding ID position. As shown in Fig. 1(b1), the sets
of CHs and normal nodes are denoted as {1, 2, 3, 4} and
{1, 2, 3,4,5, 6} respectively, then the CH of each normal
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node can be obtained, such as the CH of nodes 1 and 6 is
CH 3, and so on. For routing search, normal nodes and CHs
are represented by the same ID set, and a gene indicates the
next-hop CH of the corresponding CH, as shown in Fig. 1(b2),
all routing paths for each source CH can be found according
to the chromosome, 1—4—2—3—BS, 2—3—BS, 3—BS,
4—2—3—BS. For representing CH selection and routing
search simultaneously, a chromosome is divided into two
parts, as shown in Fig. 1(b3), one is for CH selection,
and the other is for routing search. Apparently, nodes 5,
6, 7, 8, 9, 10 are normal nodes, and their CHs are 1, 3,
4, 3, 1, 2 respectively. Besides, the routing paths for each
CH are 1—-3—BS, 2—BS, 3—BS, 4—2—BS respectively.
It can be seen from Fig. 1 that the length of chromosomes
may be different for the same size network, which usually
equals to the total number of nodes in the network. How-
ever, Dehghani et al. [29] pointed out that the longer the
chromosome length is, the slower the convergence speed
may be. Therefore, the authors in [13], [29] used residual
energy and other parameters to exclude the low performance
nodes from participating in CH selection or routing search
so as to reduce the length of chromosomes and improve the
convergence speed. Furthermore, invalid chromosomes may
be produced due to random gene generation. So the authors
in [10], [17], [28], [32], [33] used communication range of
nodes, ID sequence and other parameters to guarantee the
validity of produced chromosomes. In this way, a certain
number of valid chromosomes form the initial population for
the subsequent genetic operations.

Fitness function is defined to evaluate the fitness values
of individuals in the current population, in order to make
the nodes with excellent performance pass on to the next
generation. Accordingly, meeting the design objectives of
the proposed protocols is the main criteria for defining fit-
ness functions. First, in order to find the minimum number
of CHs, the authors in [20], [28]—[30], [33] used residual
energy of nodes, distances to other nodes and BS as main
parameters to define different fitness functions. For instance,
Kong et al. [28] used number of CHs, distance to the BS of
CHs and distance to the BS of all nodes to define the fitness
function which is expressed as follows:

_ IS Cl= B iz dCiSum)

2151'5" d(Xi, Ssink)

where m denotes chromosome m, S is the number of nodes,
and C is the number of CHs. d(C;, Sgnx) and d(x;, Sgink)
denote the distance between a CH or a node to the BS
respectively, and «, § are distance independent coefficients.
However, nodes with low residual energy may be chosen
as CHs, resulting in unbalanced energy consumption. So
Dehghani et al. [29] added the residual energy of all nodes
to define the fitness function, which is given in Eq. (2):

m

E Total — E Dissipated DNB — DN
F(x) =ax*
E Total DNB
n NN — NC @
* —_—
YETONN
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where X denotes chromosome X, E Total is the sum of
initial energy of all nodes, E Dissipated is total energy
consumption of CMs and CHs, DNB is the sum of distance
between CMs to the BS, DN is the total distance between
CMs to CHs, NN and NC are the number of sensor nodes and
CHs respectively, «, B, v are application-related coefficients
indicating the importance of the variables. Then, nodes with
more residual, shorter distance to the BS and smaller cluster
centrality will be selected as CHs. Furthermore, the optimal
number of CHs is obtained. Second, in order to find the
best routing paths, the authors in [13], [17], [32], [33] used
the hop count, residual energy of nodes, distances to other
nodes and to the BS as main parameters to define the fitness
functions. For instance, different from [13], [28]-[31], [33],
Genta et al. [17] used the fitness function to evaluate the
fitness values of genes instead of individuals, which is shown
as follows:

f(v) =

1
E ; 3
Dist(vm,me, Vi) + Dist(vi, BS) + res(Vz) ( )

where v; denotes gene i which means a possible next-hop
CH in a certain chromosome, Dist(vgyuce, Vi) 18 the distance
between the source CH and v;, and Dist(v;, BS) is the distance
between v; and the BS, E,.s(v;) is the residual energy of v;. The
higher the fitness is, the more likely it is to be selected as the
next-hop CH of the source CH. However, the optimal routing
paths may not be found only by selecting the next-hop CHs.
Thus, Alshalabi et al. [13] presented a fitness function to find
the optimal paths, which is expressed as follows:

Npar
N
where i represents the chromosome i, D(CHj, BS) is the
average distance from the source CH and the BS through
the intermediate CHs, N, is the number of CHs through the
path, NV is the number of CHs in chromosome i, Noyjpart is the
total number of participation in the transmission process of all
CHs in the path, and members is the total number of member
nodes in all clusters that are related to the CHs in the path. The
smaller the fitness, the more likely the path is to be chosen
as the optimal path. However, local decision according to
a certain path or a node or some nodes is impossible to
obtain the global optimal solution, moreover, load balance
is rarely considered in the above protocols. Last, in order
to find the optimal CHs and routing paths simultaneously,
Wang et al. [10] used residual energy of nodes and loads of
nodes as parameters to define the fitness function which is

expressed as follows:

F (i) = D (CH,, BS) +

+ Nogfpars + members  (4)

Fit o @ * sumE + (1 — &) % & 5)

where sumE is the total energy consumption of all CMs and
CHs, o is the standard deviation of the average remaining
energy assigned to each load on a CH, which is expressed as
follows:

Eresidual (i) 2

H  Eyesidual (i) H nL(h;)
o= (6)
nH
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where nH is the number of CHS, E,gidua1(h;) is the residual
energy of CH h;, and nL (%;) is load on CH h;. Moreover,
sumE and o are normalized to make them stay within the
same range. It is obviously seen from Eq. (6) that the optimal
chromosome can minimize the network energy consump-
tion, and the optimal CHs and routing paths are obtained
simultaneously. However, distance between the nodes, if not
considered in the fitness function, may lead to uneven cluster
distribution.

Genetic operators including selection, crossover and muta-
tion are utilized to produce a better next generation popu-
lation than the previous one, based on the defined fitness
function, so as to make the individuals be better from gen-
eration to generation. Selection operator is used to choose
better individuals from the current population for crossover
and mutation operators. Generally, roulette wheel selec-
tion is the most popular strategy used in clustering routing
protocols [10], [13], [17], [20], [29], [31], [33], in which
the chromosomes with better fitness values are chosen from
the population based on probability. Besides, elitist selection
is another strategy used to propagate some elite individuals
to the next generation directly [32], and the other chromo-
somes in the population are passed on to crossover operator.
Compared with roulette wheel selection, elitist selection can
improve convergence speed as well as reduce the compu-
tational complexity by its direct reproduction of elite indi-
viduals to the next generation. For crossover operator, genes
are swapped between two parent chromosomes based on
crossover point so as to produce two child chromosomes.
Then, two of the four chromosomes with better fitness values
are selected for mutation operator. Single-point crossover is
one of the most widely used crossover methods in clustering
routing protocols by applying a random [13], [17], [31]-[33]
or fixed [28] crossover point, in which the genes after the
crossover point exchange between two parents, as shown
in Fig. 2(a). Moreover, two-point crossover is also used
for some clustering routing protocols such as GECR [10],
in which swapping genes between two crossover points
occurs between two parents, as shown in Fig. 2(b).

For mutation operator, bit mutation is the basic method
for clustering routing protocols [10], [13], [28], [32], [33],
in which a gene changes at the position of random determined
mutation point, as shown in Fig. 3(a). Moreover, the muta-
tion point also can be determined by considering the gene
positions of multiple parents [13]. Besides, two genes can
be switched according to the mutation point [31], as shown
in Fig. 3(b).

Similar to chromosomes production, invalid chromosomes
also may be generated by crossover and mutation opera-
tors due to random swap and switch [13], [20], [30], [31],
then the validity of new produced chromosomes is also
judged in [10], [28], [32], [33] so as to produce a valid next
generation.

Determination conditions are applied to determine whether
to stop genetic operators or not. Just like the authors
in [10], [13], [20], [28]-[33], iteration number was used
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(a) single-point crossover (b) two-point crossover
FIGURE 2. Crossover taking binary coding as an example.
parent | 4 [ o [ [ ]| |1|°||1|0| Lo [ ] ] 1]
Tl Tl oTolo] Lodofofof o] Jofr]

Tmutation point

(a) single-bit mutation

FIGURE 3. Mutation taking binary coding for an example.

as the determination condition for most clustering routing
protocols. Once the iteration number reaches the threshold,
genetic algorithm stops and the optimal solution with the best
fitness value in the new generated population is obtained.
Otherwise, the current population is replaced by the new
generated population which is used for genetic operators,
iteratively.

Simulation results showed that the above mentioned proto-
cols can achieve their own design objectives by using genetic
algorithms. However, the authors in [34], [35] indicated that
the traditional genetic algorithm has some drawbacks such
as premature convergence and local optimum. So inspired
by chaos theory that studies dynamical systems, and whose
present state depends on the characteristics of the previous
state, in contrast to random systems where it is impossible to
predict the next state from the previous one, chaotic optimiza-
tion has been used to avoid local optimization, randomness
and ergodicity in search processes [34], [36], [37]. Therefore,
a chaotic genetic algorithm integrated chaotic optimization
with traditional genetic algorithm is introduced in CRCGA
to modify the stochastic parameters of genetic algorithm.
And chaotic map is used to generate the initial population in
order to avoid the premature convergence to a local solution.
In this way, the global optimal solution of CHs selection
and routing paths finding is obtained by utilizing chaotic
selection, crossover and mutation operators. Consequently,
the energy consumption is minimized and the network load is
balanced. Moreover, a new adaptive round time is presented
to further prolong the network lifetime.

Ill. SYSTEM MODEL

In CRCGA, n power constrained nodes with unique IDs are
randomly deployed in the network whose area is M x Mm?,
and the nodes are grouped into clusters. There is a CH and
several CMs in a cluster, and the CH is selected to manage
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mutation pointl Tmutation point2

(b) two-bit mutation

the cluster including forming the cluster, receiving data from
its CMs, aggregating and sending data directly or indirectly
to the BS, maintaining the cluster and so on. A CM has
direct access to only one CH, and a CH has direct access to
only one BS or another CH at the same time. Moreover, for
simplicity and comparability, the QoS (Quality of Service)
of links such as reliability [38], [39] and security [40], [41]
are not considered in this paper just like in [27]-[35]. That is
to say a node can communicate with other nodes as long as
it is within their communication radius. Besides, all nodes
are supposed to be synchronized at the same moment like
in [9]. Without loss of generality, the following assumptions
are considered while utilizing the proposed network model.

e Once deployed, all nodes including the BS are
unmovable.

« Homogeneous nodes are considered with the same
sensing, processing, storage, communication and initial
energy capabilities.

o The BS has unlimited capability in energy, processing,
communication and so on. It can communicate with all
the nodes in the network.

o The wireless link between any two nodes is symmetric,
so that energy consumption is identical for the same
amount of data transmission between the two nodes.

« The distance between any two nodes can be obtained by
the received signal strength.

Based on the proposed network model, our main goal is to
minimize the network energy consumption and balance the
network load. To this end, the terminology used in this paper
is listed below.

o H = {hi,ho, ..., i}, M = {my,my, ..., my} denote
the sets of CHs and CMs of the network respectively,
and k is the number of CHs, ¢ is the number of CMs,
k + g = n. Moreover, the BS is denoted by Ay for
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the convenience of the following calculation, and the
number of CMs of 4; is denoted by nCMy, .

e Nij = {n1,m, ..., np} denotes the set of neighbors of
node i, and p is the number of neighbors.

e Enn denotes the energy consumption of intra-cluster
communication of the network.

o Enn denotes the energy consumption of inter-cluster
communication of the network.

o Eiotal denotes the total energy consumption of the net-
work, and Eiota1 = Emn + Enn-

o djj denotes the distance between nodes i and j, and dmax
is the maximum communication range for all the nodes
in the network.

e CHy;, = {hj|Vhj e HAO < dmihj < dmax} denotes the
candidate CHs for m;, and Hy,, is the selected CH for
node mj from CHy,.

e CHy, = {hj|Vh; € (HUhgi1) A dyhy,, > dhjth A
dhihj < dmax} denotes the candidate next-hop CHs for h;
during its communication range, and Hy, is the selected
next-hop CH for h; from CHy,. Moreover, nHy, is used
to present the number that is selected as the next-hop CH
for CH h;.

. I*Eelec‘l‘l*sfs*d?jy djj < do
N l*Eelec—I—l*sfs*d%, djj > do

Erj @)
where E¢lec denotes the energy consumption for trans-
mitting or receiving 1-bit data, efs and enp denote the
amplifier coefficients of free space and multi-path fad-
ing respectively, dj; is the distance between nodes i and j,
do is the threshold distance given by do = /&fs/&mp.
In addition, the amount of energy consumption for
receiving / — bits data is given by

ERriyj = [ * Eelec (8)

And the amount of energy consumption for aggregating
[ — bits data is given by

Epa = * Eppp 9)

where E,pp is the energy consumption for 1-bit data
fusion. Based on Eq. (7), (8), (9), the energy consump-
tion for m; and h; can be obtained, which is expressed as

follows:
Em, = ETmH,, (10)
nCMhi+thi
Ep = ) Er; +Epa+(1+nHy,) * Erin,

i=1

(11)

Accordingly, the total amount of energy consumption in
the network can be calculated as follows:

q k
Eow =) Em+) En (12)

It can be seen from Eq. (12) that the uniform clus-
ter distribution can also be obtained since CRCGA
considers the minimum energy consumption of not
only intra-cluster but also inter-cluster communication.
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Moreover, the load on each CM is almost the same in
CRCGA as the other clustering routing protocols. Then
only the loads on CHs are used to measure the load
balancing of the network, which is expressed as follows:

LBcHs
where
Ldy;, = (1+nHy) *Ld (14)
k
<, Ldy,
avecys = Zl+ (15)

which mean the load of CH h; and the average load of
CHs respectively. Therefore, the objective of CRCGA is
to minimize the values of Ey,1 and LBcys.

IV. THE PROPOSED CRCGA

In CRCGA, an improved chaotic genetic algorithm is used
to find the optimal CHs and routing paths simultaneously.
Real number coding instead of binary coding is adopted to
represent the chromosomes, and a novel fitness function is
designed to determine the quality of chromosomes. Genetic
operators are conducted to produce new chromosomes. In this
way, the optimal CHs are selected to form clusters and the
optimal routing paths are found to transfer data. Moreover,
adaptive round time based re-clustering is used to rotate the
CHs, with the routing paths updated, accordingly. The detail
realization of CRCGA is described as follows.

A. ENCODING CHROMOSOME

A chromosome represents a possible solution for the optimal
CHs and routing paths, which is coded as a sequence of
positive integers in CRCGA, whose length equals the number
of nodes n in the network, and a positive integer represents
the ID number of a node. Moreover, a chromosome consists
of two parts, one for routing paths with k£ genes is called
routing genes, and the other is for CHs selection with n — k
genes called CH genes accordingly. A routing gene denotes
the next-hop CH of the selected CH, and a CH gene denotes
the CH of the corresponding CM. Then a chromosome with
an example is depicted in Fig. 4.

The ID of all nodes in the network is listed in the first row
from 1 to n, the ID of randomly selected CHs is listed in the
front part of the second row along with the ID of CMs. The
chromosome is represented in the third row which contains n
genes. A modified chaotic logistic map is adopted to generate
genes in CRCGA because of its sensitivity to initial values,
better random sequence generation, traversing all state point
in chaotic region and long term unpredictability, which is
expressed as follows:

b—1
8 = I_O*M*Zi*(l_zi) ,
O<pu=<4 (16)

0<z <1,

where © is a control parameter, and when © > 3.57 and
zi # 0.25,0.5, 0.75, the system goes into chaotic state. In this
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ID of nodes 1 2 i k k+1 k+2 k+i n
Chromosome nxCHy; | nxCHy | -« | nxcH | -~ | nxCHy | CHy | CHy | | CH;; | | CHyiy
44— routing genes CH genes ——— >
1 2 3 4 5 6 8 9 45 100
8 26 45 67 83 91 1 2 m; 100
| 67 | 101(BS) | 8 | 91 | 26 | 101(BS) 8 | 26 | . | 67 | - | 8 |

FIGURE 4. Chromosome representation for routing paths and CHs selection.

paper, u = 4 like in [33], [34], b is the number of genes
of a chromosome. In order to produce a chromosome, first,
randomly produce k unequal genes according to Eq. (16) as
CHs which must be satisfied with the constraint condition
given by:

vm;| (CHNCH ;) #, i€[l—k],je[l,n—k]}

(a7

That is to say at least one of the candidate CHs of each
CM must exist in the set of CHs, accordingly, one CM has
a valid CH. Second, one of the candidate next-hop CHs
of each CH #h; is randomly selected as its net-hop CH.
Last, a valid chromosome is finished by combining the
CHs for each CM with the selected candidate next-hop
CHs for each CH. As illustrated in the example of Fig. 4,
100 nodes S = {l,2,...,100} are deployed in a net-
work, and six valid CHs CH = {8, 26,45, 67, 83,91} are
selected, that is, for CMs my, myp, mo4, their CHs are 8,
26, 8 respectively, and the like. Also, for CH 8, 26, 45,
67, 83, 91, their next-hop CHs are 67, BS, 8, 91, 26, BS.
Consequently, the clusters and routing paths can be obtained
from the chromosome. There are six clusters, namely
{8,1,100,...},{26,2,...},{45,...},{67,...},{83,...} and
{91,...}. And the routing paths for each CH are
8—67—91—BS, 26—BS, 45—-8—67—-91—BS, 67—
91—BS, 83—26—BS, and 91—BS. The detail process of
a valid chromosome production is illustrated in Fig. 5.

B. CONSTRUCTING FITNESS FUNCTION

Fitness function plays a vital role in seeking for the optimal
solution of genetic algorithm, which is used to assess the
quality of the individuals. Minimizing network energy con-
sumption and balancing network load are two main objectives
of CRCGA. At first, it is necessary to decrease the amount of
energy consumption of CMs and CHs as much as possible.
So the residual energy of CMs and CHs is considered as a
factor named « for the fitness function, which is expressed
as Eiaires = 1 * Einit — Ejoral- Einir 1s the inital energy
of all nodes. Secondly, due to its great influence on energy
efficiency, the load balancing among CHs is used as the other
factor named g for the fitness function. Therefore, the fitness
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function in CRCGA is expressed as follows:

1
Fitness = —— + 18
T B (18)

14+«
where o and § are the normalized values of network energy
consumption and load balancing, which are expressed respec-
tively as follows:

'Bz

LBcps — LBcHSmin

LBcHsmax — LBCHSmin
E —E ;
o = totalres totalres,in (19)

Etotalresmax - Etotalresml‘,,

where LBcysmin and LBcgsmay are the minimum and max-
imum of LBcys for all individuals, and Etotalres,,; and
Etotalres,,,, are the minimum and maximum of Etotalres.
It can be seen from Eq. (18) that the smaller the value of
the fitness function is, the better the quality of the individual
is, and then the more likely it is to pass on to the next
generation, until the optimal individual with the minimum
fitness function value is obtained.

C. IMPOSING GENETIC OPERATORS

Before imposing genetic operators, the initial population
is produced by continuously calling the procedure pro-
duce_chromosome according to the population size. And
then the fitness value of each chromosome is calculated and
arranged in ascending order. Soon afterwards, the selection,
crossover and mutation operators are used to produce the next
population.

Selection is used to make the better individuals with supe-
rior valuation based on their fitness function values have a
greater probability to be selected for the next generation,
which imitates the natural selection process. The less the
value of the fitness function, the closer the individual is
to the optimal solution, and the greater probability it is to
be selected. In CRCGA, elitist selection strategy is used
to make the elitist individuals directly be selected to the
next generation population. For the other individuals, each
one determines whether its fitness function value is less
than that of a random individual generated by the procedure
produce_chromosome. If it is, the individual is selected for
crossover operation, otherwise, the randomly generated one
is selected to accelerate convergence as well as ensure the
diversity of the population.
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1: Procedure chrom = produce_chromosome (int n)

2: fori=1tondo
3: Init_ID list[i]=1;

4: Sel ID_list[i] =0;

5: chrom[i] = 0;

6: end for

7: CH = Chaotic_genes(n, k);

8: Ascending CH;

9:j=1,m=l;

10: for i=1 to n do

11: ifInit ID list[i] != CH[m] then
12:  CM[j] = Init_ID_list[i];

13: j++;

14: else

15: mt++;

16: endif

17: end for

18: fori=1ton do

19: if i >k then

20:  Sel_ID_list[i] = CM[i-k];

21: else

22:  Sel ID_list[i] = CH[i];

23: end if

24: end for

25:fori=1tondo

26: ifi<kthen

27: chrom[i] = random_select(nxCH;);
28: else

29: chrom[i] = random_select(CH;);
30: end if

31: end for

32: end Procedure

FIGURE 5. Producing a valid chromosome.

Crossover means a reproduction process permitting the
genes of parents to be forwarded to their offsprings so as to
obtain improved characteristics. Two-point crossover is used
in CRCGA, in which two random crossover points are located
in two parts of the chromosome respectively. An example is
illustrated in Fig. 6.
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The fitness function values of the children are calculated
and compared with their parents, and if the value of a child
is less than that of its parent, it is selected for mutation oper-
ation. Or else, the procedure produce_chromosome is used
to produce a random individual, and also the fitness function
value is computed to decide whether it is less than that of the
parent. If it is, the random individual is selected for mutation
operation, and vice versa. In this way, the convergence speed
is further accelerated.

Mutation offers changes into genes for a more substantial
searching capability as well as diversity promotion. Bit muta-
tion operator is carried out in CRCGA, which determines
a random mutation point to change the corresponding gene
according to Eq. (16), and then the new individual is obtained.
Furthermore, its fitness function value is calculated to deter-
mine whether it is superior to its parent, and the better one is
selected for the next generation. Fig. 7 shows an example of
bit mutation.

After the mutation operation, all the individuals are com-
bined with the selected elitist individuals directly. Then the
next generation population is produced.

D. FINDING THE OPTIMAL SOLUTION

By iterating the genetic operators, generation by generation,
optimized population is produced. In this way, the optimal
solution can be obtained as long as one of the termination
conditions is satisfied. That is to say, the optimal CHs and
routing paths have been found simultaneously. Without loss
of generality, the iteration number is considered as one of
the termination conditions, which is usually adopted to avoid
algorithms falling in an infinite loop [27]-[33]. Besides,
the deviation degree of the fitness function values is used
as the other termination condition, which is expressed as
follows:

| Y i Fitness;
w

— Fitnesspax| < € (20)

where w is the population size, Fifness; indicates the value
of fitness function for individual i, and Fitness,,, is the
maximum value of fitness function in the population, & is
a preset small positive number which represents the simi-
larity of individuals. In CRCGA, ¢ = 107 like in [34].
Although the number of iterations is less than the thresh-
old, the algorithm will teminate as long as the devia-
tion degree is satisfied with the set condition accordingly.
Therefore, as soon as finding the optimal solution stops
operating, the optimal individual is selected from the popu-
lation whose fitness function value is minimum. Right now,
the optimal CHs and routing paths can be obtained according
to the selected optimal individual. Moreover, the selected
optimal individual is directly added to the initial popula-
tion next time, in order to further improve the convergence
speed. The detail flow diagram of CRCGA is illustrated
in Fig. 8.
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1 2 3 4 5 6 8 9 45 100
D 8 26 45 67 83 91 1 2 m 100
ID of CMs and 67 101(BS) | 8 91 26 | 101(BS) 8 26 67 8
selected CHs 91 101(BS) | 26 8 45 | 101(BS) 67 91 8 83
91 101(BS) | 26 91 26 | 101(BS) 8 26 8 83
Parent 1
67 101(BS) | 8 8 45 | 101(BS) 67 91 67 8
Parent 2
Child 1
Child 2
FIGURE 6. Two-point crossover for CRCGA.
Before Mutation | 91 | 101( BS) | 26 | 8 | 45 | 101(BS) | 67 | 91 | | 8 | | 83 |
* Mutation Point
After Mutation | 91 | 101(BS) | 26 | 8 | 26 | 101(BS) | 67 | 91 | | 8 | | 83 |

- Gene produced by Chaos calculation

FIGURE 7. Bit mutation for CRCGA.

E. MAINTAINING CLUSTERS AND ROUTING PATHS
Generally, fixed round time [4], [17], [21] is used for CHs
rotation during the entire network operation so as to reduce
the energy consumption. However, variable round time has
been proved to be more suitable for reducing the network
energy consumption [15]. In CRCGA, a new adaptive round
time is proposed to save network energy consumption due
to frequent CHs rotation and improve network throughput.
Here, load balancing and energy balancing of the network are
both considered, and are represented as y and § respectively,
namely:

Thewround = 2 * Tround * (1 — ¥) * (1 — 9) 2D

where:

o Tiound 18 the traditional round time
« vy is the energy factor which is given as follows:

n 2
n Zi:] Eresidual-
| Bresidual, — S
y = 21_1 ( residual; . o ) (22)

and y is normalized as:

Yy — Eresidualmin

v = (23)

Eresidualmax - Eresidualmm
Eresidualy, and Eresidual,,, are the minimum and maxi-
mum of Eregiduay; (0 < 1 <n’) respectively, n’ is the num-
ber of current alive nodes.
« 4 is the load factor which is given as follows:
LBcus — Ldy
~ Ldy

8 i_min (24)

— Ldy

i_max i_min
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Ldy, .,> Ldn, ., are the minimum and maximum of Ldy,
respectively. Obviously, no extra overhead is produced
for the residual energy because the state of the nodes
is usually attached by the nodes in the data packets
delivered to the BS. At the beginning of each round, the
BS uses chaotic genetic algorithm to obtain the optimal
CHs and routing paths, and then broadcasts them to the
network together with the calculated round time. All
the nodes communicate with each other based on the
received information.

i_max

F. COMPLEXITY ANALYSIS

The proposed CRCGA focuses on a performance enhance-
ment of energy efficiency and load balancing using a chaotic
genetic algorithm and an adaptive round time calculation
scheme. So its time complexity can be given as:

O(CRCGA) = O(time complexity of CGA + time com-
plexity of adaptive round time calculation). CGA consists
of population initialization, genetic operators and finding
the optimal solution, which is an iterative algorithm with
the number of iterations /. It can be seen from Fig.5 and
Eq. (16) that the time complexity of encoding chromosome
is O(k*n), where k is the number of CHs, and n is the
number of nodes or the length of chromosomes, so the time
complexity of population initiation is O(P*k*n), where P is
the population size. After that, the genetic opertators and
fitness function values calculation are iterated. Obviously,
the time complexities of elitist selection, two point crossover,
bit mutation and fitness funtion values calculation are O(n),
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| Encoding chromosome |

v

| Constructing fitness function |

N
la 4

_’l Initializing the population |
q|

> | Elitist selection |

h —_
Chaos L 1 1c other individuals#
Calculation

Two-point crossover
_>| p

v

Bit mutation |

>

The next generation population %

| Computing fitness values |

Is one of the
termination
conditions satisfied?

| Selecting the optimal individual |

End

FIGURE 8. The flow diagram of CRCGA.

0(n/2), O(k*n), O(P*n) respectively. Consequently, the time
complexity of the genetic opertors is O(/*(3/2 + k + P)*n).
Once one termination condition is satisfied, the optimal solu-
tion is found by bubble sort whose average time complexity
is O(n?) while O(n) and O(1n?) in best and worst cases. Then
the time complexity of CGA is O(P*k*n + I*(3/2 + k +
P)*n + n?). Moreover, it can be seen from Eq. (21)-(24)
that the time complexity of adaptive round time calculation
is O(n). Therefore, the time complexity of O(CRCGA) is
O(P*k*n+1*(5/2+k+P)*n+n?). without loss of generality,
the number of CHs is far less than the number of nodes
in WSNs, that is & <« n, and the population size usually
equals the length of chromosomes in genetic algorithms, and
in CRCGA, the length of chromosomes equals the number of
nodes, so P = n. Besides, the number of iteratinos / is a preset
constant. As a result the time complexity of O(CRCGA) can
be simplified as O(n?).

Similarly, the space complexity of CRCGA can be
obtained by O(CRCGA) = O(space complexity of CGA +
space complexity of adaptive round time calculation). Seen
from Fig.5 and Eq. (16), the space compexity of encoding
chromosome is O(1), so the space complexity of population
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initialization is also O(1). For genetic operators, although
they are run iteratively, all operations and results are based
on the initial population matrix and do not require additional
storage units. Moreover, during an iteration process, only the
two-point crossover needs 2 ~ n temporary storage units to
hold the genes to be exchanged according to the locations
of two crossover points, and in order to sort individuals
according to the fitness function values for elitist selection,
P temporary storage units are added to the population as a
column, so the space complexity of CGA is O(P+n). In addi-
tion, the space complexity of finding the optimal solution by
bubble sort is O(1). Also, the space complexity of adaptive
round time calculation is obviously O(1). Therefore, the space
complexity of CRCGA is O(n + P) which can be simplified
as O(n).

V. PERFORMANCE EVALUATION

In this section, simulation experiments are performed to eval-
uate the effectiveness of CRCGA using MATLAB. At first,
100 nodes are randomly deployed in an area of 100m*100m,
with the BS located at the center. The specific parameter
settings are illustrated in Table 1, which is similar to those
in [10], [13]. The sensor nodes are fixed and the external envi-
ronment does not affect the radio signals adversely [20]. The
results are obtained from the average value of 10 tests. More-
over, we compare the proposed CRCGA with the existing
related algorithms LEACH [3], GECR [10], OMPFM [13],
and GADA-LEACH [20] using the metrics convergence
speed, energy efficiency, load balancing, network throughput
and network lifetime.

TABLE 1. Parameter settings.

Parameters Values
Initial energy of node 1J
E.. 50nJ/bit
€, 10pJ/bit/m?
€ 0.0013pJ/bit/m*
Cluster head proportion 0.1
Epr Snj/bit
Packet size 4000 bits
Message size 100 bits
Maximum communication 50m
range of nodes/dmax
Network size 100*100m?
Crossover rate 0.7
Mutation rate 0.1
Population size 100

The convergence speed is the the number of iterations from
producing the initial population to the final determination of
the optimal chromosome, which is firstly tested to indicate
the time complexity of CRCGA compared with the relevant
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genetic algorithm based clustering routing protocols. The
results are shown in Fig. 9.

34
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——+— GADA-LEACH
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FIGURE 9. Comparison of convergence speed.

It can be seen from Fig.9 that OMPFM has the slowest
convergence speed and CRCGA has the fastest convergence
speed. Binary coded chromosomes used for routing search in
OMPFM make genetic algorithm run once for each source
CH, thus slowing down the convergence speed. Although
binary coded chromosomes are also used for CHs selection
in GADA-LEACH, the genetic algorithm is only run once
for all CMs, so its convergence speed is faster than that
of OMPFM. Similarly, real number coded chromosomes in
GECR and CRCGA for CHs selection and routing paths
search simultaneously make genetic algorithm run once for
all nodes. Moreover, pre-process is carried out to exclude
some low energy or far distance nodes, and the last optimal
individual is directly added to the population next time, which
are further improve the convergence speed of GECR and
CRCGA compared to OMPFM and GADA-LEACH. Espe-
cially, the deviation degree of the fitness function values,
used as the other termination condition of chaotic genetic
algorithm in CRCGA, makes it convege faster than GECR.
As a result the convergence speed of CRCGA is increased by
7.95%, 15.96% and 29.09% respectively compared to GECR,
GADA-LEACH and OMPFM.

In order to evaluate the energy efficiency of CRCGA,
the energy consumption of all nodes and the standard devi-
ation of residual energy are tested, the results are illustrated
in Fig. 10 and 11 respectively.

It can be seen from Fig. 10 and 11 that the energy con-
sumption of CRCGA is not only less but also more balanced
than LEACH, GADA-LEACH, OMPFM and GECR. Due
to its single-hop, random CH selection without considering
residual energy, LEACH is easy to produce isolated nodes
and uneven clusters which result in the worst performance.
Minimizing the total energy consumption of the network
for fitness function construction during the process of CHs
selection and finding routes makes GECR perform better
than GADA-LEACH only for CH selection and OMPFM
only for finding routes. Furthermore, the results also indi-
cate that adaptive round time can also affect the network
energy efficiency. In summary, the total energy consumption
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FIGURE 10. Comparison of energy consumption of all nodes.
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FIGURE 11. Comparison of standard deviation of residual energy of all
nodes.

of CRCGA is 35.51%, 20.03%, 11.7%, 5.08% lower than
those of LEACH, GADA-LEACH, OMPFM and GECR. The
standard deviation of residual energy is also 39.9%, 33.61%,
20.33%, 12.78% lower than those of the other algorithms.

Load balancing is usually used to measure the unifor-
mity of load and energy consumption among CHs, which
is decided by the number of members and the number of
selected relay nodes. In order to compare load balancing more
clearly, the standard deviation of load on CHs is tested and the
results are shown in Fig. 12.
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FIGURE 12. Comparison of standard deviation of load balancing.
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Itis obvious from Fig. 12 that LEACH unevenly distributes
its load on CHs due to its random CHs selection. Though
GADA-LEACH can select effienct nodes as CHs through
a genetic algorithm, the normal nodes join a cluster only
according to its distance to CHs like LEACH, which forms
unequal sized clusters, thus causing an unequal load on CHs.
OMPFM considers not only CHs selection but also routes
finding. However, it still does not consider the number of
cluster members while forming clusters, but CRCGA and
GECR do. Moreover, CRCGA can find the better CHs and
routing paths than GECR by utilizing a chaotic genetic algo-
rithm. The standard deviation of load balancing of CRCGA
is 58.92%, 39.9%, 31.61%, 20.63% lower than those of
LEACH, GADA-LEACH, OMPFM and GECR.

The network throughput denoted by the received valid
packets of the BS in this paper is always used to measure
the quality of service of the network. Moreover, it is also the
direct reflection on CHs distribution and load balancing. The
results are illustrated in Fig. 13.
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FIGURE 13. Comparison of network throughput.

As can be seen from Fig. 13, the network throughput
decreases as the number of rounds increases. So it can be
concluded that less packets will be forwarded to the BS when
there are more isolated nodes or dead nodes in the network.
In practically, CRCGA outperforms LEACH by 79.96%,
GADA-LEACH by 43.84%, OMPFM by 32.53% and GECR
by 10.37% respectively in the network throughput.

Next, the number of dead nodes and the number of liv-
ing nodes and FND (First Node Dies), HND (Half Nodes
Die), LND (Last Node Dies) in rounds are tested to evaluate
the network lifetime of CRCGA, and the results are shown
in Fig. 14, 15 and Table 2.

Seen from Fig. 14, there are 10% of nodes die at round 690,
617, 446, 842, 896 in LEACH, GADA-LEACH, OMPFM,
GECR and CRCGA respectively. 90% of dead nodes occur
at round 1005, 1679, 1805, 2100, 2544 in LEACH, GADA-
LEACH, OMPFM, GECR and CRCGA. It can be known
from Table 2 that the FNDs of GADA-LEACH, OMPFM,
GECR and CRCGA are 336, 328, 349 and 377 rounds, which
are less than that of LEACH, because the CHs near to the BS
in GADA-LEACH, OMPFM, GECR and CRCGA undertake
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TABLE 2. Comparison of FND, HND and LND.

Protocols

o LEACH fgfgﬁ OMPFM ch CRCGA
FND 603 336 328 349 377
HND 811 1088 1392 1485 1606
LND 1446 1842 1953 2127 2633

data forwarding tasks resulting in premature death. However,
the CHs in LEACH communicate with the BS directly. With
the running of the network, the CHs far away from the
BS die quickly in LEACH due to their direct communica-
tion with the BS. Therefore, the LND of LEACH is much
smaller than those of GADA-LEACH, OMPFM, GECR and
CRCGA. In short, the number of rounds obtained in CRCGA,
i.e. lifetime, is increased by 23.79%, 34.82%, 42.94% and
82.09%, respectively. Especially, no matter which round it
is, CRCGA has the lowest number of dead nodes. Moreover,
CRCGA has the slowest change rate in the number of living
nodes according to Fig. 15. Thus one can see that CRCGA
has the longest network lifetime.
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Finally, the network lifetime is further evaluated in sce-
narios with 600, 800 and 1000 nodes deployed in a vast
area of 1000m™1000m and 1000 nodes deployed in the areas
of 600m*600m, 800m*800m, 1000m* 1000m.The results are
shown in Table 3 and Table 4.

TABLE 3. FND, HND and LND in the area of 1000m*1000m with different
nodes.

m LEACH Sﬁchﬁ OMPFM | GECR %}f
FND 1 75 84 106 | 121
1000 | HND 11 547 687 755 | 803
LND 288 706 933 992 | 1143
FND 1 58 66 89 103
800 | HND 14 497 606 698 | 732
LND 327 649 848 953 | 982
FND 1 44 56 63 70
600 | HND 10 412 534 604 | 626
LND 338 593 765 903 | 926

TABLE 4. FND, HND and LND in different areas with 1000 nodes.

rotocols LEA GADA- OMP CRC
LEACH GECR 1 Ga
Area CH M
FND 1 75 84 106 121
1000
m*10 | HND 11 547 687 755 803
00m
LND 288 706 933 992 1143
FND 1 117 138 168 192
800m
*800 | HND 28 659 812 906 972
m
LND 601 760 995 1070 1239
FND 1 132 156 189 216
600m
*600 | HND 72 695 855 958 1022
m
LND 661 806 1047 1125 1302

It can be seen from Table 3 and Table 4 that the network
lifetime decreases with the increase of the network area. That
is because the average hop count increases in vast area as well
as the distance between some clusters, leading to an expo-
nential increase in energy consumption. At the same time,
the network lifetime increases with the number of nodes in
the vast area network because the more uniform distribution
of clusters and the smaller average distance betweeen clusters
will be achieved if there are more nodes deployed in the
network, so less energy will be consumed accordingly. As for
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LEACH in the vast area network, CHs that are far from the
BS die rapidly, so FND occurs at the first round. Compared
to GADA-LEACH and OMPFM, GECR and CRCGA design
the fitness functions based on the network energy consump-
tion minimization, so their network lifetime is larger than
that of GADA-LEACH and OMPFM. For CRCGA, adaptive
round time and load balancing consideration are used to
further extend the network lifetime. Therefore its network
lifetime is the largest in all the scenarios. In other words,
the scalability of CRCGA is much better than LEACH,
GADA-LEACH, OMPEM and GECR. It is thus clear that
LEACH using single hop communication is not suitable for
applications in large scale WSNs due to its worst scalabil-
ity. To be specific, compared with GECR, GADA-LEACH,
OMPFM and LEACH, the network lifetime of CRCGA is
increased by 15.22%, 61.9%, 22.51% and 296.9% when the
number of nodes in area of 1000m™*1000m is 1000, by 3.04%,
51.31%, 15.8%, 200.31% when the number of nodes is 800,
by 2.55%, 56.16%, 21.05% and 173.96% when the number
of nodes is 600. Moreover, the network lifetime of CRCGA
is also increased by 15.8%, 63.03%, 24.52%, 106.16% when
the area with 1000 nodes is 800m*800m, by 15.73%, 61.53%,
24.36% and 96.97% when the area with 1000 nodes is
600m™*600m.

VI. CONCLUSION

In this paper, an energy efficient and load balanced clus-
tering routing protocol called CRCGA based on a chaotic
genetic algorithm is proposed to minimize the network energy
dissipation. To this end, the best CHs are selected and the
optimal routing paths are found simultaneously. It’s done by
running the chaotic genetic algorithm with the definition of
a novel fitness function considering minimizing the energy
consumption of all the nodes and balancing the loads of CHs
in each round. Moreover, an adaptive round time considering
energy efficiency and load balancing is calculated to further
reduce the total energy consumption of the network. Simu-
lations are conducted to prove the effectiveness of CRCGA
whose convergence speed is the fastest in all of the network
rounds. In terms of energy efficiency, CRCGA consumes the
smallest amount of energy while the energy consumption
is the most balanced. The average network throughput in
CRCGA is increased by 10.37%, 79.96% compared with
the second most optimal algorithm GECR and the worst algo-
rithm LEACH. Meanwhile, the living nodes of CRCGA is the
largest at most times, and the network lifetime of CRCGA
is 15.22%, 3.04%, 2.55% and 296.9, 200.31%, 173.96%
longer than those of GECR and LEACH in the network area
of 1000m™1000m with nodes of 1000, 800 and 600. Also
its lifetime in scenarios with 1000 nodes in the network
areas of 800m*800m and 600m™*600m is increased by 15.8%,
15.73% and 106.16%, 96.97% compared with GECR and
LEACH respectively. In summary, CRCGA is superior to
LEACH, GECR, OMPFM, and GADA-LEACH in terms of
convergence speed, energy efficiency, load balancing, net-
work throughput and lifetime.
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Although CRCGA has made some contributions as men-
tioned above, it is presented for the static WSNs. In the
future, the artificial neural network along with chaotic genetic
algorithm will be used to further improve the performance of
multi-hop clustering routing protocol in the mobile WSNs.
Moreover, QoS of the links such as reliability and security
will also be considered. Especially, a further direction will
carry out practical application in real wireless environment
for WSNs.
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